Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Glioblastoma | Research

Epigenomic perturbation of novel EGFR enhancers reduces the proliferative and invasive capacity of glioblastoma and increases sensitivity to temozolomide

Authors: Craig A. Vincent, Itzel Nissen, Soran Dakhel, Andreas Hörnblad, Silvia Remeseiro

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Glioblastoma (GB) is the most aggressive of all primary brain tumours and due to its highly invasive nature, surgical resection is nearly impossible. Patients typically rely on radiotherapy with concurrent temozolomide (TMZ) treatment and face a median survival of ~ 14 months. Alterations in the Epidermal Growth Factor Receptor gene (EGFR) are common in GB tumours, but therapies targeting EGFR have not shown significant clinical efficacy.

Methods

Here, we investigated the influence of the EGFR regulatory genome on GB cells and identified novel EGFR enhancers located near the GB-associated SNP rs723527. We used CRISPR/Cas9-based approaches to target the EGFR enhancer regions, generating multiple modified GB cell lines, which enabled us to study the functional response to enhancer perturbation.

Results

Epigenomic perturbation of the EGFR regulatory region decreases EGFR expression and reduces the proliferative and invasive capacity of glioblastoma cells, which also undergo a metabolic reprogramming in favour of mitochondrial respiration and present increased apoptosis. Moreover, EGFR enhancer-perturbation increases the sensitivity of GB cells to TMZ, the first-choice chemotherapeutic agent to treat glioblastoma.

