Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2017

Open Access 01-12-2017 | Research article

Global Bi-ventricular endocardial distribution of activation rate during long duration ventricular fibrillation in normal and heart failure canines

Authors: Qingzhi Luo, Qi Jin, Ning Zhang, Yanxin Han, Yilong Wang, Shangwei Huang, Changjian Lin, Tianyou Ling, Kang Chen, Wenqi Pan, Liqun Wu

Published in: BMC Cardiovascular Disorders | Issue 1/2017

Login to get access

Abstract

Background

The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, <1 min) and long-duration ventricular fibrillation VF (LDVF, >1 min) in normal and heart failure (HF) canine hearts.

Methods

Ventricular fibrillation (VF) was electrically induced in six healthy dogs (control group) and six dogs with right ventricular pacing-induced congestive HF (HF group). Two 64-electrode basket catheters deployed in the LV and RV were used for global endocardium electrical mapping. The AR of VF was estimated by fast Fourier transform analysis from each electrode.

Results

In the control group, the LV was activated faster than the RV in the first 20 s, after which there was no detectable difference in the AR between them. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the posterior LV was activated fastest, while the anterior was slowest. In the HF group, a detectable AR gradient existed between the two ventricles within 3 min of VF, with the LV activating more quickly than the RV. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the septum of the LV was activated fastest, while the anterior was activated slowest.

Conclusions

A global bi-ventricular endocardial AR gradient existed within the first 20 s of VF but disappeared in the LDVF in healthy hearts. However, the AR gradient was always observed in both SDVF and LDVF in HF hearts. The findings of this study suggest that LDVF in HF hearts can be maintained differently from normal hearts, which accordingly should lead to the development of different management strategies for LDVF resuscitation.
Literature
1.
go back to reference Choi B-R, Nho W, Liu T, Salama G. Life span of ventricular fibrillation frequencies. Circ Res. 2002;91(4):339–45.CrossRefPubMed Choi B-R, Nho W, Liu T, Salama G. Life span of ventricular fibrillation frequencies. Circ Res. 2002;91(4):339–45.CrossRefPubMed
2.
go back to reference Valderrábano M, Yang J, Omichi C, et al. Frequency analysis of ventricular fibrillation in swine ventricles. Circ Res. 2002;90(2):213–22.CrossRefPubMed Valderrábano M, Yang J, Omichi C, et al. Frequency analysis of ventricular fibrillation in swine ventricles. Circ Res. 2002;90(2):213–22.CrossRefPubMed
3.
go back to reference Moreno J, Zaitsev AV, Warren M, et al. Effect of remodelling, stretch and ischaemia on ventricular fibrillation frequency and dynamics in a heart failure model. Cardiovasc Res. 2005;65(1):158–66.CrossRefPubMed Moreno J, Zaitsev AV, Warren M, et al. Effect of remodelling, stretch and ischaemia on ventricular fibrillation frequency and dynamics in a heart failure model. Cardiovasc Res. 2005;65(1):158–66.CrossRefPubMed
4.
go back to reference Nanthakumar K, Huang J, Rogers JM, et al. Regional differences in ventricular fibrillation in the open-chest porcine left ventricle. Circ Res. 2002;91(8):733–40.CrossRefPubMed Nanthakumar K, Huang J, Rogers JM, et al. Regional differences in ventricular fibrillation in the open-chest porcine left ventricle. Circ Res. 2002;91(8):733–40.CrossRefPubMed
5.
go back to reference Umapathy K, Masse S, Sevaptsidis E, et al. Regional frequency variation during human ventricular fibrillation. Med Eng Phys. 2009;31(8):964–70.CrossRefPubMed Umapathy K, Masse S, Sevaptsidis E, et al. Regional frequency variation during human ventricular fibrillation. Med Eng Phys. 2009;31(8):964–70.CrossRefPubMed
6.
go back to reference Newton JC, Johnson PL, JUSTICE R, Smith WM, Ideker RE. Estimated global epicardial distribution of activation rate and conduction block during porcine ventricular fibrillation. J Cardiovasc Electrophysiol. 2002;13(10):1035–41.CrossRefPubMed Newton JC, Johnson PL, JUSTICE R, Smith WM, Ideker RE. Estimated global epicardial distribution of activation rate and conduction block during porcine ventricular fibrillation. J Cardiovasc Electrophysiol. 2002;13(10):1035–41.CrossRefPubMed
7.
go back to reference Clayton RH, Holden AV. Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study. Phys Med Biol. 2003;48(1):95.CrossRefPubMed Clayton RH, Holden AV. Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study. Phys Med Biol. 2003;48(1):95.CrossRefPubMed
8.
go back to reference Choi B-R, Liu T, Salama G. The distribution of refractory periods influences the dynamics of ventricular fibrillation. Circ Res. 2001;88(5):e49–58.CrossRefPubMed Choi B-R, Liu T, Salama G. The distribution of refractory periods influences the dynamics of ventricular fibrillation. Circ Res. 2001;88(5):e49–58.CrossRefPubMed
9.
go back to reference Jin Q, Zhou J, Zhang N, et al. Defibrillation threshold varies during different stages of ventricular fibrillation in canine hearts. Heart Lung Circ. Feb 2013;22(2):133–40.CrossRefPubMed Jin Q, Zhou J, Zhang N, et al. Defibrillation threshold varies during different stages of ventricular fibrillation in canine hearts. Heart Lung Circ. Feb 2013;22(2):133–40.CrossRefPubMed
10.
go back to reference Panfilov I, Lever NA, Smaill BH, Larsen PD. Ventricular fibrillation frequency from implanted cardioverter defibrillator devices. Europace. 2009;11(8):1052–6.CrossRefPubMed Panfilov I, Lever NA, Smaill BH, Larsen PD. Ventricular fibrillation frequency from implanted cardioverter defibrillator devices. Europace. 2009;11(8):1052–6.CrossRefPubMed
11.
go back to reference Huang J, Rogers JM, Killingsworth CR, et al. Improvement of defibrillation efficacy and quantification of activation patterns during ventricular fibrillation in a canine heart failure model. Circulation. 2001;103(10):1473–8.CrossRefPubMed Huang J, Rogers JM, Killingsworth CR, et al. Improvement of defibrillation efficacy and quantification of activation patterns during ventricular fibrillation in a canine heart failure model. Circulation. 2001;103(10):1473–8.CrossRefPubMed
12.
go back to reference Tabereaux PB, Dosdall DJ, Ideker RE. Mechanisms of VF maintenance: wandering wavelets, mother rotors, or foci. Heart Rhythm. 2009;6(3):405–15.CrossRefPubMed Tabereaux PB, Dosdall DJ, Ideker RE. Mechanisms of VF maintenance: wandering wavelets, mother rotors, or foci. Heart Rhythm. 2009;6(3):405–15.CrossRefPubMed
13.
go back to reference Huang J, Walcott GP, Killingsworth CR, Melnick SB, Rogers JM, Ideker RE. Quantification of activation patterns during ventricular fibrillation in open-chest porcine left ventricle and septum. Heart Rhythm. 2005;2(7):720–8.CrossRefPubMed Huang J, Walcott GP, Killingsworth CR, Melnick SB, Rogers JM, Ideker RE. Quantification of activation patterns during ventricular fibrillation in open-chest porcine left ventricle and septum. Heart Rhythm. 2005;2(7):720–8.CrossRefPubMed
14.
go back to reference Kim Y-H, Garfinkel A, Ikeda T, et al. Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle. Further evidence for the quasiperiodic route to chaos hypothesis. J Clin Investig. 1997;100(10):2486.CrossRefPubMedPubMedCentral Kim Y-H, Garfinkel A, Ikeda T, et al. Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle. Further evidence for the quasiperiodic route to chaos hypothesis. J Clin Investig. 1997;100(10):2486.CrossRefPubMedPubMedCentral
15.
go back to reference Pak HN, Kim YH, Lim HE, et al. Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. J Cardiovasc Electrophysiol. 2006;17(7):777–83.CrossRefPubMed Pak HN, Kim YH, Lim HE, et al. Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. J Cardiovasc Electrophysiol. 2006;17(7):777–83.CrossRefPubMed
16.
go back to reference Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res. 2000;86(4):408–17.CrossRefPubMed Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res. 2000;86(4):408–17.CrossRefPubMed
17.
go back to reference Samie FH, Jalife J. Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovasc Res. 2001;50(2):242–50.CrossRefPubMed Samie FH, Jalife J. Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovasc Res. 2001;50(2):242–50.CrossRefPubMed
18.
go back to reference Ikeda T, Kawase A, Nakazawa K, et al. Role of structural complexities of septal tissue in maintaining ventricular fibrillation in isolated, perfused canine ventricle. J Cardiovasc Electrophysiol. 2001;12(1):66–75.CrossRefPubMed Ikeda T, Kawase A, Nakazawa K, et al. Role of structural complexities of septal tissue in maintaining ventricular fibrillation in isolated, perfused canine ventricle. J Cardiovasc Electrophysiol. 2001;12(1):66–75.CrossRefPubMed
19.
go back to reference Rogers JM, Huang J, Pedoto RW, Walker RG, Smith WM, Ideker RE. Fibrillation is more complex in the left ventricle than in the right ventricle. J Cardiovasc Electrophysiol. 2000;11(12):1364–71.CrossRefPubMed Rogers JM, Huang J, Pedoto RW, Walker RG, Smith WM, Ideker RE. Fibrillation is more complex in the left ventricle than in the right ventricle. J Cardiovasc Electrophysiol. 2000;11(12):1364–71.CrossRefPubMed
20.
go back to reference Samie FH, Berenfeld O, Anumonwo J, et al. Rectification of the background potassium current a determinant of rotor dynamics in ventricular fibrillation. Circ Res. 2001;89(12):1216–23.CrossRefPubMed Samie FH, Berenfeld O, Anumonwo J, et al. Rectification of the background potassium current a determinant of rotor dynamics in ventricular fibrillation. Circ Res. 2001;89(12):1216–23.CrossRefPubMed
21.
go back to reference Pandit SV, Kaur K, Zlochiver S, et al. Left-to-right ventricular differences in I KATP underlie epicardial repolarization gradient during global ischemia. Heart Rhythm. 2011;8(11):1732–9.CrossRefPubMedPubMedCentral Pandit SV, Kaur K, Zlochiver S, et al. Left-to-right ventricular differences in I KATP underlie epicardial repolarization gradient during global ischemia. Heart Rhythm. 2011;8(11):1732–9.CrossRefPubMedPubMedCentral
22.
go back to reference Everett TH, Wilson EE, Foreman S, Olgin JE. Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping. Circulation. 2005;112(11):1532–41.CrossRefPubMedPubMedCentral Everett TH, Wilson EE, Foreman S, Olgin JE. Mechanisms of ventricular fibrillation in canine models of congestive heart failure and ischemia assessed by in vivo noncontact mapping. Circulation. 2005;112(11):1532–41.CrossRefPubMedPubMedCentral
23.
go back to reference Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changing incidence of out-of-hospital ventricular fibrillation, 1980-2000. JAMA. 2002;288(23):3008–13.CrossRefPubMed Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changing incidence of out-of-hospital ventricular fibrillation, 1980-2000. JAMA. 2002;288(23):3008–13.CrossRefPubMed
Metadata
Title
Global Bi-ventricular endocardial distribution of activation rate during long duration ventricular fibrillation in normal and heart failure canines
Authors
Qingzhi Luo
Qi Jin
Ning Zhang
Yanxin Han
Yilong Wang
Shangwei Huang
Changjian Lin
Tianyou Ling
Kang Chen
Wenqi Pan
Liqun Wu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2017
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-017-0530-5

Other articles of this Issue 1/2017

BMC Cardiovascular Disorders 1/2017 Go to the issue