Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Review

Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis

Authors: Deborah Doens, Patricia L Fernández

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

Alzheimer’s disease (AD) is a major public health problem with substantial economic and social impacts around the world. The hallmarks of AD pathogenesis include deposition of amyloid β (Aβ), neurofibrillary tangles, and neuroinflammation. For many years, research has been focused on Aβ accumulation in senile plaques, as these aggregations were perceived as the main cause of the neurodegeneration found in AD. However, increasing evidence suggests that inflammation also plays a critical role in the pathogenesis of AD. Microglia cells are the resident macrophages of the brain and act as the first line of defense in the central nervous system. In AD, microglia play a dual role in disease progression, being essential for clearing Aβ deposits and releasing cytotoxic mediators. Aβ activates microglia through a variety of innate immune receptors expressed on these cells. The mechanisms through which amyloid deposits provoke an inflammatory response are not fully understood, but it is believed that these receptors cooperate in the recognition, internalization, and clearance of Aβ and in cell activation. In this review, we discuss the role of several receptors expressed on microglia in Aβ recognition, uptake, and signaling, and their implications for AD pathogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO: Dementia: A Public Health Priority. 2012, Geneva, 112. WHO: Dementia: A Public Health Priority. 2012, Geneva, 112.
2.
go back to reference Glabe CC: Amyloid accumulation and pathogenesis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Aβ. Subcell Biochem. 2005, 38: 167-177. 10.1007/0-387-23226-5_8.PubMed Glabe CC: Amyloid accumulation and pathogenesis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Aβ. Subcell Biochem. 2005, 38: 167-177. 10.1007/0-387-23226-5_8.PubMed
3.
go back to reference Sastre M, Klockgether T, Heneka MT: Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci. 2006, 24 (2–3): 167-176.PubMed Sastre M, Klockgether T, Heneka MT: Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci. 2006, 24 (2–3): 167-176.PubMed
4.
go back to reference Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002, 297 (5580): 353-356. 10.1126/science.1072994.PubMed Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002, 297 (5580): 353-356. 10.1126/science.1072994.PubMed
5.
go back to reference Shie FS, LeBoeuf RC, Jin LW: Early intraneuronal Aβ deposition in the hippocampus of APP transgenic mice. Neuroreport. 2003, 14 (1): 123-129. 10.1097/00001756-200301200-00023.PubMed Shie FS, LeBoeuf RC, Jin LW: Early intraneuronal Aβ deposition in the hippocampus of APP transgenic mice. Neuroreport. 2003, 14 (1): 123-129. 10.1097/00001756-200301200-00023.PubMed
6.
go back to reference Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA, Gouras GK: Co-occurrence of Alzheimer’s disease β-amyloid and τ pathologies at synapses. Neurobiol Aging. 2010, 31 (7): 1145-1152. 10.1016/j.neurobiolaging.2008.07.021.PubMedCentralPubMed Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA, Gouras GK: Co-occurrence of Alzheimer’s disease β-amyloid and τ pathologies at synapses. Neurobiol Aging. 2010, 31 (7): 1145-1152. 10.1016/j.neurobiolaging.2008.07.021.PubMedCentralPubMed
7.
go back to reference Lawson LJ, Perry VH, Gordon S: Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992, 48 (2): 405-415. 10.1016/0306-4522(92)90500-2.PubMed Lawson LJ, Perry VH, Gordon S: Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992, 48 (2): 405-415. 10.1016/0306-4522(92)90500-2.PubMed
8.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev. 2011, 91 (2): 461-553. 10.1152/physrev.00011.2010.PubMed Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev. 2011, 91 (2): 461-553. 10.1152/physrev.00011.2010.PubMed
9.
go back to reference Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson D: Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol. 2007, 82: 277-296.PubMed Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson D: Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol. 2007, 82: 277-296.PubMed
10.
go back to reference Zaheer A, Zaheer S, Thangavel R, Wu Y, Sahu SK, Yang B: Glia maturation factor modulates β-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage. Brain Res. 2008, 1208: 192-203.PubMedCentralPubMed Zaheer A, Zaheer S, Thangavel R, Wu Y, Sahu SK, Yang B: Glia maturation factor modulates β-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage. Brain Res. 2008, 1208: 192-203.PubMedCentralPubMed
11.
go back to reference Fernandez PL, Britton GB, Rao KS: Potential immunotargets for Alzheimer’s disease treatment strategies. J Alzheimers Dis. 2013, 33 (2): 297-312.PubMed Fernandez PL, Britton GB, Rao KS: Potential immunotargets for Alzheimer’s disease treatment strategies. J Alzheimers Dis. 2013, 33 (2): 297-312.PubMed
12.
go back to reference Crehan H, Hardy J, Pocock J: Microglia, Alzheimer’s disease, and complement. Int J Alzheimers Dis. 2012, 2012: 983640.PubMedCentralPubMed Crehan H, Hardy J, Pocock J: Microglia, Alzheimer’s disease, and complement. Int J Alzheimers Dis. 2012, 2012: 983640.PubMedCentralPubMed
13.
go back to reference Moore KJ, El Khoury J, Medeiros LA, Terada K, Geula C, Luster AD, Freeman MW: A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J Biol Chem. 2002, 277 (49): 47373-47379. 10.1074/jbc.M208788200.PubMed Moore KJ, El Khoury J, Medeiros LA, Terada K, Geula C, Luster AD, Freeman MW: A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J Biol Chem. 2002, 277 (49): 47373-47379. 10.1074/jbc.M208788200.PubMed
14.
go back to reference Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD: Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol. 2001, 171 (1): 29-45. 10.1006/exnr.2001.7732.PubMed Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD: Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol. 2001, 171 (1): 29-45. 10.1006/exnr.2001.7732.PubMed
15.
go back to reference Walport MJ: Complement. Second of two parts. N Engl J Med. 2001, 344 (15): 1140-1144. 10.1056/NEJM200104123441506.PubMed Walport MJ: Complement. Second of two parts. N Engl J Med. 2001, 344 (15): 1140-1144. 10.1056/NEJM200104123441506.PubMed
16.
go back to reference Eikelenboom P, Hack CE, Rozemuller JM, Stam FC: Complement activation in amyloid plaques in Alzheimer’s dementia. Virchows Arch B Cell Pathol Incl Mol Patho. 1989, 56 (4): 259-262. Eikelenboom P, Hack CE, Rozemuller JM, Stam FC: Complement activation in amyloid plaques in Alzheimer’s dementia. Virchows Arch B Cell Pathol Incl Mol Patho. 1989, 56 (4): 259-262.
17.
go back to reference Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ: Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol. 1996, 138 (1): 22-32. 10.1006/exnr.1996.0043.PubMed Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ: Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol. 1996, 138 (1): 22-32. 10.1006/exnr.1996.0043.PubMed
18.
go back to reference Bonifati DM, Kishore U: Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007, 44 (5): 999-1010. 10.1016/j.molimm.2006.03.007.PubMed Bonifati DM, Kishore U: Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007, 44 (5): 999-1010. 10.1016/j.molimm.2006.03.007.PubMed
19.
go back to reference Bradt BM, Kolb WP, Cooper NR: Complement-dependent proinflammatory properties of the Alzheimer’s disease β-peptide. J Exp Med. 1998, 188 (3): 431-438. 10.1084/jem.188.3.431.PubMedCentralPubMed Bradt BM, Kolb WP, Cooper NR: Complement-dependent proinflammatory properties of the Alzheimer’s disease β-peptide. J Exp Med. 1998, 188 (3): 431-438. 10.1084/jem.188.3.431.PubMedCentralPubMed
20.
go back to reference Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, Blennow K, Hansson O, Zetterberg H: Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer’s disease. J Neural Transm. 2012, 119 (7): 789-797. 10.1007/s00702-012-0797-8.PubMed Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, Blennow K, Hansson O, Zetterberg H: Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer’s disease. J Neural Transm. 2012, 119 (7): 789-797. 10.1007/s00702-012-0797-8.PubMed
21.
go back to reference Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, European Alzheimer's Disease Initiative I, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, et al: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009, 41 (10): 1094-1099. 10.1038/ng.439.PubMed Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, European Alzheimer's Disease Initiative I, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, et al: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009, 41 (10): 1094-1099. 10.1038/ng.439.PubMed
22.
go back to reference Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, Salat D, Rosand J: Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol. 2010, 67 (6): 677-685. 10.1001/archneurol.2010.108.PubMedCentralPubMed Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, Salat D, Rosand J: Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol. 2010, 67 (6): 677-685. 10.1001/archneurol.2010.108.PubMedCentralPubMed
23.