Conclusions

Our findings demonstrate how epigenomic perturbation of EGFR enhancers can ameliorate the aggressiveness of glioblastoma cells and enhance the efficacy of TMZ treatment. This study demonstrates how CRISPR/Cas9-based perturbation of enhancers can be used to modulate the expression of key cancer genes, which can help improve the effectiveness of existing cancer treatments and potentially the prognosis of difficult-to-treat cancers such as glioblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Poon MTC, Sudlow CLM, Figueroa JD, Brennan PM. Longer-term (≥ 2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis. Sci Rep-uk. 2020;10:11622.CrossRef Poon MTC, Sudlow CLM, Figueroa JD, Brennan PM. Longer-term (≥ 2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis. Sci Rep-uk. 2020;10:11622.CrossRef
2.
go back to reference Stewart BW, Wild CP. World Cancer Report 2014. International agency for research on cancer, WHO (World Health Organization). 2014. ISBN 978-92-832-0443-5. Stewart BW, Wild CP. World Cancer Report 2014. International agency for research on cancer, WHO (World Health Organization). 2014. ISBN 978-92-832-0443-5.
3.
go back to reference Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Medicine. 2015;3:121. Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Medicine. 2015;3:121.
4.
go back to reference Stupp R, Taillibert S, Kanner A, Read W, Steinberg DM, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance Temozolomide vs maintenance Temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–16.CrossRefPubMedPubMedCentral Stupp R, Taillibert S, Kanner A, Read W, Steinberg DM, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance Temozolomide vs maintenance Temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–16.CrossRefPubMedPubMedCentral
5.
go back to reference Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus Temozolomide vs Temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314:2535–43.CrossRefPubMed Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus Temozolomide vs Temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314:2535–43.CrossRefPubMed
7.
go back to reference Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ. Tumour treating fields therapy for glioblastoma: current advances and future directions. Br J Cancer. 2021;124:697–709.CrossRefPubMed Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ. Tumour treating fields therapy for glioblastoma: current advances and future directions. Br J Cancer. 2021;124:697–709.CrossRefPubMed
8.
go back to reference Guzauskas GF, Pollom EL, Stieber VW, Wang BCM Jr, LPG. Tumor treating fields and maintenance temozolomide for newly-diagnosed glioblastoma: a cost-effectiveness study. J Méd Econ. 2019;22:1006–13. Guzauskas GF, Pollom EL, Stieber VW, Wang BCM Jr, LPG. Tumor treating fields and maintenance temozolomide for newly-diagnosed glioblastoma: a cost-effectiveness study. J Méd Econ. 2019;22:1006–13.
9.
go back to reference Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med. 2005;352:997–1003.CrossRefPubMed Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med. 2005;352:997–1003.CrossRefPubMed
10.
go back to reference Alnahhas I, Alsawas M, Rayi A, Palmer JD, Raval R, Ong S, et al. Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: a systematic review and meta-analysis. Neuro-oncology Adv. 2020;2:vdaa082.CrossRef Alnahhas I, Alsawas M, Rayi A, Palmer JD, Raval R, Ong S, et al. Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: a systematic review and meta-analysis. Neuro-oncology Adv. 2020;2:vdaa082.CrossRef
11.
go back to reference Struve N, Binder ZA, Stead LF, Brend T, Bagley SJ, Faulkner C, et al. EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene. 2020;39:3041–55.CrossRefPubMedPubMedCentral Struve N, Binder ZA, Stead LF, Brend T, Bagley SJ, Faulkner C, et al. EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene. 2020;39:3041–55.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.CrossRefPubMedPubMedCentral Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.CrossRefPubMedPubMedCentral
14.
go back to reference Li J, Liang R, Song C, Xiang Y, Liu Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Oncotargets Ther. 2018;11:731–42.CrossRef Li J, Liang R, Song C, Xiang Y, Liu Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Oncotargets Ther. 2018;11:731–42.CrossRef
16.
go back to reference Remeseiro S, Hörnblad A, Spitz F. Gene regulation during development in the light of topologically associating domains. WIREs Dev Biol. 2016;5:169–85.CrossRef Remeseiro S, Hörnblad A, Spitz F. Gene regulation during development in the light of topologically associating domains. WIREs Dev Biol. 2016;5:169–85.CrossRef
17.
go back to reference Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet. 2019;55:5. Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet. 2019;55:5.
18.
go back to reference Zaugg JB, Sahlén P, Andersson R, Alberich-Jorda M, Laat W de, Deplancke B, et al. Current challenges in understanding the role of enhancers in disease. Nat Struct Mol Biol. 2022;29:1148–58. Zaugg JB, Sahlén P, Andersson R, Alberich-Jorda M, Laat W de, Deplancke B, et al. Current challenges in understanding the role of enhancers in disease. Nat Struct Mol Biol. 2022;29:1148–58.
19.
go back to reference Dakhel S, Davies WIL, Joseph JV, Tomar T, Remeseiro S, Gunhaga L. Chick fetal organ spheroids as a model to study development and disease. BMC Mol Cell Biol. 2021;22:37–17.CrossRefPubMedPubMedCentral Dakhel S, Davies WIL, Joseph JV, Tomar T, Remeseiro S, Gunhaga L. Chick fetal organ spheroids as a model to study development and disease. BMC Mol Cell Biol. 2021;22:37–17.CrossRefPubMedPubMedCentral
20.
go back to reference Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il’yasova D, Kinnersley B, et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017;49:789–94.CrossRefPubMedPubMedCentral Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il’yasova D, Kinnersley B, et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017;49:789–94.CrossRefPubMedPubMedCentral
21.
go back to reference Warburg O. Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften. 1924;12:1131–7.CrossRef Warburg O. Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften. 1924;12:1131–7.CrossRef
23.
go back to reference DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metabolism. 2020;2:127–9.CrossRef DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metabolism. 2020;2:127–9.CrossRef
24.
go back to reference Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Bio. 2020;21:363–83.CrossRef Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Bio. 2020;21:363–83.CrossRef
25.
go back to reference Azad N, Iyer AKV. Systems Biology of Free Radicals and Antioxidants. 2014. p. 113–35.CrossRef Azad N, Iyer AKV. Systems Biology of Free Radicals and Antioxidants. 2014. p. 113–35.CrossRef
26.
go back to reference Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22:280–97.CrossRefPubMed Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22:280–97.CrossRefPubMed
27.
go back to reference Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, et al. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. Cancer Commun. 2022;42:1049–82.CrossRef Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, et al. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. Cancer Commun. 2022;42:1049–82.CrossRef
29.
go back to reference Shireman JM, Atashi F, Lee G, Ali ES, Saathoff MR, Park CH, et al. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain. 2021;144:1230–46.CrossRefPubMedPubMedCentral Shireman JM, Atashi F, Lee G, Ali ES, Saathoff MR, Park CH, et al. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain. 2021;144:1230–46.CrossRefPubMedPubMedCentral
30.
go back to reference Miska J, Rashidi A, Lee-Chang C, Gao P, Lopez-Rosas A, Zhang P, et al. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Sci Adv. 2021;7:eabc8929.CrossRefPubMedPubMedCentral Miska J, Rashidi A, Lee-Chang C, Gao P, Lopez-Rosas A, Zhang P, et al. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Sci Adv. 2021;7:eabc8929.CrossRefPubMedPubMedCentral
31.
go back to reference Zhan Q, Yi K, Cui X, Li X, Yang S, Wang Q, et al. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro-Oncol. 2022;24:1871–83.CrossRefPubMedPubMedCentral Zhan Q, Yi K, Cui X, Li X, Yang S, Wang Q, et al. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro-Oncol. 2022;24:1871–83.CrossRefPubMedPubMedCentral
33.
go back to reference Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A, et al. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities. Front Immunol. 2022;13:964898.CrossRefPubMedPubMedCentral Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A, et al. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities. Front Immunol. 2022;13:964898.CrossRefPubMedPubMedCentral
34.
go back to reference Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, et al. Microglial stimulation of glioblastoma invasion involves Epidermal Growth Factor Receptor (EGFR) and Colony Stimulating Factor 1 Receptor (CSF-1R) Signaling. Mol Med. 2012;18:519–27.CrossRefPubMedPubMedCentral Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, et al. Microglial stimulation of glioblastoma invasion involves Epidermal Growth Factor Receptor (EGFR) and Colony Stimulating Factor 1 Receptor (CSF-1R) Signaling. Mol Med. 2012;18:519–27.CrossRefPubMedPubMedCentral
35.
go back to reference Hobbs J, Nikiforova MN, Fardo DW, Bortoluzzi S, Cieply K, Hamilton RL, et al. Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas. Am J Surg Pathology. 2012;36:1186–93.CrossRef Hobbs J, Nikiforova MN, Fardo DW, Bortoluzzi S, Cieply K, Hamilton RL, et al. Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas. Am J Surg Pathology. 2012;36:1186–93.CrossRef
36.
go back to reference Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.CrossRefPubMed Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.CrossRefPubMed
37.
go back to reference Lin B, Ziebro J, Smithberger E, Skinner KR, Zhao E, Cloughesy TF, et al. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro-Oncol. 2022;24:2035–62.CrossRefPubMedPubMedCentral Lin B, Ziebro J, Smithberger E, Skinner KR, Zhao E, Cloughesy TF, et al. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro-Oncol. 2022;24:2035–62.CrossRefPubMedPubMedCentral
Metadata
Title
Epigenomic perturbation of novel EGFR enhancers reduces the proliferative and invasive capacity of glioblastoma and increases sensitivity to temozolomide
Authors
Craig A. Vincent
Itzel Nissen
Soran Dakhel
Andreas Hörnblad
Silvia Remeseiro
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11418-9

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine