Skip to main content
Top
Published in: Neuroradiology 7/2020

01-07-2020 | Glioblastoma | Review

Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis

Authors: Kevin Jang, Carlo Russo, Antonio Di Ieva

Published in: Neuroradiology | Issue 7/2020

Login to get access

Abstract

Radiomics is an emerging field that involves extraction and quantification of features from medical images. These data can be mined through computational analysis and models to identify predictive image biomarkers that characterize intra-tumoral dynamics throughout the course of treatment. This is particularly difficult in gliomas, where heterogeneity has been well established at a molecular level as well as visually in conventional imaging. Thus, acquiring clinically useful features remains difficult due to temporal variations in tumor dynamics. Identifying surrogate biomarkers through radiomics may provide a non-invasive means of characterizing biologic activities of gliomas. We present an extensive literature review of radiomics-based analysis, with a particular focus on computational modeling, machine learning, and fractal-based analysis in improving differential diagnosis and predicting clinical outcomes. Novel strategies in extracting quantitative features, segmentation methods, and their clinical applications are producing promising results. Moreover, we provide a detailed summary of the morphometric parameters that have so far been proposed as a means of quantifying imaging characteristics of gliomas. Newly emerging radiomic techniques via machine learning and fractal-based analyses holds considerable potential for improving diagnostic and prognostic accuracy of gliomas.
Key points
• Radiomic features can be mined through computational analysis to produce quantitative imaging biomarkers that characterize intra-tumoral dynamics throughout the course of treatment.
• Surrogate image biomarkers identified through radiomics could enable a non-invasive means of characterizing biologic activities of gliomas.
• With novel analytic algorithms, quantification of morphological or sub-regional tumor features to predict survival outcomes is producing promising results.
• Quantifying intra-tumoral heterogeneity may improve grading and molecular sub-classifications of gliomas.
• Computational fractal-based analysis of gliomas allows geometrical evaluation of tumor irregularities and complexity, leading to novel techniques for tumor segmentation, grading, and therapeutic monitoring.
Literature
4.
go back to reference Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpace L, Mikkelsen T, Jain R, Wintermark M, Jilwan M, Raghavan P, Huang E, Clifford RJ, Mongkolwat P, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, Saltz J, Flanders A, Brat DJ (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2):560–569. https://doi.org/10.1148/radiol.13120118 CrossRefPubMedPubMedCentral Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpace L, Mikkelsen T, Jain R, Wintermark M, Jilwan M, Raghavan P, Huang E, Clifford RJ, Mongkolwat P, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, Saltz J, Flanders A, Brat DJ (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2):560–569. https://​doi.​org/​10.​1148/​radiol.​13120118 CrossRefPubMedPubMedCentral
8.
go back to reference Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones David TW, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu X-Y, Fontebasso Adam M, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann Martin U, van Meter T, Frühwald Michael C, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik Andreas E, Madden J, Donson A, Foreman Nicholas K, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm Christof M, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth Anders M, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski Pawel P, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor Michael D, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister Stefan M (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. https://doi.org/10.1016/j.ccr.2012.08.024 CrossRefPubMed Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones David TW, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu X-Y, Fontebasso Adam M, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann Martin U, van Meter T, Frühwald Michael C, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik Andreas E, Madden J, Donson A, Foreman Nicholas K, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm Christof M, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth Anders M, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski Pawel P, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor Michael D, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister Stefan M (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. https://​doi.​org/​10.​1016/​j.​ccr.​2012.​08.​024 CrossRefPubMed