go back to reference Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K, Villa SE, Meechoovet HB, Gerber JD, Frost D, Benson HL, O’Reilly S, Chibnik LB, Shulman JM, Singleton AB, Craig DW, Van Keuren-Jensen KR, Dunckley T, Bennett DA, De Jager PL, Heward C, Hardy J, Reiman EM, Huentelman MJ: Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet. 2010, 19 (16): 3295-3301. 10.1093/hmg/ddq221.PubMedCentralPubMed Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K, Villa SE, Meechoovet HB, Gerber JD, Frost D, Benson HL, O’Reilly S, Chibnik LB, Shulman JM, Singleton AB, Craig DW, Van Keuren-Jensen KR, Dunckley T, Bennett DA, De Jager PL, Heward C, Hardy J, Reiman EM, Huentelman MJ: Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet. 2010, 19 (16): 3295-3301. 10.1093/hmg/ddq221.PubMedCentralPubMed
24.
go back to reference Zhang Q, Yu JT, Zhu QX, Zhang W, Wu ZC, Miao D, Tan L: Complement receptor 1 polymorphisms and risk of late-onset Alzheimer’s disease. Brain Res. 2010, 1348: 216-221.PubMed Zhang Q, Yu JT, Zhu QX, Zhang W, Wu ZC, Miao D, Tan L: Complement receptor 1 polymorphisms and risk of late-onset Alzheimer’s disease. Brain Res. 2010, 1348: 216-221.PubMed
25.
go back to reference Crehan H, Hardy J, Pocock J: Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis. 2013, 54: 139-149.PubMed Crehan H, Hardy J, Pocock J: Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis. 2013, 54: 139-149.PubMed
26.
go back to reference Rogers J, Li R, Mastroeni D, Grover A, Leonard B, Ahern G, Cao P, Kolody H, Vedders L, Kolb WP, Sabbagh M: Peripheral clearance of amyloid β peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging. 2006, 27 (12): 1733-1739. 10.1016/j.neurobiolaging.2005.09.043.PubMed Rogers J, Li R, Mastroeni D, Grover A, Leonard B, Ahern G, Cao P, Kolody H, Vedders L, Kolb WP, Sabbagh M: Peripheral clearance of amyloid β peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging. 2006, 27 (12): 1733-1739. 10.1016/j.neurobiolaging.2005.09.043.PubMed
27.
go back to reference Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert JC, Bettens K, Le Bastard N, Pasquier F, Montoya AG, Peeters K, Mattheijssens M, Vandenberghe R, Deyn PP, Cruts M, Amouyel P, Sleegers K, Van Broeckhoven C: Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry. 2012, 17 (2): 223-233. 10.1038/mp.2011.24.PubMedCentralPubMed Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert JC, Bettens K, Le Bastard N, Pasquier F, Montoya AG, Peeters K, Mattheijssens M, Vandenberghe R, Deyn PP, Cruts M, Amouyel P, Sleegers K, Van Broeckhoven C: Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry. 2012, 17 (2): 223-233. 10.1038/mp.2011.24.PubMedCentralPubMed
28.
go back to reference Crehan H, Holton P, Wray S, Pocock J, Guerreiro R, Hardy J: Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology. 2012, 217 (2): 244-250. 10.1016/j.imbio.2011.07.017.PubMed Crehan H, Holton P, Wray S, Pocock J, Guerreiro R, Hardy J: Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology. 2012, 217 (2): 244-250. 10.1016/j.imbio.2011.07.017.PubMed
29.
go back to reference Strohmeyer R, Ramirez M, Cole GJ, Mueller K, Rogers J: Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer’s disease brain. J Neuroimmunol. 2002, 131 (1–2): 135-146.PubMed Strohmeyer R, Ramirez M, Cole GJ, Mueller K, Rogers J: Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer’s disease brain. J Neuroimmunol. 2002, 131 (1–2): 135-146.PubMed
30.
go back to reference Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA: Complement C3 deficiency leads to accelerated amyloid β plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci. 2008, 28 (25): 6333-6341. 10.1523/JNEUROSCI.0829-08.2008.PubMedCentralPubMed Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA: Complement C3 deficiency leads to accelerated amyloid β plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci. 2008, 28 (25): 6333-6341. 10.1523/JNEUROSCI.0829-08.2008.PubMedCentralPubMed
31.
go back to reference Choucair-Jaafar N, Laporte V, Levy R, Poindron P, Lombard Y, Gies JP: Complement receptor 3 (CD11b/CD18) is implicated in the elimination of β-amyloid peptides. Fundam Clin Pharmacol. 2011, 25 (1): 115-122. 10.1111/j.1472-8206.2010.00811.x.PubMed Choucair-Jaafar N, Laporte V, Levy R, Poindron P, Lombard Y, Gies JP: Complement receptor 3 (CD11b/CD18) is implicated in the elimination of β-amyloid peptides. Fundam Clin Pharmacol. 2011, 25 (1): 115-122. 10.1111/j.1472-8206.2010.00811.x.PubMed
32.
go back to reference Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, Mayadas TN, Lemere CA: Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia. 2012, 60 (6): 993-1003. 10.1002/glia.22331.PubMedCentralPubMed Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, Mayadas TN, Lemere CA: Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia. 2012, 60 (6): 993-1003. 10.1002/glia.22331.PubMedCentralPubMed
33.
go back to reference Zhang D, Hu X, Qian L, Chen SH, Zhou H, Wilson B, Miller DS, Hong JS: Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation. 2011, 8 (1): 3-10.1186/1742-2094-8-3.PubMedCentralPubMed Zhang D, Hu X, Qian L, Chen SH, Zhou H, Wilson B, Miller DS, Hong JS: Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation. 2011, 8 (1): 3-10.1186/1742-2094-8-3.PubMedCentralPubMed
34.
go back to reference Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM: The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med. 2010, 12 (2): 179-192. 10.1007/s12017-009-8085-y.PubMed Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM: The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med. 2010, 12 (2): 179-192. 10.1007/s12017-009-8085-y.PubMed
35.
go back to reference Ager RR, Fonseca MI, Chu SH, Sanderson SD, Taylor SM, Woodruff TM, Tenner AJ: Microglial C5aR (CD88) expression correlates with amyloid-β deposition in murine models of Alzheimer’s disease. J Neurochem. 2010, 113 (2): 389-401. 10.1111/j.1471-4159.2010.06595.x.PubMedCentralPubMed Ager RR, Fonseca MI, Chu SH, Sanderson SD, Taylor SM, Woodruff TM, Tenner AJ: Microglial C5aR (CD88) expression correlates with amyloid-β deposition in murine models of Alzheimer’s disease. J Neurochem. 2010, 113 (2): 389-401. 10.1111/j.1471-4159.2010.06595.x.PubMedCentralPubMed
36.
go back to reference O’Barr S, Cooper NR: The C5a complement activation peptide increases IL-1β and IL-6 release from amyloid-β primed human monocytes: implications for Alzheimer’s disease. J Neuroimmunol. 2000, 109 (2): 87-94. 10.1016/S0165-5728(00)00291-5.PubMed O’Barr S, Cooper NR: The C5a complement activation peptide increases IL-1β and IL-6 release from amyloid-β primed human monocytes: implications for Alzheimer’s disease. J Neuroimmunol. 2000, 109 (2): 87-94. 10.1016/S0165-5728(00)00291-5.PubMed
37.
go back to reference Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, Taylor SM, Woodruff TM, Tenner AJ: Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J Immunol. 2009, 183 (2): 1375-1383. 10.4049/jimmunol.0901005.PubMedCentralPubMed Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, Taylor SM, Woodruff TM, Tenner AJ: Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J Immunol. 2009, 183 (2): 1375-1383. 10.4049/jimmunol.0901005.PubMedCentralPubMed
38.
go back to reference Fonseca MI, McGuire SO, Counts SE, Tenner AJ: Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation. 2013, 10: 25-10.1186/1742-2094-10-25.PubMedCentralPubMed Fonseca MI, McGuire SO, Counts SE, Tenner AJ: Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation. 2013, 10: 25-10.1186/1742-2094-10-25.PubMedCentralPubMed
39.
go back to reference Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, Masliah E: Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA. 2002, 99 (16): 10837-10842. 10.1073/pnas.162350199.PubMedCentralPubMed Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, Masliah E: Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA. 2002, 99 (16): 10837-10842. 10.1073/pnas.162350199.PubMedCentralPubMed
40.
go back to reference Nataf S, Stahel PF, Davoust N, Barnum SR: Complement anaphylatoxin receptors on neurons: new tricks for old receptors?. Trends Neurosci. 1999, 22 (9): 397-402. 10.1016/S0166-2236(98)01390-3.PubMed Nataf S, Stahel PF, Davoust N, Barnum SR: Complement anaphylatoxin receptors on neurons: new tricks for old receptors?. Trends Neurosci. 1999, 22 (9): 397-402. 10.1016/S0166-2236(98)01390-3.PubMed
41.
go back to reference Okun E, Mattson MP, Arumugam TV: Involvement of Fc receptors in disorders of the central nervous system. Neuromolecular Med. 2010, 12 (2): 164-178. 10.1007/s12017-009-8099-5.PubMedCentralPubMed Okun E, Mattson MP, Arumugam TV: Involvement of Fc receptors in disorders of the central nervous system. Neuromolecular Med. 2010, 12 (2): 164-178. 10.1007/s12017-009-8099-5.PubMedCentralPubMed
42.
go back to reference Song X, Shapiro S, Goldman DL, Casadevall A, Scharff M, Lee SC: Fcγ receptor I- and III-mediated macrophage inflammatory protein 1α induction in primary human and murine microglia. Infect Immun. 2002, 70 (9): 5177-5184. 10.1128/IAI.70.9.5177-5184.2002.PubMedCentralPubMed Song X, Shapiro S, Goldman DL, Casadevall A, Scharff M, Lee SC: Fcγ receptor I- and III-mediated macrophage inflammatory protein 1α induction in primary human and murine microglia. Infect Immun. 2002, 70 (9): 5177-5184. 10.1128/IAI.70.9.5177-5184.2002.PubMedCentralPubMed
43.
go back to reference Song X, Tanaka S, Cox D, Lee SC: Fcγ receptor signaling in primary human microglia: differential roles of PI-3 K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol. 2004, 75 (6): 1147-1155. 10.1189/jlb.0403128.PubMed Song X, Tanaka S, Cox D, Lee SC: Fcγ receptor signaling in primary human microglia: differential roles of PI-3 K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol. 2004, 75 (6): 1147-1155. 10.1189/jlb.0403128.PubMed
44.
go back to reference Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C: Identification of FcγRI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J Neuroimmunol. 1993, 48 (1): 71-79. 10.1016/0165-5728(93)90060-C.PubMed Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C: Identification of FcγRI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J Neuroimmunol. 1993, 48 (1): 71-79. 10.1016/0165-5728(93)90060-C.PubMed
45.
go back to reference Engelhardt JI, Le WD, Siklos L, Obal I, Boda K, Appel SH: Stereotaxic injection of IgG from patients with Alzheimer disease initiates injury of cholinergic neurons of the basal forebrain. Arch Neurol. 2000, 57 (5): 681-686. 10.1001/archneur.57.5.681.PubMed Engelhardt JI, Le WD, Siklos L, Obal I, Boda K, Appel SH: Stereotaxic injection of IgG from patients with Alzheimer disease initiates injury of cholinergic neurons of the basal forebrain. Arch Neurol. 2000, 57 (5): 681-686. 10.1001/archneur.57.5.681.PubMed
46.
go back to reference Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D: Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature. 2000, 408 (6815): 979-982. 10.1038/35050110.PubMed Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D: Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature. 2000, 408 (6815): 979-982. 10.1038/35050110.PubMed
47.
go back to reference Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T: Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000, 6 (8): 916-919. 10.1038/78682.PubMed Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T: Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000, 6 (8): 916-919. 10.1038/78682.PubMed
48.
go back to reference Wilcock DM, DiCarlo G, Henderson D, Jackson J, Clarke K, Ugen KE, Gordon MN, Morgan D: Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci. 2003, 23 (9): 3745-3751.PubMed Wilcock DM, DiCarlo G, Henderson D, Jackson J, Clarke K, Ugen KE, Gordon MN, Morgan D: Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci. 2003, 23 (9): 3745-3751.PubMed
49.
go back to reference Das P, Howard V, Loosbrock N, Dickson D, Murphy MP, Golde TE: Amyloid-β immunization effectively reduces amyloid deposition in FcRgamma-/- knock-out mice. J Neurosci. 2003, 23 (24): 8532-8538.PubMed Das P, Howard V, Loosbrock N, Dickson D, Murphy MP, Golde TE: Amyloid-β immunization effectively reduces amyloid deposition in FcRgamma-/- knock-out mice. J Neurosci. 2003, 23 (24): 8532-8538.PubMed
50.
go back to reference Bacskai BJ, Kajdasz ST, McLellan ME, Games D, Seubert P, Schenk D, Hyman BT: Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J Neurosci. 2002, 22 (18): 7873-7878.PubMed Bacskai BJ, Kajdasz ST, McLellan ME, Games D, Seubert P, Schenk D, Hyman BT: Non-Fc-mediated mechanisms are involved in clearance of amyloid-β in vivo by immunotherapy. J Neurosci. 2002, 22 (18): 7873-7878.PubMed
51.
go back to reference Blennow K, Wallin A, Davidsson P, Fredman P, Gottfries CG, Svennerholm L: Intra-blood–brain-barrier synthesis of immunoglobulins in patients with dementia of the Alzheimer type. Alzheimer Dis Assoc Disord. 1990, 4 (2): 79-86. 10.1097/00002093-199040200-00002.PubMed Blennow K, Wallin A, Davidsson P, Fredman P, Gottfries CG, Svennerholm L: Intra-blood–brain-barrier synthesis of immunoglobulins in patients with dementia of the Alzheimer type. Alzheimer Dis Assoc Disord. 1990, 4 (2): 79-86. 10.1097/00002093-199040200-00002.PubMed
52.
go back to reference Small GW, Rosenthal M, Tourtellotte WW: Central nervous system IgG synthesis rates in Alzheimer disease: possible differences in early-onset and late-onset subgroups. Alzheimer Dis Assoc Disord. 1994, 8 (1): 29-37. 10.1097/00002093-199408010-00006.PubMed Small GW, Rosenthal M, Tourtellotte WW: Central nervous system IgG synthesis rates in Alzheimer disease: possible differences in early-onset and late-onset subgroups. Alzheimer Dis Assoc Disord. 1994, 8 (1): 29-37. 10.1097/00002093-199408010-00006.PubMed
53.
go back to reference Bouras C, Riederer BM, Kovari E, Hof PR, Giannakopoulos P: Humoral immunity in brain aging and Alzheimer’s disease. Brain Res Brain Res Rev. 2005, 48 (3): 477-487. 10.1016/j.brainresrev.2004.09.009.PubMed Bouras C, Riederer BM, Kovari E, Hof PR, Giannakopoulos P: Humoral immunity in brain aging and Alzheimer’s disease. Brain Res Brain Res Rev. 2005, 48 (3): 477-487. 10.1016/j.brainresrev.2004.09.009.PubMed
54.
go back to reference Bouras C, Riederer BM, Hof PR, Giannakopoulos P: Induction of MC-1 immunoreactivity in axons after injection of the Fc fragment of human immunoglobulins in macaque monkeys. Acta Neuropathol. 2003, 105 (1): 58-64.PubMed Bouras C, Riederer BM, Hof PR, Giannakopoulos P: Induction of MC-1 immunoreactivity in axons after injection of the Fc fragment of human immunoglobulins in macaque monkeys. Acta Neuropathol. 2003, 105 (1): 58-64.PubMed
55.
go back to reference Fernandez-Vizarra P, Lopez-Franco O, Mallavia B, Higuera-Matas A, Lopez-Parra V, Ortiz-Munoz G, Ambrosio E, Egido J, Almeida OF, Gomez-Guerrero C: Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain. 2012, 135 (9): 2826-2837. 10.1093/brain/aws195.PubMed Fernandez-Vizarra P, Lopez-Franco O, Mallavia B, Higuera-Matas A, Lopez-Parra V, Ortiz-Munoz G, Ambrosio E, Egido J, Almeida OF, Gomez-Guerrero C: Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain. 2012, 135 (9): 2826-2837. 10.1093/brain/aws195.PubMed
56.
go back to reference Kam TI, Song S, Gwon Y, Park H, Yan JJ, Im I, Choi JW, Choi TY, Kim J, Song DK, Takai T, Kim YC, Kim KS, Choi SY, Choi S, Klein WL, Yuan J, Jung YK: FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease. J Clin Invest. 2013, 123 (7): 2791-2802. 10.1172/JCI66827.PubMedCentralPubMed Kam TI, Song S, Gwon Y, Park H, Yan JJ, Im I, Choi JW, Choi TY, Kim J, Song DK, Takai T, Kim YC, Kim KS, Choi SY, Choi S, Klein WL, Yuan J, Jung YK: FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer’s disease. J Clin Invest. 2013, 123 (7): 2791-2802. 10.1172/JCI66827.PubMedCentralPubMed
57.
