Skip to main content
Top
Published in: Angiogenesis 1/2020

01-02-2020 | Glioma | Review Paper

Models and molecular mechanisms of blood vessel co-option by cancer cells

Authors: Yu Zhang, Sarah Wang, Andrew C. Dudley

Published in: Angiogenesis | Issue 1/2020

Login to get access

Abstract

Cancer cells have diverse mechanisms for utilizing the vasculature; they can initiate the formation of new blood vessels from preexisting ones (sprouting angiogenesis) or they can form cohesive interactions with the abluminal surface of preexisting vasculature in the absence of sprouting (co-option). The later process has received renewed attention due to the suggested role of blood vessel co-option in resistance to antiangiogenic therapies and the reported perivascular positioning and migratory patterns of cancer cells during tumor dormancy and invasion, respectively. However, only a few molecular mechanisms have been identified that contribute to the process of co-option and there has not been a formal survey of cell lines and laboratory models that can be used to study co-option in different organ microenvironments; thus, we have carried out a comprehensive literature review on this topic and have identified cell lines and described the laboratory models that are used to study blood vessel co-option in cancer. Put into practice, these models may help to shed new light on the molecular mechanisms that drive blood vessel co-option during tumor dormancy, invasion, and responses to different therapies.
Literature
1.
go back to reference Donnem T et al (2018) Non-angiogenic tumours and their influence on cancer biology. Nat Rev Cancer 18(5):323–336PubMedCrossRef Donnem T et al (2018) Non-angiogenic tumours and their influence on cancer biology. Nat Rev Cancer 18(5):323–336PubMedCrossRef
3.
go back to reference Pezzella F et al (1997) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151(5):1417–1423PubMedPubMedCentral Pezzella F et al (1997) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151(5):1417–1423PubMedPubMedCentral
4.
go back to reference Kadota K et al (2015) Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. J Thorac Oncol 10(5):806–814PubMedPubMedCentralCrossRef Kadota K et al (2015) Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. J Thorac Oncol 10(5):806–814PubMedPubMedCentralCrossRef
5.
go back to reference Warth A et al (2015) Prognostic impact of intra-alveolar tumor spread in pulmonary adenocarcinoma. Am J Surg Pathol 39(6):793–801PubMedCrossRef Warth A et al (2015) Prognostic impact of intra-alveolar tumor spread in pulmonary adenocarcinoma. Am J Surg Pathol 39(6):793–801PubMedCrossRef
6.
go back to reference Bridgeman VL et al (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 241(3):362–374PubMedCrossRef Bridgeman VL et al (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 241(3):362–374PubMedCrossRef
7.
go back to reference Sardari Nia P et al (2007) Distinct angiogenic and non-angiogenic growth patterns of lung metastases from renal cell carcinoma. Histopathology 51(3):354–361PubMedCrossRef Sardari Nia P et al (2007) Distinct angiogenic and non-angiogenic growth patterns of lung metastases from renal cell carcinoma. Histopathology 51(3):354–361PubMedCrossRef
8.
go back to reference Party BCPW (2000) Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Lancet 355(9217):1787–1788CrossRef Party BCPW (2000) Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Lancet 355(9217):1787–1788CrossRef
9.
go back to reference Nakashima O et al (1995) Pathomorphologic characteristics of small hepatocellular carcinoma: a special reference to small hepatocellular carcinoma with indistinct margins. Hepatology 22(1):101–105PubMed Nakashima O et al (1995) Pathomorphologic characteristics of small hepatocellular carcinoma: a special reference to small hepatocellular carcinoma with indistinct margins. Hepatology 22(1):101–105PubMed
10.
go back to reference Nakashima T et al (1982) Histologic growth pattern of hepatocellular carcinoma: relationship to orcein (hepatitis B surface antigen)-positive cells in cancer tissue. Hum Pathol 13(6):563–568PubMedCrossRef Nakashima T et al (1982) Histologic growth pattern of hepatocellular carcinoma: relationship to orcein (hepatitis B surface antigen)-positive cells in cancer tissue. Hum Pathol 13(6):563–568PubMedCrossRef
11.
go back to reference Kozaka K et al (2007) A subgroup of intrahepatic cholangiocarcinoma with an infiltrating replacement growth pattern and a resemblance to reactive proliferating bile ductules: ‘bile ductular carcinoma’. Histopathology 51(3):390–400PubMedCrossRef Kozaka K et al (2007) A subgroup of intrahepatic cholangiocarcinoma with an infiltrating replacement growth pattern and a resemblance to reactive proliferating bile ductules: ‘bile ductular carcinoma’. Histopathology 51(3):390–400PubMedCrossRef
12.
go back to reference Stessels F et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436PubMedPubMedCentralCrossRef Stessels F et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436PubMedPubMedCentralCrossRef
14.
go back to reference Fernandez Moro C, Bozoky B, Gerling M (2018) Growth patterns of colorectal cancer liver metastases and their impact on prognosis: a systematic review. BMJ Open Gastroenterol 5(1):e000217PubMedPubMedCentralCrossRef Fernandez Moro C, Bozoky B, Gerling M (2018) Growth patterns of colorectal cancer liver metastases and their impact on prognosis: a systematic review. BMJ Open Gastroenterol 5(1):e000217PubMedPubMedCentralCrossRef
16.
go back to reference Nagano N et al (1993) Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol 86(2):117–125PubMedCrossRef Nagano N et al (1993) Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol 86(2):117–125PubMedCrossRef
17.
go back to reference Lugassy C et al (2002) Pericytic-like angiotropism of glioma and melanoma cells. Am J Dermatopathol 24(6):473–478PubMedCrossRef Lugassy C et al (2002) Pericytic-like angiotropism of glioma and melanoma cells. Am J Dermatopathol 24(6):473–478PubMedCrossRef
18.
go back to reference Watkins S et al (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 5:4196PubMedCrossRef Watkins S et al (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 5:4196PubMedCrossRef
19.
go back to reference Bernsen H et al (2005) Gliomatosis cerebri: quantitative proof of vessel recruitment by cooptation instead of angiogenesis. J Neurosurg 103(4):702–706PubMedCrossRef Bernsen H et al (2005) Gliomatosis cerebri: quantitative proof of vessel recruitment by cooptation instead of angiogenesis. J Neurosurg 103(4):702–706PubMedCrossRef
21.
go back to reference Hung T et al (2013) Angiotropism in primary cutaneous melanoma with brain metastasis: a study of 20 cases. Am J Dermatopathol 35(6):650–654PubMedCrossRef Hung T et al (2013) Angiotropism in primary cutaneous melanoma with brain metastasis: a study of 20 cases. Am J Dermatopathol 35(6):650–654PubMedCrossRef
22.
go back to reference Siam L et al (2015) The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study. Oncotarget 6(30):29254–29267PubMedPubMedCentralCrossRef Siam L et al (2015) The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study. Oncotarget 6(30):29254–29267PubMedPubMedCentralCrossRef
23.
go back to reference Lugassy C et al (2014) Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. Cancer Microenviron 7(3):139–152PubMedPubMedCentralCrossRef Lugassy C et al (2014) Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. Cancer Microenviron 7(3):139–152PubMedPubMedCentralCrossRef
24.
go back to reference Kusters B et al (2002) Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62(2):341–345PubMed Kusters B et al (2002) Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62(2):341–345PubMed
25.
go back to reference Bentolila LA et al (2016) Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci Rep 6:23834PubMedPubMedCentralCrossRef Bentolila LA et al (2016) Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci Rep 6:23834PubMedPubMedCentralCrossRef
26.
go back to reference Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122CrossRefPubMed Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122CrossRefPubMed
27.
go back to reference Colpaert CG et al (2003) Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology 42(6):530–540PubMedCrossRef Colpaert CG et al (2003) Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology 42(6):530–540PubMedCrossRef
29.
go back to reference Naresh KN, Nerurkar AY, Borges AM (2001) Angiogenesis is redundant for tumour growth in lymph node metastases. Histopathology 38(5):466–470PubMedCrossRef Naresh KN, Nerurkar AY, Borges AM (2001) Angiogenesis is redundant for tumour growth in lymph node metastases. Histopathology 38(5):466–470PubMedCrossRef
30.
go back to reference Vermeulen PB et al (2002) Lack of angiogenesis in lymph node metastases of carcinomas is growth pattern-dependent. Histopathology 40(1):105–107PubMedCrossRef Vermeulen PB et al (2002) Lack of angiogenesis in lymph node metastases of carcinomas is growth pattern-dependent. Histopathology 40(1):105–107PubMedCrossRef
32.
go back to reference Yadav VN et al (2016) CXCR4 increases in vivo glioma perivascular invasion, and reduces radiation induced apoptosis: a genetic knockdown study. Oncotarget 7(50):83701–83719PubMedPubMedCentralCrossRef Yadav VN et al (2016) CXCR4 increases in vivo glioma perivascular invasion, and reduces radiation induced apoptosis: a genetic knockdown study. Oncotarget 7(50):83701–83719PubMedPubMedCentralCrossRef
33.
go back to reference Griveau A et al (2018) A Glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33(5):874–889PubMedPubMedCentralCrossRef Griveau A et al (2018) A Glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33(5):874–889PubMedPubMedCentralCrossRef
34.
go back to reference Yao H et al (2018) Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560(7716):55–60PubMedCrossRef Yao H et al (2018) Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560(7716):55–60PubMedCrossRef
37.
go back to reference Hu J et al (2005) Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 24(7):1212–1219PubMedCrossRef Hu J et al (2005) Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 24(7):1212–1219PubMedCrossRef
38.
go back to reference Rubenstein JL et al (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2(4):306–314PubMedPubMedCentralCrossRef Rubenstein JL et al (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2(4):306–314PubMedPubMedCentralCrossRef
39.
go back to reference Holash J et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998PubMedCrossRef Holash J et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998PubMedCrossRef
40.
go back to reference Kunkel P et al (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61(18):6624–6628PubMed Kunkel P et al (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61(18):6624–6628PubMed
41.
go back to reference Winkler F et al (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57(12):1306–1315PubMedCrossRef Winkler F et al (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57(12):1306–1315PubMedCrossRef
42.
go back to reference Voutouri C et al (2019) Experimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategies. Proc Natl Acad Sci USA 116(7):2662–2671PubMedCrossRefPubMedCentral Voutouri C et al (2019) Experimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategies. Proc Natl Acad Sci USA 116(7):2662–2671PubMedCrossRefPubMedCentral
43.
44.
go back to reference Er EE et al (2018) Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 20(8):966–978PubMedPubMedCentralCrossRef Er EE et al (2018) Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 20(8):966–978PubMedPubMedCentralCrossRef
46.
go back to reference Leenders WP et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 Pt 1):6222–6230PubMedCrossRef Leenders WP et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 Pt 1):6222–6230PubMedCrossRef
47.
go back to reference Szabo V et al (2015) Mechanism of tumour vascularization in experimental lung metastases. J Pathol 235(3):384–396PubMedCrossRef Szabo V et al (2015) Mechanism of tumour vascularization in experimental lung metastases. J Pathol 235(3):384–396PubMedCrossRef
48.
go back to reference Bald T et al (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507(7490):109–113PubMedCrossRef Bald T et al (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507(7490):109–113PubMedCrossRef
50.
go back to reference Bentolila NY et al (2018) Intravital imaging of human melanoma cells in the mouse ear skin by two-photon excitation microscopy. Methods Mol Biol 1755:223–232PubMedPubMedCentralCrossRef Bentolila NY et al (2018) Intravital imaging of human melanoma cells in the mouse ear skin by two-photon excitation microscopy. Methods Mol Biol 1755:223–232PubMedPubMedCentralCrossRef
52.
go back to reference Fornabaio G et al (2018) Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model. Sci Rep 8(1):10448PubMedPubMedCentralCrossRef Fornabaio G et al (2018) Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model. Sci Rep 8(1):10448PubMedPubMedCentralCrossRef
53.
go back to reference Lugassy C et al (2006) Angiotropism of human melanoma: studies involving in transit and other cutaneous metastases and the chicken chorioallantoic membrane: implications for extravascular melanoma invasion and metastasis. Am J Dermatopathol 28(3):187–193PubMedPubMedCentralCrossRef Lugassy C et al (2006) Angiotropism of human melanoma: studies involving in transit and other cutaneous metastases and the chicken chorioallantoic membrane: implications for extravascular melanoma invasion and metastasis. Am J Dermatopathol 28(3):187–193PubMedPubMedCentralCrossRef
54.
go back to reference Lugassy C et al (2007) C16 laminin peptide increases angiotropic extravascular migration of human melanoma cells in a shell-less chick chorioallantoic membrane assay. Br J Dermatol 157(4):780–782PubMedCrossRef Lugassy C et al (2007) C16 laminin peptide increases angiotropic extravascular migration of human melanoma cells in a shell-less chick chorioallantoic membrane assay. Br J Dermatol 157(4):780–782PubMedCrossRef
55.
go back to reference Lugassy C et al (2013) Pilot study on “pericytic mimicry” and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. Cancer Microenviron 6(1):19–29PubMedCrossRef Lugassy C et al (2013) Pilot study on “pericytic mimicry” and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. Cancer Microenviron 6(1):19–29PubMedCrossRef
Metadata
Title
Models and molecular mechanisms of blood vessel co-option by cancer cells
Authors
Yu Zhang
Sarah Wang
Andrew C. Dudley
Publication date
01-02-2020
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 1/2020
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-019-09684-y

Other articles of this Issue 1/2020

Angiogenesis 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.