11.
go back to reference Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy LS, Bracci PM, Marshall R, Zheng S, Reis GF, Pico AR, O’Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508. https://doi.org/10.1056/NEJMoa1407279 CrossRefPubMedPubMedCentral Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy LS, Bracci PM, Marshall R, Zheng S, Reis GF, Pico AR, O’Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508. https://​doi.​org/​10.​1056/​NEJMoa1407279 CrossRefPubMedPubMedCentral
14.
go back to reference Delfanti RL, Piccioni DE, Handwerker J, Bahrami N, Krishnan A, Karunamuni R, Hattangadi-Gluth JA, Seibert TM, Srikant A, Jones KA, Snyder VS, Dale AM, White NS, McDonald CR, Farid N (2017) Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX status. J Neuro-Oncol 135(3):601–609. https://doi.org/10.1007/s11060-017-2613-7 CrossRef Delfanti RL, Piccioni DE, Handwerker J, Bahrami N, Krishnan A, Karunamuni R, Hattangadi-Gluth JA, Seibert TM, Srikant A, Jones KA, Snyder VS, Dale AM, White NS, McDonald CR, Farid N (2017) Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX status. J Neuro-Oncol 135(3):601–609. https://​doi.​org/​10.​1007/​s11060-017-2613-7 CrossRef
15.
go back to reference Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS, Stokoe D (2005) Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. JNCI: J Natl Cancer Instit 97(12):880–887. https://doi.org/10.1093/jnci/dji161 CrossRef Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS, Stokoe D (2005) Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. JNCI: J Natl Cancer Instit 97(12):880–887. https://​doi.​org/​10.​1093/​jnci/​dji161 CrossRef
16.
go back to reference Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RGW, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. https://doi.org/10.1016/j.ccr.2010.03.017 CrossRefPubMedPubMedCentral Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RGW, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. https://​doi.​org/​10.​1016/​j.​ccr.​2010.​03.​017 CrossRefPubMedPubMedCentral
18.
go back to reference Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. https://doi.org/10.1056/NEJMoa1113205 CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. https://​doi.​org/​10.​1056/​NEJMoa1113205 CrossRefPubMedPubMedCentral
28.
go back to reference Mazurowski MA, Czarnek NM, Collins LM, Peters KB, Clark K (2016) Predicting outcomes in glioblastoma patients using computerized analysis of tumor shape - preliminary data. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. https://doi.org/10.1117/12.2217098 Mazurowski MA, Czarnek NM, Collins LM, Peters KB, Clark K (2016) Predicting outcomes in glioblastoma patients using computerized analysis of tumor shape - preliminary data. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. https://​doi.​org/​10.​1117/​12.​2217098
36.
go back to reference Mandelbrot BB, Freeman WH, Company (1983) The fractal geometry of nature. Henry Holt and Company Mandelbrot BB, Freeman WH, Company (1983) The fractal geometry of nature. Henry Holt and Company
40.
go back to reference Lim JS (1990) Two-dimensional signal and image processing. Prentice-Hall, Inc. Lim JS (1990) Two-dimensional signal and image processing. Prentice-Hall, Inc.
41.
go back to reference Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education
42.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006 CrossRefPubMed Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://​doi.​org/​10.​1038/​ncomms5006 CrossRefPubMed
48.
go back to reference Zhou M, Hall L, Goldgof D, Gillies R, Gatenby R (2013) Survival time prediction of patients with glioblastoma multiforme tumors using spatial distance measurement, vol 8670. SPIE Medical Imaging. SPIE Zhou M, Hall L, Goldgof D, Gillies R, Gatenby R (2013) Survival time prediction of patients with glioblastoma multiforme tumors using spatial distance measurement, vol 8670. SPIE Medical Imaging. SPIE
51.
go back to reference Chang PD, Malone HR, Bowden SG, Chow DS, Gill BJA, Ung TH, Samanamud J, Englander ZK, Sonabend AM, Sheth SA, McKhann GM 2nd, Sisti MB, Schwartz LH, Lignelli A, Grinband J, Bruce JN, Canoll P (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 38(5):890–898. https://doi.org/10.3174/ajnr.A5112 CrossRefPubMedPubMedCentral Chang PD, Malone HR, Bowden SG, Chow DS, Gill BJA, Ung TH, Samanamud J, Englander ZK, Sonabend AM, Sheth SA, McKhann GM 2nd, Sisti MB, Schwartz LH, Lignelli A, Grinband J, Bruce JN, Canoll P (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 38(5):890–898. https://​doi.​org/​10.​3174/​ajnr.​A5112 CrossRefPubMedPubMedCentral
55.
go back to reference Mie S, Lakare S, Ming W, Kaufman A, Nakajima M (2000) A gradient magnitude based region growing algorithm for accurate segmentation. In: Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 10–13 Sept. 2000. vol.443, pp 448–451. https://doi.org/10.1109/ICIP.2000.899432 Mie S, Lakare S, Ming W, Kaufman A, Nakajima M (2000) A gradient magnitude based region growing algorithm for accurate segmentation. In: Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 10–13 Sept. 2000. vol.443, pp 448–451. https://​doi.​org/​10.​1109/​ICIP.​2000.​899432
60.
go back to reference Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS. pp 36–39 Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS. pp 36–39
64.
go back to reference Lyksborg M, Puonti O, Agn M, Larsen R (2015) An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen RR, Pedersen KS (eds) Image Analysis, Cham, 2015. Springer International Publishing, p 201–211 Lyksborg M, Puonti O, Agn M, Larsen R (2015) An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen RR, Pedersen KS (eds) Image Analysis, Cham, 2015. Springer International Publishing, p 201–211
65.
go back to reference Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T (2017) On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer M, Styner M, Aylward S, et al (eds) Information Processing in Medical Imaging, Cham, 2017. Springer International Publishing, p 348–360 Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T (2017) On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer M, Styner M, Aylward S, et al (eds) Information Processing in Medical Imaging, Cham, 2017. Springer International Publishing, p 348–360
70.
go back to reference Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M (2012) Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg 77(5-6):785.e711–785.e721. https://doi.org/10.1016/j.wneu.2011.09.006 CrossRef Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M (2012) Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg 77(5-6):785.e711–785.e721. https://​doi.​org/​10.​1016/​j.​wneu.​2011.​09.​006 CrossRef
72.
go back to reference Georgiadis P, Cavouras D, Kalatzis I, Glotsos D, Athanasiadis E, Kostopoulos S, Sifaki K, Malamas M, Nikiforidis G, Solomou E (2009) Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Magn Reson Imaging 27(1):120–130. https://doi.org/10.1016/j.mri.2008.05.017 CrossRefPubMed Georgiadis P, Cavouras D, Kalatzis I, Glotsos D, Athanasiadis E, Kostopoulos S, Sifaki K, Malamas M, Nikiforidis G, Solomou E (2009) Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Magn Reson Imaging 27(1):120–130. https://​doi.​org/​10.​1016/​j.​mri.​2008.​05.​017 CrossRefPubMed
74.
go back to reference Molina D, Perez-Beteta J, Luque B, Arregui E, Calvo M, Borras JM, Lopez C, Martino J, Velasquez C, Asenjo B, Benavides M, Herruzo I, Martinez-Gonzalez A, Perez-Romasanta L, Arana E, Perez-Garcia VM (2016) Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival. Br J Radiol 89(1064):20160242. https://doi.org/10.1259/bjr.20160242 CrossRefPubMedPubMedCentral Molina D, Perez-Beteta J, Luque B, Arregui E, Calvo M, Borras JM, Lopez C, Martino J, Velasquez C, Asenjo B, Benavides M, Herruzo I, Martinez-Gonzalez A, Perez-Romasanta L, Arana E, Perez-Garcia VM (2016) Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival. Br J Radiol 89(1064):20160242. https://​doi.​org/​10.​1259/​bjr.​20160242 CrossRefPubMedPubMedCentral
79.
80.
81.
go back to reference Bisdas S, Shen HC, Thust S, Katsaros V, Stranjalis G, Boskos C, Brandner S, Zhang JG (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study Scientific Reports 8. https://doi.org/10.1038/s41598-018-24438-4 Bisdas S, Shen HC, Thust S, Katsaros V, Stranjalis G, Boskos C, Brandner S, Zhang JG (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study Scientific Reports 8. https://​doi.​org/​10.​1038/​s41598-018-24438-4
83.
go back to reference Bahrami N, Hartman SJ, Chang YH, Delfanti R, White NS, Karunamuni R, Seibert TM, Dale AM, Hattangadi-Gluth JA, Piccioni D, Farid N, McDonald CR (2018) Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics. J Neuro-Oncol 139(3):633–642. https://doi.org/10.1007/s11060-018-2908-3 CrossRef Bahrami N, Hartman SJ, Chang YH, Delfanti R, White NS, Karunamuni R, Seibert TM, Dale AM, Hattangadi-Gluth JA, Piccioni D, Farid N, McDonald CR (2018) Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics. J Neuro-Oncol 139(3):633–642. https://​doi.​org/​10.​1007/​s11060-018-2908-3 CrossRef
88.
go back to reference Yang Y, Yan LF, Zhang X, Nan HY, Hu YC, Han Y, Zhang J, Liu ZC, Sun YZ, Tian Q, Yu Y, Sun Q, Wang SY, Zhang X, Wang W, Cui GB (2019) Optimizing texture retrieving model for multimodal MR image-based support vector machine for classifying glioma. J Magn Reson Imaging 49(5):1263–1274. https://doi.org/10.1002/jmri.26524 CrossRefPubMed Yang Y, Yan LF, Zhang X, Nan HY, Hu YC, Han Y, Zhang J, Liu ZC, Sun YZ, Tian Q, Yu Y, Sun Q, Wang SY, Zhang X, Wang W, Cui GB (2019) Optimizing texture retrieving model for multimodal MR image-based support vector machine for classifying glioma. J Magn Reson Imaging 49(5):1263–1274. https://​doi.​org/​10.​1002/​jmri.​26524 CrossRefPubMed
92.
go back to reference Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, Bi Y, Pal S, Davuluri RV, Roccograndi L, Dahmane N, Martinez-Lage M, Biros G, Wolf RL, Bilello M, O'Rourke DM, Davatzikos C (2016) Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 18(3):417–425. https://doi.org/10.1093/neuonc/nov127 CrossRefPubMed Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, Bi Y, Pal S, Davuluri RV, Roccograndi L, Dahmane N, Martinez-Lage M, Biros G, Wolf RL, Bilello M, O'Rourke DM, Davatzikos C (2016) Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 18(3):417–425. https://​doi.​org/​10.​1093/​neuonc/​nov127 CrossRefPubMed
94.
go back to reference Lahmiri S, Boukadoum M, Di Ieva A (2014) Detrended fluctuation analysis of brain hemisphere magnetic resonnance images to detect cerebral arteriovenousmalformations. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 June 2014. pp 2409–2412 https://doi.org/10.1109/ISCAS.2014.6865658 Lahmiri S, Boukadoum M, Di Ieva A (2014) Detrended fluctuation analysis of brain hemisphere magnetic resonnance images to detect cerebral arteriovenousmalformations. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 June 2014. pp 2409–2412 https://​doi.​org/​10.​1109/​ISCAS.​2014.​6865658
95.
96.
go back to reference Di Ieva A (Ed.) (2016) The fractal geometry of the brain. Springer, New York Di Ieva A (Ed.) (2016) The fractal geometry of the brain. Springer, New York
101.
go back to reference Sedivy R (1996) Fractal tumours: their real and virtual images. Wien Klin Wochenschr 108(17):547–551PubMed Sedivy R (1996) Fractal tumours: their real and virtual images. Wien Klin Wochenschr 108(17):547–551PubMed
105.
go back to reference Di Ieva A, Grizzi F, Tschabitscher M, Colombo P, Casali M, Simonelli M, Widhalm G, Muzzio PC, Matula C, Chiti A, Rodriguez y Baena R (2010) Correlation of microvascular fractal dimension with positron emission tomography [(11)C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80(2):267–273. https://doi.org/10.1016/j.mvr.2010.04.003 CrossRefPubMed Di Ieva A, Grizzi F, Tschabitscher M, Colombo P, Casali M, Simonelli M, Widhalm G, Muzzio PC, Matula C, Chiti A, Rodriguez y Baena R (2010) Correlation of microvascular fractal dimension with positron emission tomography [(11)C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80(2):267–273. https://​doi.​org/​10.​1016/​j.​mvr.​2010.​04.​003 CrossRefPubMed
113.
go back to reference Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 58(1):267–288 Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 58(1):267–288
115.
go back to reference Shen W, Zhou M, Yang F, Dong D, Yang C, Zang Y, Tian J (2016) Learning from experts: developing transferable deep features for patient-level lung cancer prediction. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Cham, 2016. Springer International Publishing, p 124–131 Shen W, Zhou M, Yang F, Dong D, Yang C, Zang Y, Tian J (2016) Learning from experts: developing transferable deep features for patient-level lung cancer prediction. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Cham, 2016. Springer International Publishing, p 124–131
117.
go back to reference Chu HH, Choi SH, Ryoo I, Kim SC, Yeom JA, Shin H, Jung SC, Lee AL, Yoon TJ, Kim TM, Lee S-H, Park C-K, Kim J-H, Sohn C-H, Park S-H, Kim IH (2013) Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 269(3):831–840. https://doi.org/10.1148/radiol.13122024 CrossRefPubMed Chu HH, Choi SH, Ryoo I, Kim SC, Yeom JA, Shin H, Jung SC, Lee AL, Yoon TJ, Kim TM, Lee S-H, Park C-K, Kim J-H, Sohn C-H, Park S-H, Kim IH (2013) Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 269(3):831–840. https://​doi.​org/​10.​1148/​radiol.​13122024 CrossRefPubMed
120.
go back to reference Zhou M, Hall LO, Goldgof DB, Russo R, Gillies RJ, Gatenby RA (2015) Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. https://doi.org/10.1117/12.2075545 Zhou M, Hall LO, Goldgof DB, Russo R, Gillies RJ, Gatenby RA (2015) Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. https://​doi.​org/​10.​1117/​12.​2075545
Metadata
Title
Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis
Authors
Kevin Jang
Carlo Russo
Antonio Di Ieva
Publication date
01-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 7/2020
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-020-02403-1

Other articles of this Issue 7/2020

Neuroradiology 7/2020 Go to the issue