go back to reference Morgan D: Immunotherapy for Alzheimer’s disease. J Intern Med. 2011, 269 (1): 54-63. 10.1111/j.1365-2796.2010.02315.x.PubMedCentralPubMed Morgan D: Immunotherapy for Alzheimer’s disease. J Intern Med. 2011, 269 (1): 54-63. 10.1111/j.1365-2796.2010.02315.x.PubMedCentralPubMed
58.
go back to reference Delrieu J, Ousset PJ, Caillaud C, Vellas B: ‘Clinical trials in Alzheimer’s disease’: immunotherapy approaches. J Neurochem. 2012, 120 (Suppl 1): 186-193.PubMed Delrieu J, Ousset PJ, Caillaud C, Vellas B: ‘Clinical trials in Alzheimer’s disease’: immunotherapy approaches. J Neurochem. 2012, 120 (Suppl 1): 186-193.PubMed
59.
go back to reference Lemere CA: Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener. 2013, 8 (1): 36-10.1186/1750-1326-8-36.PubMedCentralPubMed Lemere CA: Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener. 2013, 8 (1): 36-10.1186/1750-1326-8-36.PubMedCentralPubMed
60.
go back to reference Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT: Losing your nerves? Maybe it’s the antibodies. Nat Rev Immunol. 2009, 9 (6): 449-456. 10.1038/nri2529.PubMedCentralPubMed Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT: Losing your nerves? Maybe it’s the antibodies. Nat Rev Immunol. 2009, 9 (6): 449-456. 10.1038/nri2529.PubMedCentralPubMed
61.
go back to reference Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM: Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci. 2001, 21 (2): RC123.PubMed Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM: Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci. 2001, 21 (2): RC123.PubMed
62.
go back to reference Le Y, Li B, Gong W, Shen W, Hu J, Dunlop NM, Oppenheim JJ, Wang JM: Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol Rev. 2000, 177: 185-194. 10.1034/j.1600-065X.2000.17704.x.PubMed Le Y, Li B, Gong W, Shen W, Hu J, Dunlop NM, Oppenheim JJ, Wang JM: Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol Rev. 2000, 177: 185-194. 10.1034/j.1600-065X.2000.17704.x.PubMed
63.
go back to reference Lee MS, Yoo SA, Cho CS, Suh PG, Kim WU, Ryu SH: Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J Immunol. 2006, 177 (8): 5585-5594.PubMed Lee MS, Yoo SA, Cho CS, Suh PG, Kim WU, Ryu SH: Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J Immunol. 2006, 177 (8): 5585-5594.PubMed
64.
go back to reference Le Y, Ye RD, Gong W, Li J, Iribarren P, Wang JM: Identification of functional domains in the formyl peptide receptor-like 1 for agonist-induced cell chemotaxis. FEBS J. 2005, 272 (3): 769-778. 10.1111/j.1742-4658.2004.04514.x.PubMed Le Y, Ye RD, Gong W, Li J, Iribarren P, Wang JM: Identification of functional domains in the formyl peptide receptor-like 1 for agonist-induced cell chemotaxis. FEBS J. 2005, 272 (3): 769-778. 10.1111/j.1742-4658.2004.04514.x.PubMed
65.
go back to reference Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, Murphy PM: Amyloid-β induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem. 2001, 276 (26): 23645-23652. 10.1074/jbc.M101031200.PubMed Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, Murphy PM: Amyloid-β induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem. 2001, 276 (26): 23645-23652. 10.1074/jbc.M101031200.PubMed
66.
go back to reference Yazawa H, Yu ZX, Le Takeda Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM: β amyloid peptide (Aβ42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J. 2001, 15 (13): 2454-2462. 10.1096/fj.01-0251com.PubMed Yazawa H, Yu ZX, Le Takeda Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM: β amyloid peptide (Aβ42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J. 2001, 15 (13): 2454-2462. 10.1096/fj.01-0251com.PubMed
67.
go back to reference Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM: Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol. 2004, 172 (11): 7078-7085.PubMed Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM: Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol. 2004, 172 (11): 7078-7085.PubMed
68.
go back to reference Brandenburg LO, Konrad M, Wruck C, Koch T, Pufe T, Lucius R: Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1-42 in glial cells. Neuroscience. 2008, 156 (2): 266-276. 10.1016/j.neuroscience.2008.07.042.PubMed Brandenburg LO, Konrad M, Wruck C, Koch T, Pufe T, Lucius R: Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1-42 in glial cells. Neuroscience. 2008, 156 (2): 266-276. 10.1016/j.neuroscience.2008.07.042.PubMed
69.
go back to reference Cui YH, Le Y, Gong W, Proost P, Van Damme J, Murphy WJ, Wang JM: Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J Immunol. 2002, 168 (1): 434-442.PubMed Cui YH, Le Y, Gong W, Proost P, Van Damme J, Murphy WJ, Wang JM: Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J Immunol. 2002, 168 (1): 434-442.PubMed
70.
go back to reference Chen K, Iribarren P, Huang J, Zhang L, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM: Induction of the formyl peptide receptor 2 in microglia by IFN-γ and synergy with CD40 ligand. J Immunol. 2007, 178 (3): 1759-1766.PubMed Chen K, Iribarren P, Huang J, Zhang L, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM: Induction of the formyl peptide receptor 2 in microglia by IFN-γ and synergy with CD40 ligand. J Immunol. 2007, 178 (3): 1759-1766.PubMed
71.
go back to reference Lorton D, Schaller J, Lala A, De Nardin E: Chemotactic-like receptors and Aβ peptide induced responses in Alzheimer’s disease. Neurobiol Aging. 2000, 21 (3): 463-473. 10.1016/S0197-4580(00)00092-0.PubMed Lorton D, Schaller J, Lala A, De Nardin E: Chemotactic-like receptors and Aβ peptide induced responses in Alzheimer’s disease. Neurobiol Aging. 2000, 21 (3): 463-473. 10.1016/S0197-4580(00)00092-0.PubMed
72.
go back to reference Krieger M, Herz J: Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994, 63: 601-637. 10.1146/annurev.bi.63.070194.003125.PubMed Krieger M, Herz J: Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994, 63: 601-637. 10.1146/annurev.bi.63.070194.003125.PubMed
73.
go back to reference Goldstein JL, Ho YK, Basu SK, Brown MS: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979, 76 (1): 333-337. 10.1073/pnas.76.1.333.PubMedCentralPubMed Goldstein JL, Ho YK, Basu SK, Brown MS: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979, 76 (1): 333-337. 10.1073/pnas.76.1.333.PubMedCentralPubMed
74.
go back to reference Brown MS, Basu SK, Falck JR, Ho YK, Goldstein JL: The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct. 1980, 13 (1): 67-81. 10.1002/jss.400130107.PubMed Brown MS, Basu SK, Falck JR, Ho YK, Goldstein JL: The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct. 1980, 13 (1): 67-81. 10.1002/jss.400130107.PubMed
75.
go back to reference Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S: Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis. 2005, 182 (1): 1-15. 10.1016/j.atherosclerosis.2005.03.036.PubMed Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S: Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis. 2005, 182 (1): 1-15. 10.1016/j.atherosclerosis.2005.03.036.PubMed
76.
go back to reference Ashraf MZ, Gupta N: Scavenger receptors: implications in atherothrombotic disorders. Int J Biochem Cell Biol. 2011, 43 (5): 697-700. 10.1016/j.biocel.2011.01.019.PubMed Ashraf MZ, Gupta N: Scavenger receptors: implications in atherothrombotic disorders. Int J Biochem Cell Biol. 2011, 43 (5): 697-700. 10.1016/j.biocel.2011.01.019.PubMed
77.
go back to reference Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El-Khoury JB: CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am J Pathol. 2002, 160 (1): 101-112. 10.1016/S0002-9440(10)64354-4.PubMedCentralPubMed Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El-Khoury JB: CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am J Pathol. 2002, 160 (1): 101-112. 10.1016/S0002-9440(10)64354-4.PubMedCentralPubMed
78.
go back to reference Godoy B, Murgas P, Tichauer J, Von Bernhardi R: Scavenger receptor class A ligands induce secretion of IL1β and exert a modulatory effect on the inflammatory activation of astrocytes in culture. J Neuroimmunol. 2012, 251 (1–2): 6-13.PubMedCentralPubMed Godoy B, Murgas P, Tichauer J, Von Bernhardi R: Scavenger receptor class A ligands induce secretion of IL1β and exert a modulatory effect on the inflammatory activation of astrocytes in culture. J Neuroimmunol. 2012, 251 (1–2): 6-13.PubMedCentralPubMed
79.
go back to reference Murgas P, Godoy B, von Bernhardi R: Aβ potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture. Neurotox Res. 2012, 22 (1): 69-78. 10.1007/s12640-011-9306-3.PubMed Murgas P, Godoy B, von Bernhardi R: Aβ potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture. Neurotox Res. 2012, 22 (1): 69-78. 10.1007/s12640-011-9306-3.PubMed
80.
go back to reference Christie RH, Freeman M, Hyman BT: Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease. Am J Pathol. 1996, 148 (2): 399-403.PubMedCentralPubMed Christie RH, Freeman M, Hyman BT: Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease. Am J Pathol. 1996, 148 (2): 399-403.PubMedCentralPubMed
81.
go back to reference Freeman M, Ashkenas J, Rees DJ, Kingsley DM, Copeland NG, Jenkins NA, Krieger M: An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA. 1990, 87 (22): 8810-8814. 10.1073/pnas.87.22.8810.PubMedCentralPubMed Freeman M, Ashkenas J, Rees DJ, Kingsley DM, Copeland NG, Jenkins NA, Krieger M: An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA. 1990, 87 (22): 8810-8814. 10.1073/pnas.87.22.8810.PubMedCentralPubMed
82.
go back to reference Gough PJ, Greaves DR, Gordon S: A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J Lipid Res. 1998, 39 (3): 531-543.PubMed Gough PJ, Greaves DR, Gordon S: A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J Lipid Res. 1998, 39 (3): 531-543.PubMed
83.
go back to reference Kodama T, Reddy P, Kishimoto C, Krieger M: Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci USA. 1988, 85 (23): 9238-9242. 10.1073/pnas.85.23.9238.PubMedCentralPubMed Kodama T, Reddy P, Kishimoto C, Krieger M: Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci USA. 1988, 85 (23): 9238-9242. 10.1073/pnas.85.23.9238.PubMedCentralPubMed
84.
go back to reference Coller SP, Paulnock DM: Signaling pathways initiated in macrophages after engagement of type A scavenger receptors. J Leukoc Biol. 2001, 70 (1): 142-148.PubMed Coller SP, Paulnock DM: Signaling pathways initiated in macrophages after engagement of type A scavenger receptors. J Leukoc Biol. 2001, 70 (1): 142-148.PubMed
85.
go back to reference Hickman SE, Allison EK, El Khoury J: Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008, 28 (33): 8354-8360. 10.1523/JNEUROSCI.0616-08.2008.PubMedCentralPubMed Hickman SE, Allison EK, El Khoury J: Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008, 28 (33): 8354-8360. 10.1523/JNEUROSCI.0616-08.2008.PubMedCentralPubMed
86.
go back to reference Crucet M, Wust SJ, Spielmann P, Luscher TF, Wenger RH, Matter CM: Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis. 2013, 229 (1): 110-117. 10.1016/j.atherosclerosis.2013.04.034.PubMed Crucet M, Wust SJ, Spielmann P, Luscher TF, Wenger RH, Matter CM: Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis. 2013, 229 (1): 110-117. 10.1016/j.atherosclerosis.2013.04.034.PubMed
87.
go back to reference Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC: Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002, 40 (2): 195-205. 10.1002/glia.10148.PubMed Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC: Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002, 40 (2): 195-205. 10.1002/glia.10148.PubMed
88.
go back to reference Yang CN, Shiao YJ, Shie FS, Guo BS, Chen PH, Cho CY, Chen YJ, Huang FL, Tsay HJ: Mechanism mediating oligomeric Aβ clearance by naive primary microglia. Neurobiol Dis. 2011, 42 (3): 221-230. 10.1016/j.nbd.2011.01.005.PubMed Yang CN, Shiao YJ, Shie FS, Guo BS, Chen PH, Cho CY, Chen YJ, Huang FL, Tsay HJ: Mechanism mediating oligomeric Aβ clearance by naive primary microglia. Neurobiol Dis. 2011, 42 (3): 221-230. 10.1016/j.nbd.2011.01.005.PubMed
89.
go back to reference Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, Farfara D, Kingery ND, Weiner HL, El Khoury J: Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun. 2030, 2013: 4. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, Farfara D, Kingery ND, Weiner HL, El Khoury J: Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun. 2030, 2013: 4.
90.
go back to reference Savill J, Hogg N, Ren Y, Haslett C: Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 1992, 90 (4): 1513-1522. 10.1172/JCI116019.PubMedCentralPubMed Savill J, Hogg N, Ren Y, Haslett C: Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 1992, 90 (4): 1513-1522. 10.1172/JCI116019.PubMedCentralPubMed
91.
go back to reference Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N: Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 1998, 188 (7): 1359-1368. 10.1084/jem.188.7.1359.PubMedCentralPubMed Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N: Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 1998, 188 (7): 1359-1368. 10.1084/jem.188.7.1359.PubMedCentralPubMed
92.
go back to reference Harmon CM, Abumrad NA: Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J Membr Biol. 1993, 133 (1): 43-49.PubMed Harmon CM, Abumrad NA: Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J Membr Biol. 1993, 133 (1): 43-49.PubMed
93.
go back to reference Febbraio M, Hajjar DP, Silverstein RL: CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001, 108 (6): 785-791. 10.1172/JCI14006.PubMedCentralPubMed Febbraio M, Hajjar DP, Silverstein RL: CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001, 108 (6): 785-791. 10.1172/JCI14006.PubMedCentralPubMed
94.
go back to reference Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP: CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997, 138 (3): 707-717. 10.1083/jcb.138.3.707.PubMedCentralPubMed Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP: CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997, 138 (3): 707-717. 10.1083/jcb.138.3.707.PubMedCentralPubMed
95.
go back to reference Ryeom SW, Silverstein RL, Scotto A, Sparrow JR: Binding of anionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J Biol Chem. 1996, 271 (34): 20536-20539. 10.1074/jbc.271.34.20536.PubMed Ryeom SW, Silverstein RL, Scotto A, Sparrow JR: Binding of anionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J Biol Chem. 1996, 271 (34): 20536-20539. 10.1074/jbc.271.34.20536.PubMed
96.
go back to reference Silverstein RL, Baird M, Lo SK, Yesner LM: Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. Role of CD36 as a thrombospondin receptor. J Biol Chem. 1992, 267 (23): 16607-16612.PubMed Silverstein RL, Baird M, Lo SK, Yesner LM: Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. Role of CD36 as a thrombospondin receptor. J Biol Chem. 1992, 267 (23): 16607-16612.PubMed
97.
go back to reference Armesilla AL, Vega MA: Structural organization of the gene for human CD36 glycoprotein. J Biol Chem. 1994, 269 (29): 18985-18991.PubMed Armesilla AL, Vega MA: Structural organization of the gene for human CD36 glycoprotein. J Biol Chem. 1994, 269 (29): 18985-18991.PubMed
98.
go back to reference Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zähringer U, Beutler B: CD36 is a sensor of diacylglycerides. Nature. 2005, 433 (7025): 523-527. 10.1038/nature03253.PubMed Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zähringer U, Beutler B: CD36 is a sensor of diacylglycerides. Nature. 2005, 433 (7025): 523-527. 10.1038/nature03253.PubMed
99.
go back to reference Gao D, Ashraf MZ, Kar NS, Lin D, Sayre LM, Podrez EA: Structural basis for the recognition of oxidized phospholipids in oxidized low density lipoproteins by class B scavenger receptors CD36 and SR-BI. J Biol Chem. 2010, 285 (7): 4447-4454. 10.1074/jbc.M109.082800.PubMedCentralPubMed Gao D, Ashraf MZ, Kar NS, Lin D, Sayre LM, Podrez EA: Structural basis for the recognition of oxidized phospholipids in oxidized low density lipoproteins by class B scavenger receptors CD36 and SR-BI. J Biol Chem. 2010, 285 (7): 4447-4454. 10.1074/jbc.M109.082800.PubMedCentralPubMed
100.
go back to reference Silverstein RL, Li W, Park YM, Rahaman SO: Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc. 2010, 121: 206-220.PubMedCentralPubMed Silverstein RL, Li W, Park YM, Rahaman SO: Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc. 2010, 121: 206-220.PubMedCentralPubMed
101.
go back to reference Alessio M, Greco NJ, Primo L, Ghigo D, Bosia A, Tandon NN, Ockenhouse CF, Jamieson GA, Malavasi F: Platelet activation and inhibition of malarial cytoadherence by the anti-CD36 IgM monoclonal antibody NL07. Blood. 1993, 82 (12): 3637-3647.PubMed Alessio M, Greco NJ, Primo L, Ghigo D, Bosia A, Tandon NN, Ockenhouse CF, Jamieson GA, Malavasi F: Platelet activation and inhibition of malarial cytoadherence by the anti-CD36 IgM monoclonal antibody NL07. Blood. 1993, 82 (12): 3637-3647.PubMed
102.
go back to reference El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD: CD36 mediates the innate host response to β-amyloid. J Exp Med. 2003, 197 (12): 1657-1666. 10.1084/jem.20021546.PubMedCentralPubMed El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, Freeman MW, Luster AD: CD36 mediates the innate host response to β-amyloid. J Exp Med. 2003, 197 (12): 1657-1666. 10.1084/jem.20021546.PubMedCentralPubMed
103.
go back to reference Bornemann KD, Wiederhold KH, Pauli C, Ermini F, Stalder M, Schnell L, Sommer B, Jucker M, Staufenbiel M: Aβ-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am J Pathol. 2001, 158 (1): 63-73. 10.1016/S0002-9440(10)63945-4.PubMedCentralPubMed Bornemann KD, Wiederhold KH, Pauli C, Ermini F, Stalder M, Schnell L, Sommer B, Jucker M, Staufenbiel M: Aβ-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am J Pathol. 2001, 158 (1): 63-73. 10.1016/S0002-9440(10)63945-4.PubMedCentralPubMed
104.
go back to reference Ricciarelli R, D’Abramo C, Zingg JM, Giliberto L, Markesbery W, Azzi A, Marinari UM, Pronzato MA, Tabaton M: CD36 overexpression in human brain correlates with β-amyloid deposition but not with Alzheimer’s disease. Free Radic Biol Med. 2004, 36 (8): 1018-1024. 10.1016/j.freeradbiomed.2004.01.007.PubMed Ricciarelli R, D’Abramo C, Zingg JM, Giliberto L, Markesbery W, Azzi A, Marinari UM, Pronzato MA, Tabaton M: CD36 overexpression in human brain correlates with β-amyloid deposition but not with Alzheimer’s disease. Free Radic Biol Med. 2004, 36 (8): 1018-1024. 10.1016/j.freeradbiomed.2004.01.007.PubMed
105.
go back to reference Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE: A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci. 2003, 23 (7): 2665-2674.PubMed Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE: A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci. 2003, 23 (7): 2665-2674.PubMed
106.
go back to reference Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010, 11 (2): 155-161. 10.1038/ni.1836.PubMedCentralPubMed Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010, 11 (2): 155-161. 10.1038/ni.1836.PubMedCentralPubMed
107.
go back to reference Wilkinson K, Boyd JD, Glicksman M, Moore KJ, El Khoury J: A high content drug screen identifies ursolic acid as an inhibitor of amyloid β protein interactions with its receptor CD36. J Biol Chem. 2011, 286 (40): 34914-34922. 10.1074/jbc.M111.232116.PubMedCentralPubMed Wilkinson K, Boyd JD, Glicksman M, Moore KJ, El Khoury J: A high content drug screen identifies ursolic acid as an inhibitor of amyloid β protein interactions with its receptor CD36. J Biol Chem. 2011, 286 (40): 34914-34922. 10.1074/jbc.M111.232116.PubMedCentralPubMed
108.
go back to reference Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992, 267 (21): 14998-15004.PubMed Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992, 267 (21): 14998-15004.PubMed
109.
go back to reference Leclerc E, Fritz G, Vetter SW, Heizmann CW: Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009, 1793 (6): 993-1007. 10.1016/j.bbamcr.2008.11.016.PubMed Leclerc E, Fritz G, Vetter SW, Heizmann CW: Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009, 1793 (6): 993-1007. 10.1016/j.bbamcr.2008.11.016.PubMed
110.
go back to reference Akirav EM, Preston-Hurlburt P, Garyu J, Henegariu O, Clynes R, Schmidt AM, Herold KC: RAGE expression in human T cells: a link between environmental factors and adaptive immune responses. PLoS One. 2012, 7 (4): e34698-10.1371/journal.pone.0034698.PubMedCentralPubMed Akirav EM, Preston-Hurlburt P, Garyu J, Henegariu O, Clynes R, Schmidt AM, Herold KC: RAGE expression in human T cells: a link between environmental factors and adaptive immune responses. PLoS One. 2012, 7 (4): e34698-10.1371/journal.pone.0034698.PubMedCentralPubMed
111.
go back to reference Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Schmidt AM, Chen JX, Yan SS: RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J. 2010, 24 (4): 1043-1055. 10.1096/fj.09-139634.PubMedCentralPubMed Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Schmidt AM, Chen JX, Yan SS: RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J. 2010, 24 (4): 1043-1055. 10.1096/fj.09-139634.PubMedCentralPubMed
112.
go back to reference Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ: RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem. 2010, 17 (21): 2232-2252. 10.2174/092986710791331086.PubMed Alexiou P, Chatzopoulou M, Pegklidou K, Demopoulos VJ: RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem. 2010, 17 (21): 2232-2252. 10.2174/092986710791331086.PubMed
113.
go back to reference Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B: RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003, 9 (7): 907-913. 10.1038/nm890.PubMed Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B: RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003, 9 (7): 907-913. 10.1038/nm890.PubMed
114.
go back to reference Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR: An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis. 2009, 16 (4): 741-761.PubMed Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR: An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis. 2009, 16 (4): 741-761.PubMed
115.
go back to reference Reddy VP, Zhu X, Perry G, Smith MA: Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis. 2009, 16 (4): 763-774.PubMedCentralPubMed Reddy VP, Zhu X, Perry G, Smith MA: Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis. 2009, 16 (4): 763-774.PubMedCentralPubMed
116.
go back to reference Origlia N, Bonadonna C, Rosellini A, Leznik E, Arancio O, Yan SS, Domenici L: Microglial receptor for advanced glycation end product-dependent signal pathway drives β-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. J Neurosci. 2010, 30 (34): 11414-11425. 10.1523/JNEUROSCI.2127-10.2010.PubMedCentralPubMed Origlia N, Bonadonna C, Rosellini A, Leznik E, Arancio O, Yan SS, Domenici L: Microglial receptor for advanced glycation end product-dependent signal pathway drives β-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. J Neurosci. 2010, 30 (34): 11414-11425. 10.1523/JNEUROSCI.2127-10.2010.PubMedCentralPubMed
117.
go back to reference Origlia N, Righi M, Capsoni S, Cattaneo A, Fang F, Stern DM, Chen JX, Schmidt AM, Arancio O, Yan SD, Domenici L: Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β-mediated cortical synaptic dysfunction. J Neurosci. 2008, 28 (13): 3521-3530. 10.1523/JNEUROSCI.0204-08.2008.PubMed Origlia N, Righi M, Capsoni S, Cattaneo A, Fang F, Stern DM, Chen JX, Schmidt AM, Arancio O, Yan SD, Domenici L: Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β-mediated cortical synaptic dysfunction. J Neurosci. 2008, 28 (13): 3521-3530. 10.1523/JNEUROSCI.0204-08.2008.PubMed
118.
go back to reference Onyango IG, Tuttle JB, Bennett JP: Altered intracellular signaling and reduced viability of Alzheimer’s disease neuronal cybrids is reproduced by β-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol Cell Neurosci. 2005, 29 (2): 333-343. 10.1016/j.mcn.2005.02.012.PubMed Onyango IG, Tuttle JB, Bennett JP: Altered intracellular signaling and reduced viability of Alzheimer’s disease neuronal cybrids is reproduced by β-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol Cell Neurosci. 2005, 29 (2): 333-343. 10.1016/j.mcn.2005.02.012.PubMed
119.
go back to reference Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck CJ, Pufe T, Brandenburg LO: Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE) - and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012, 7: 55-10.1186/1750-1326-7-55.PubMedCentralPubMed Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck CJ, Pufe T, Brandenburg LO: Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE) - and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012, 7: 55-10.1186/1750-1326-7-55.PubMedCentralPubMed
120.
go back to reference Du H, Li P, Wang J, Qing X, Li W: The interaction of amyloid β and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2 expression in brain endothelial cells. Cell Mol Neurobiol. 2012, 32 (1): 141-147. 10.1007/s10571-011-9744-8.PubMed Du H, Li P, Wang J, Qing X, Li W: The interaction of amyloid β and the receptor for advanced glycation endproducts induces matrix metalloproteinase-2 expression in brain endothelial cells. Cell Mol Neurobiol. 2012, 32 (1): 141-147. 10.1007/s10571-011-9744-8.PubMed
121.
go back to reference Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM: RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature. 1996, 382 (6593): 685-691. 10.1038/382685a0.PubMed Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM: RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature. 1996, 382 (6593): 685-691. 10.1038/382685a0.PubMed
122.
go back to reference Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D: PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011, 25 (3): 206-212. 10.1097/WAD.0b013e318204b550.PubMedCentralPubMed Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D: PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011, 25 (3): 206-212. 10.1097/WAD.0b013e318204b550.PubMedCentralPubMed
123.
go back to reference Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV: A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012, 122 (4): 1377-1392. 10.1172/JCI58642.PubMedCentralPubMed Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV: A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012, 122 (4): 1377-1392. 10.1172/JCI58642.PubMedCentralPubMed
124.
go back to reference Morisato D, Anderson KV: The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell. 1994, 76 (4): 677-688. 10.1016/0092-8674(94)90507-X.PubMed Morisato D, Anderson KV: The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell. 1994, 76 (4): 677-688. 10.1016/0092-8674(94)90507-X.PubMed
125.
go back to reference Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA: The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996, 86 (6): 973-983. 10.1016/S0092-8674(00)80172-5.PubMed Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA: The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996, 86 (6): 973-983. 10.1016/S0092-8674(00)80172-5.PubMed
126.
go back to reference Lehnardt S: Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2010, 58 (3): 253-263.PubMed Lehnardt S: Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2010, 58 (3): 253-263.PubMed
127.
go back to reference Hanke ML, Kielian T: Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond). 2011, 121 (9): 367-387. 10.1042/CS20110164. Hanke ML, Kielian T: Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond). 2011, 121 (9): 367-387. 10.1042/CS20110164.
128.
go back to reference Yamamoto M, Takeda K: Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010, 2010: 240365.PubMedCentralPubMed Yamamoto M, Takeda K: Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010, 2010: 240365.PubMedCentralPubMed
129.
go back to reference Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004, 173 (6): 3916-3924.PubMed Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004, 173 (6): 3916-3924.PubMed
130.
go back to reference Frank S, Copanaki E, Burbach GJ, Muller UC, Deller T: Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett. 2009, 453 (1): 41-44. 10.1016/j.neulet.2009.01.075.PubMed Frank S, Copanaki E, Burbach GJ, Muller UC, Deller T: Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett. 2009, 453 (1): 41-44. 10.1016/j.neulet.2009.01.075.PubMed
131.
go back to reference Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K: Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation. 2008, 5: 23-10.1186/1742-2094-5-23.PubMedCentralPubMed Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K: Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation. 2008, 5: 23-10.1186/1742-2094-5-23.PubMedCentralPubMed
132.
go back to reference Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K: Role of toll-like receptor signalling in Aβ uptake and clearance. Brain. 2006, 129 (11): 3006-3019. 10.1093/brain/awl249.PubMedCentralPubMed Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K: Role of toll-like receptor signalling in Aβ uptake and clearance. Brain. 2006, 129 (11): 3006-3019. 10.1093/brain/awl249.PubMedCentralPubMed
133.
go back to reference Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT: Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000, 105 (4): 497-504. 10.1172/JCI8541.PubMedCentralPubMed Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT: Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000, 105 (4): 497-504. 10.1172/JCI8541.PubMedCentralPubMed
134.
go back to reference Erridge C: Endogenous ligands of TLR2 and TLR4: agonists or assistants?. J Leukoc Biol. 2010, 87 (6): 989-999. 10.1189/jlb.1209775.PubMed Erridge C: Endogenous ligands of TLR2 and TLR4: agonists or assistants?. J Leukoc Biol. 2010, 87 (6): 989-999. 10.1189/jlb.1209775.PubMed
135.
go back to reference Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T, Ahmed I, Jalil SF, Raza MI: TLR4 polymorphisms and disease susceptibility. Inflamm Res. 2012, 61 (3): 177-188. 10.1007/s00011-011-0427-1.PubMed Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T, Ahmed I, Jalil SF, Raza MI: TLR4 polymorphisms and disease susceptibility. Inflamm Res. 2012, 61 (3): 177-188. 10.1007/s00011-011-0427-1.PubMed
136.
go back to reference Liu T, Gao YJ, Ji RR: Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull. 2012, 28 (2): 131-144. 10.1007/s12264-012-1219-5.PubMedCentralPubMed Liu T, Gao YJ, Ji RR: Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull. 2012, 28 (2): 131-144. 10.1007/s12264-012-1219-5.PubMedCentralPubMed
137.
go back to reference Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, Kim HD, Tahara K, Lalonde R, Fukuchi K: TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2011, 8: 92-10.1186/1742-2094-8-92.PubMedCentralPubMed Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, Kim HD, Tahara K, Lalonde R, Fukuchi K: TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2011, 8: 92-10.1186/1742-2094-8-92.PubMedCentralPubMed
138.
go back to reference Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K: Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 2007, 20 (6): 947-956. 10.1159/000110455.PubMed Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K: Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 2007, 20 (6): 947-956. 10.1159/000110455.PubMed
139.
go back to reference Michaud JP, Halle M, Lampron A, Theriault P, Prefontaine P, Filali M, Tribout-Jover P, Lanteigne AM, Jodoin R, Cluff C, Brichard V, Palmantier R, Pilorget A, Larocque D, Rivest S: Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci USA. 2013, 110 (5): 1941-1946. 10.1073/pnas.1215165110.PubMedCentralPubMed Michaud JP, Halle M, Lampron A, Theriault P, Prefontaine P, Filali M, Tribout-Jover P, Lanteigne AM, Jodoin R, Cluff C, Brichard V, Palmantier R, Pilorget A, Larocque D, Rivest S: Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci USA. 2013, 110 (5): 1941-1946. 10.1073/pnas.1215165110.PubMedCentralPubMed
140.
go back to reference Bsibsi M, Ravid R, Gveric D, van Noort JM: Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002, 61 (11): 1013-1021.PubMed Bsibsi M, Ravid R, Gveric D, van Noort JM: Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002, 61 (11): 1013-1021.PubMed
141.
go back to reference Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM: Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid β peptide. J Biol Chem. 2006, 281 (6): 3651-3659. 10.1074/jbc.M508125200.PubMed Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM: Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid β peptide. J Biol Chem. 2006, 281 (6): 3651-3659. 10.1074/jbc.M508125200.PubMed
142.
go back to reference Richard KL, Filali M, Prefontaine P, Rivest S: Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci. 2008, 28 (22): 5784-5793. 10.1523/JNEUROSCI.1146-08.2008.PubMed Richard KL, Filali M, Prefontaine P, Rivest S: Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci. 2008, 28 (22): 5784-5793. 10.1523/JNEUROSCI.1146-08.2008.PubMed
143.
go back to reference Jana M, Palencia CA, Pahan K: Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol. 2008, 181 (10): 7254-7262.PubMedCentralPubMed Jana M, Palencia CA, Pahan K: Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol. 2008, 181 (10): 7254-7262.PubMedCentralPubMed
144.
go back to reference Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J, Heneka MT, Hartmann T, Menger MD, Fassbender K: TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol. 2012, 188 (3): 1098-1107. 10.4049/jimmunol.1101121.PubMed Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J, Heneka MT, Hartmann T, Menger MD, Fassbender K: TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol. 2012, 188 (3): 1098-1107. 10.4049/jimmunol.1101121.PubMed
145.
go back to reference Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE: CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J Neurosci. 2009, 29 (38): 11982-11992. 10.1523/JNEUROSCI.3158-09.2009.PubMedCentralPubMed Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE: CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J Neurosci. 2009, 29 (38): 11982-11992. 10.1523/JNEUROSCI.3158-09.2009.PubMedCentralPubMed
146.
go back to reference Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ: Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation. 2011, 8: 79-10.1186/1742-2094-8-79.PubMedCentralPubMed Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ: Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation. 2011, 8: 79-10.1186/1742-2094-8-79.PubMedCentralPubMed
147.
go back to reference Iribarren P, Chen K, Hu J, Gong W, Cho EH, Lockett S, Uranchimeg B, Wang JM: CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid β 1–42 peptide by up-regulating the expression of the G-protein-coupled receptor mFPR2. FASEB J. 2005, 19 (14): 2032-2034.PubMed Iribarren P, Chen K, Hu J, Gong W, Cho EH, Lockett S, Uranchimeg B, Wang JM: CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid β 1–42 peptide by up-regulating the expression of the G-protein-coupled receptor mFPR2. FASEB J. 2005, 19 (14): 2032-2034.PubMed
148.
go back to reference Doi Y, Mizuno T, Maki Y, Jin S, Mizoguchi H, Ikeyama M, Doi M, Michikawa M, Takeuchi H, Suzumura A: Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid β neurotoxicity in in vitro and in vivo models of Alzheimer’s disease. Am J Pathol. 2009, 175 (5): 2121-2132. 10.2353/ajpath.2009.090418.PubMedCentralPubMed Doi Y, Mizuno T, Maki Y, Jin S, Mizoguchi H, Ikeyama M, Doi M, Michikawa M, Takeuchi H, Suzumura A: Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid β neurotoxicity in in vitro and in vivo models of Alzheimer’s disease. Am J Pathol. 2009, 175 (5): 2121-2132. 10.2353/ajpath.2009.090418.PubMedCentralPubMed
149.
go back to reference Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT: The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol. 2008, 9 (8): 857-865. 10.1038/ni.1636.PubMedCentralPubMed Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT: The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol. 2008, 9 (8): 857-865. 10.1038/ni.1636.PubMedCentralPubMed
150.
go back to reference Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006, 440 (7081): 237-241. 10.1038/nature04516.PubMed Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006, 440 (7081): 237-241. 10.1038/nature04516.PubMed
151.
go back to reference Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, Aritake K, Urade Y, Morimoto Y: Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 2011, 34 (4): 514-526. 10.1016/j.immuni.2011.03.019.PubMed Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, Aritake K, Urade Y, Morimoto Y: Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 2011, 34 (4): 514-526. 10.1016/j.immuni.2011.03.019.PubMed
152.
go back to reference Lamkanfi M, Walle LV, Kanneganti TD: Deregulated inflammasome signaling in disease. Immunol Rev. 2011, 243 (1): 163-173. 10.1111/j.1600-065X.2011.01042.x.PubMedCentralPubMed Lamkanfi M, Walle LV, Kanneganti TD: Deregulated inflammasome signaling in disease. Immunol Rev. 2011, 243 (1): 163-173. 10.1111/j.1600-065X.2011.01042.x.PubMedCentralPubMed
153.
go back to reference Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N: Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res. 1992, 16 (1–2): 128-134.PubMed Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N: Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res Mol Brain Res. 1992, 16 (1–2): 128-134.PubMed
154.
go back to reference Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013, 493 (7434): 674-678.PubMed Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013, 493 (7434): 674-678.PubMed
155.
go back to reference Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ: CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013, 14 (8): 812-820. 10.1038/ni.2639.PubMedCentralPubMed Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ: CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013, 14 (8): 812-820. 10.1038/ni.2639.PubMedCentralPubMed
156.
go back to reference Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BM, Hooli B, Divito J, Ionita I, Jiang H, Laird N, Moscarillo T, Ohlsen KL, Elliott K, Wang X, Hu-Lince D, Ryder M, Murphy A, Wagner SL, Blacker D, Becker KD, Tanzi RE: Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008, 83 (5): 623-632. 10.1016/j.ajhg.2008.10.008.PubMedCentralPubMed Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF, Schjeide BM, Hooli B, Divito J, Ionita I, Jiang H, Laird N, Moscarillo T, Ohlsen KL, Elliott K, Wang X, Hu-Lince D, Ryder M, Murphy A, Wagner SL, Blacker D, Becker KD, Tanzi RE: Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet. 2008, 83 (5): 623-632. 10.1016/j.ajhg.2008.10.008.PubMedCentralPubMed
157.
go back to reference Crocker PR, Paulson JC, Varki A: Siglecs and their roles in the immune system. Nat Rev Immunol. 2007, 7 (4): 255-266. 10.1038/nri2056.PubMed Crocker PR, Paulson JC, Varki A: Siglecs and their roles in the immune system. Nat Rev Immunol. 2007, 7 (4): 255-266. 10.1038/nri2056.PubMed
158.
go back to reference Garnache-Ottou F, Chaperot L, Biichle S, Ferrand C, Remy-Martin JP, Deconinck E, de Tailly PD, Bulabois B, Poulet J, Kuhlein E, Jacob MC, Salaun V, Arock M, Drenou B, Schillinger F, Seilles E, Tiberghien P, Bensa JC, Plumas J, Saas P: Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells. Blood. 2005, 105 (3): 1256-1264.PubMed Garnache-Ottou F, Chaperot L, Biichle S, Ferrand C, Remy-Martin JP, Deconinck E, de Tailly PD, Bulabois B, Poulet J, Kuhlein E, Jacob MC, Salaun V, Arock M, Drenou B, Schillinger F, Seilles E, Tiberghien P, Bensa JC, Plumas J, Saas P: Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells. Blood. 2005, 105 (3): 1256-1264.PubMed
159.
go back to reference Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A, Morris MC, Evans DA, Johnson K, Sperling RA, Schneider JA, Bennett DA, De Jager P, Alzheimer Disease Neuroimaging Initiative: CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013, 16 (7): 848-850. 10.1038/nn.3435.PubMed Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A, Morris MC, Evans DA, Johnson K, Sperling RA, Schneider JA, Bennett DA, De Jager P, Alzheimer Disease Neuroimaging Initiative: CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013, 16 (7): 848-850. 10.1038/nn.3435.PubMed
160.
go back to reference Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE: Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013, 78 (4): 631-643. 10.1016/j.neuron.2013.04.014.PubMedCentralPubMed Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE: Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013, 78 (4): 631-643. 10.1016/j.neuron.2013.04.014.PubMedCentralPubMed
161.
go back to reference Takahashi K, Rochford CD, Neumann H: Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005, 201 (4): 647-657. 10.1084/jem.20041611.PubMedCentralPubMed Takahashi K, Rochford CD, Neumann H: Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005, 201 (4): 647-657. 10.1084/jem.20041611.PubMedCentralPubMed
162.
go back to reference Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE: A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem. 2009, 109 (4): 1144-1156. 10.1111/j.1471-4159.2009.06042.x.PubMedCentralPubMed Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE: A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem. 2009, 109 (4): 1144-1156. 10.1111/j.1471-4159.2009.06042.x.PubMedCentralPubMed
163.
go back to reference Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J: Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci. 2004, 20 (10): 2617-2628. 10.1111/j.1460-9568.2004.03729.x.PubMed Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J: Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci. 2004, 20 (10): 2617-2628. 10.1111/j.1460-9568.2004.03729.x.PubMed
164.
go back to reference Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T: TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 2008, 56 (13): 1438-1447. 10.1002/glia.20710.PubMed Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T: TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 2008, 56 (13): 1438-1447. 10.1002/glia.20710.PubMed
165.
go back to reference Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K: Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013, 368 (2): 107-116. 10.1056/NEJMoa1211103.PubMedCentralPubMed Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K: Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013, 368 (2): 107-116. 10.1056/NEJMoa1211103.PubMedCentralPubMed
166.
go back to reference Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Lupton MK, Ryten M, Brown K, Lowe J, Ridge PG, Hammer MB, Wakutani Y, Hazrati L, Proitsi P, Newhouse S, Lohmann E, Erginel-Unaltuna N, Medway C, Hanagasi H, Troakes C, Gurvit H, Bilgic B, Al-Sarraj S, Benitez B, Cooper B, Carrell D, et al: TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013, 368 (2): 117-127. 10.1056/NEJMoa1211851.PubMedCentralPubMed Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Lupton MK, Ryten M, Brown K, Lowe J, Ridge PG, Hammer MB, Wakutani Y, Hazrati L, Proitsi P, Newhouse S, Lohmann E, Erginel-Unaltuna N, Medway C, Hanagasi H, Troakes C, Gurvit H, Bilgic B, Al-Sarraj S, Benitez B, Cooper B, Carrell D, et al: TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013, 368 (2): 117-127. 10.1056/NEJMoa1211851.PubMedCentralPubMed
167.
go back to reference Braun BJ, Slowik A, Leib SL, Lucius R, Varoga D, Wruck CJ, Jansen S, Podschun R, Pufe T, Brandenburg LO: The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis. J Neuroinflammation. 2011, 8 (1): 11-10.1186/1742-2094-8-11.PubMedCentralPubMed Braun BJ, Slowik A, Leib SL, Lucius R, Varoga D, Wruck CJ, Jansen S, Podschun R, Pufe T, Brandenburg LO: The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis. J Neuroinflammation. 2011, 8 (1): 11-10.1186/1742-2094-8-11.PubMedCentralPubMed
Metadata
Title
Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis
Authors
Deborah Doens
Patricia L Fernández
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-11-48

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue