Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Epstein-Barr Virus | Research

Primary head and neck cancer cell cultures are susceptible to proliferation of Epstein-Barr virus infected lymphocytes

Authors: Senyao Shao, Lars Uwe Scholtz, Sarah Gendreizig, Laura Martínez-Ruiz, Javier Florido, Germaine Escames, Matthias Schürmann, Carsten Hain, Leonie Hose, Almut Mentz, Pascal Schmidt, Menghang Wang, Peter Goon, Michael Wehmeier, Frank Brasch, Jörn Kalinowski, Felix Oppel, Holger Sudhoff

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

New concepts for a more effective anti-cancer therapy are urgently needed. Experimental flaws represent a major counter player of this development and lead to inaccurate and unreproducible data as well as unsuccessful translation of research approaches into clinics. In a previous study we have created epithelial cell cultures from head and neck squamous cell carcinoma (HNSCC) tissue.

Methods

We characterize primary cell populations isolated from human papillomavirus positive HNSCC tissue for their marker expression by RT-qPCR, flow cytometry, and immunofluorescence staining. Their sensitivity to MDM2-inhibition was measured using cell viability assays.

Results

Primary HNSCC cell cultures showed the delayed formation of spheroids at higher passages. These spheroids mimicked the morphology and growth characteristics of other established HNSCC spheroid models. However, expression of epithelial and mesenchymal markers could not be detected in these cells despite the presence of the HNSCC stem cell marker aldehyde dehydrogenase 1 family member A1. Instead, strong expression of B- and T-lymphocytes markers was observed. Flow cytometry analysis revealed a heterogeneous mixture of CD3 + /CD25 + T-lymphocytes and CD19 + B-lymphocytes at a ratio of 4:1 at passage 5 and transformed lymphocytes at late passages (≥ passage 12) with CD45 + CD19 + CD20 + , of which around 10 to 20% were CD3 + CD25 + CD56 + . Interestingly, the whole population was FOXP3-positive indicative of regulatory B-cells (Bregs). Expression of transcripts specific for the Epstein-Barr-virus (EBV) was detected to increase in these spheroid cells along late passages, and this population was vulnerable to MDM2 inhibition. HPV + HNSCC cells but not EBV + lymphocytes were detected to engraft into immunodeficient mice.

Conclusions

In this study we present a primary cell culture of EBV-infected tumor-infiltrating B-lymphocytes, which could be used to study the role of these cells in tumor biology in future research projects. Moreover, by describing the detailed characteristics of these cells, we aim to caution other researchers in the HNSCC field to test for EBV-infected lymphocyte contaminations in primary cell cultures ahead of further experiments. Especially researchers who are interested in TIL-based adopted immunotherapy should exclude these cells in their primary tumor models, e.g. by MDM2-inhibitor treatment. BI-12-derived xenograft tumors represent a suitable model for in vivo targeting studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J Clin. 2018;68(6):394–424 (PubMed PMID: 30207593). Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J Clin. 2018;68(6):394–424 (PubMed PMID: 30207593).
2.
go back to reference Pastor DM, Poritz LS, Olson TL, Kline CL, Harris LR, Koltun WA, et al. Primary cell lines: false representation or model system? a comparison of four human colorectal tumors and their coordinately established cell lines. Int J Clini Experiment Med. 2010;3(1):69–83 (PubMed PMID: 20369042. Pubmed Central PMCID: 2848308). Pastor DM, Poritz LS, Olson TL, Kline CL, Harris LR, Koltun WA, et al. Primary cell lines: false representation or model system? a comparison of four human colorectal tumors and their coordinately established cell lines. Int J Clini Experiment Med. 2010;3(1):69–83 (PubMed PMID: 20369042. Pubmed Central PMCID: 2848308).
3.
go back to reference Gottschling S, Jauch A, Kuner R, Herpel E, Mueller-Decker K, Schnabel PA, et al. Establishment and comparative characterization of novel squamous cell non-small cell lung cancer cell lines and their corresponding tumor tissue. Lung Cancer. 2012;75(1):45–57 (PubMed PMID: 21684623).CrossRef Gottschling S, Jauch A, Kuner R, Herpel E, Mueller-Decker K, Schnabel PA, et al. Establishment and comparative characterization of novel squamous cell non-small cell lung cancer cell lines and their corresponding tumor tissue. Lung Cancer. 2012;75(1):45–57 (PubMed PMID: 21684623).CrossRef
4.
go back to reference Chuang CK, Chuang KL, Hsieh CH, Shen YC, Liao SK. Epstein-Barr virus-infected cell line TCC36B derived from B lymphocytes infiltrating renal pelvis urothelial carcinoma. Anticancer Res. 2010;30(9):3473–8 (PubMed PMID: 20944125). Chuang CK, Chuang KL, Hsieh CH, Shen YC, Liao SK. Epstein-Barr virus-infected cell line TCC36B derived from B lymphocytes infiltrating renal pelvis urothelial carcinoma. Anticancer Res. 2010;30(9):3473–8 (PubMed PMID: 20944125).
5.
go back to reference Dieter SM, Giessler KM, Kriegsmann M, Dubash TD, Mohrmann L, Schulz ER, et al. Patient-derived xenografts of gastrointestinal cancers are susceptible to rapid and delayed B-lymphoproliferation. Int J Cancer. 2017;140(6):1356–63 (PubMed PMID: 27935045).CrossRef Dieter SM, Giessler KM, Kriegsmann M, Dubash TD, Mohrmann L, Schulz ER, et al. Patient-derived xenografts of gastrointestinal cancers are susceptible to rapid and delayed B-lymphoproliferation. Int J Cancer. 2017;140(6):1356–63 (PubMed PMID: 27935045).CrossRef
6.
go back to reference Oppel F, Shao S, Schurmann M, Goon P, Albers AE, Sudhoff H. An Effective Primary Head and Neck Squamous Cell Carcinoma In Vitro Model. Cells. 2019 Jun 7;8(6). PubMed PMID: 31181618. Pubmed Central PMCID: 6628367. Oppel F, Shao S, Schurmann M, Goon P, Albers AE, Sudhoff H. An Effective Primary Head and Neck Squamous Cell Carcinoma In Vitro Model. Cells. 2019 Jun 7;8(6). PubMed PMID: 31181618. Pubmed Central PMCID: 6628367.
7.
go back to reference Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006;24(14):2137–50 (PubMed PMID: 16682732).CrossRef Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006;24(14):2137–50 (PubMed PMID: 16682732).CrossRef
8.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86 (PubMed PMID: 25220842).CrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86 (PubMed PMID: 25220842).CrossRef
9.
go back to reference Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82 (PubMed PMID: 29497144).CrossRef Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82 (PubMed PMID: 29497144).CrossRef
10.
go back to reference Galot R, Le Tourneau C, Guigay J, Licitra L, Tinhofer I, Kong A, et al. Personalized biomarker-based treatment strategy for patients with squamous cell carcinoma of the head and neck: EORTC position and approach. Anna Oncol : Official J European Soc Med Oncol. 2018;29(12):2313–27 (PubMed PMID: 30307465).CrossRef Galot R, Le Tourneau C, Guigay J, Licitra L, Tinhofer I, Kong A, et al. Personalized biomarker-based treatment strategy for patients with squamous cell carcinoma of the head and neck: EORTC position and approach. Anna Oncol : Official J European Soc Med Oncol. 2018;29(12):2313–27 (PubMed PMID: 30307465).CrossRef
11.
go back to reference Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46 (PubMed PMID: 35022204).CrossRef Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46 (PubMed PMID: 35022204).CrossRef
12.
go back to reference Worsham MJ, Wolman SR, Carey TE, Zarbo RJ, Benninger MS, Van Dyke DL. Chromosomal aberrations identified in culture of squamous carcinomas are confirmed by fluorescence in situ hybridisation. Mol Pathol : MP. 1999;52(1):42–6 (PubMed PMID: 10439839. Pubmed Central PMCID: 395670).CrossRef Worsham MJ, Wolman SR, Carey TE, Zarbo RJ, Benninger MS, Van Dyke DL. Chromosomal aberrations identified in culture of squamous carcinomas are confirmed by fluorescence in situ hybridisation. Mol Pathol : MP. 1999;52(1):42–6 (PubMed PMID: 10439839. Pubmed Central PMCID: 395670).CrossRef
13.
go back to reference Ragin CC, Reshmi SC, Gollin SM. Mapping and analysis of HPV16 integration sites in a head and neck cancer cell line. Int J Cancer. 2004;110(5):701–9 (PubMed PMID: 15146560).CrossRef Ragin CC, Reshmi SC, Gollin SM. Mapping and analysis of HPV16 integration sites in a head and neck cancer cell line. Int J Cancer. 2004;110(5):701–9 (PubMed PMID: 15146560).CrossRef
14.
go back to reference Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Can Res : an official journal of the American Association for Cancer Research. 2008;14(13):4085–95 (PubMed PMID: 18593985).CrossRef Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Can Res : an official journal of the American Association for Cancer Research. 2008;14(13):4085–95 (PubMed PMID: 18593985).CrossRef
15.
go back to reference Kadletz L, Heiduschka G, Domayer J, Schmid R, Enzenhofer E, Thurnher D. Evaluation of spheroid head and neck squamous cell carcinoma cell models in comparison to monolayer cultures. Oncol Lett. 2015;10(3):1281–6 (PubMed PMID: 26622664. Pubmed Central PMCID: 4533713).CrossRef Kadletz L, Heiduschka G, Domayer J, Schmid R, Enzenhofer E, Thurnher D. Evaluation of spheroid head and neck squamous cell carcinoma cell models in comparison to monolayer cultures. Oncol Lett. 2015;10(3):1281–6 (PubMed PMID: 26622664. Pubmed Central PMCID: 4533713).CrossRef
16.
go back to reference Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 2017;108(3):283–9 (PubMed PMID: 28064442. Pubmed Central PMCID: 5378268).CrossRef Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 2017;108(3):283–9 (PubMed PMID: 28064442. Pubmed Central PMCID: 5378268).CrossRef
17.
go back to reference Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. In: Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin CP, et al., editors. Assay Guidance Manual. Bethesda: 2004. (PubMed PMID: 23805433). Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. In: Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin CP, et al., editors. Assay Guidance Manual. Bethesda: 2004. (PubMed PMID: 23805433).
18.
go back to reference Ball CR, Oppel F, Ehrenberg KR, Dubash TD, Dieter SM, Hoffmann CM, Abel U, Herbst F, Koch M, Werner J, Bergmann F, Ishaque N, Schmidt M, von Kalle C, Scholl C, Fröhling S, Brors B, Weichert W, Weitz J, Glimm H. Succession of transiently active tumor-initiating cell clones in human pancreatic cancer xenografts. EMBO Mol Med. 2017;9(7):918-932. (PubMed PMID: 28526679. Pubmed Central PMCID: PMC5494525). Ball CR, Oppel F, Ehrenberg KR, Dubash TD, Dieter SM, Hoffmann CM, Abel U, Herbst F, Koch M, Werner J, Bergmann F, Ishaque N, Schmidt M, von Kalle C, Scholl C, Fröhling S, Brors B, Weichert W, Weitz J, Glimm H. Succession of transiently active tumor-initiating cell clones in human pancreatic cancer xenografts. EMBO Mol Med. 2017;9(7):918-932. (PubMed PMID: 28526679. Pubmed Central PMCID: PMC5494525).
19.
go back to reference Oppel F, Tao T, Shi H, Ross KN, Zimmerman MW, He S, Tong G, Aster JC, Look AT. Loss of atrx cooperates with p53-deficiency to promote the development of sarcomas and other malignancies. PLoS Genet. 2019;15(4):e1008039. (PubMed PMID: 30970016. Pubmed Central PMCID: PMC6476535). Oppel F, Tao T, Shi H, Ross KN, Zimmerman MW, He S, Tong G, Aster JC, Look AT. Loss of atrx cooperates with p53-deficiency to promote the development of sarcomas and other malignancies. PLoS Genet. 2019;15(4):e1008039. (PubMed PMID: 30970016. Pubmed Central PMCID: PMC6476535).
20.
go back to reference Shen YQ, Guerra-Librero A, Fernandez-Gil BI, Florido J, Garcia-Lopez S, Martinez-Ruiz L, et al. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. 2018;64(3). (PubMed PMID: 29247557). Shen YQ, Guerra-Librero A, Fernandez-Gil BI, Florido J, Garcia-Lopez S, Martinez-Ruiz L, et al. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. 2018;64(3). (PubMed PMID: 29247557).
21.
go back to reference Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–32 (PubMed PMID: 26783961. Pubmed Central PMCID: 4905455).CrossRef Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–32 (PubMed PMID: 26783961. Pubmed Central PMCID: 4905455).CrossRef
22.
go back to reference Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385(3):307–13 (PubMed PMID: 19450560).CrossRef Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385(3):307–13 (PubMed PMID: 19450560).CrossRef
23.
go back to reference Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & neck. 2010;32(9):1195–201 (PubMed PMID: 20073073. Pubmed Central PMCID: 2991066).CrossRef Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & neck. 2010;32(9):1195–201 (PubMed PMID: 20073073. Pubmed Central PMCID: 2991066).CrossRef
24.
go back to reference Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel). 2018;10(7):213. (PubMed PMID: 29932446. Pubmed Central PMCID: 6071257). Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel). 2018;10(7):213. (PubMed PMID: 29932446. Pubmed Central PMCID: 6071257).
25.
go back to reference Zhang X, Zhang R, Ren C, Xu Y, Wu S, Meng C, et al. Epstein Barr virus-positive B-cell lymphoma is highly vulnerable to MDM2 inhibitors in vivo. Blood Adv. 2022;6(3):891-901. (PubMed PMID: 34861697). Zhang X, Zhang R, Ren C, Xu Y, Wu S, Meng C, et al. Epstein Barr virus-positive B-cell lymphoma is highly vulnerable to MDM2 inhibitors in vivo. Blood Adv. 2022;6(3):891-901. (PubMed PMID: 34861697).
26.
go back to reference Thérèse Stachyra-Valat, Frédéric Baysang, Anne-Cécile D’Alessandro, Erdmann Dirk, Pascal Furet, Vito Guagnano, Joerg Kallen, Lukas Leder, Robert Mah, Keiichi Masuya, Stefan Stutz, Andrea Vaupel, Francesco Hofmann, Patrick Chène, Sébastien Jeay, Philipp Holzer. NVP-HDM201: Biochemical and biophysical profile of a novel highly potent and selective PPI inhibitor of p53-Mdm2. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA, Philadelphia: AACR; Cancer Res. 2016;76(14 Suppl):Abstract nr 1239. Thérèse Stachyra-Valat, Frédéric Baysang, Anne-Cécile D’Alessandro, Erdmann Dirk, Pascal Furet, Vito Guagnano, Joerg Kallen, Lukas Leder, Robert Mah, Keiichi Masuya, Stefan Stutz, Andrea Vaupel, Francesco Hofmann, Patrick Chène, Sébastien Jeay, Philipp Holzer. NVP-HDM201: Biochemical and biophysical profile of a novel highly potent and selective PPI inhibitor of p53-Mdm2. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA, Philadelphia: AACR; Cancer Res. 2016;76(14 Suppl):Abstract nr 1239.
27.
go back to reference Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89 (PubMed PMID: 15879151).CrossRef Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89 (PubMed PMID: 15879151).CrossRef
28.
go back to reference Sjogren HO, Jonsson N. Cellular immunity to Rous sarcoma in tumor-bearing chickens. Can Res. 1970;30(9):2434–7 (PubMed PMID: 4319907). Sjogren HO, Jonsson N. Cellular immunity to Rous sarcoma in tumor-bearing chickens. Can Res. 1970;30(9):2434–7 (PubMed PMID: 4319907).
29.
go back to reference Wainberg MA, Markson Y, Weiss DW, Doljanski F. Cellular immunity against Rous sarcomas of chickens Preferential reactivity against autochthonous target cells as determined by lymphocyte adherence and cytotoxicity tests in vitro. Proc Natl Acad Sci U S A. 1974;71(9):3565–9 (PubMed PMID: 4139718. Pubmed Central PMCID: 433815).CrossRef Wainberg MA, Markson Y, Weiss DW, Doljanski F. Cellular immunity against Rous sarcomas of chickens Preferential reactivity against autochthonous target cells as determined by lymphocyte adherence and cytotoxicity tests in vitro. Proc Natl Acad Sci U S A. 1974;71(9):3565–9 (PubMed PMID: 4139718. Pubmed Central PMCID: 433815).CrossRef
30.
go back to reference Schneider K, Marbaix E, Bouzin C, Hamoir M, Mahy P, Bol V, et al. Immune cell infiltration in head and neck squamous cell carcinoma and patient outcome: a retrospective study. Acta Oncol. 2018;57(9):1165–72 (PubMed PMID: 29493423).CrossRef Schneider K, Marbaix E, Bouzin C, Hamoir M, Mahy P, Bol V, et al. Immune cell infiltration in head and neck squamous cell carcinoma and patient outcome: a retrospective study. Acta Oncol. 2018;57(9):1165–72 (PubMed PMID: 29493423).CrossRef
31.
go back to reference Marsigliante S, Biscozzo L, Marra A, Nicolardi G, Leo G, Lobreglio GB, et al. Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens. Cancer Lett. 1999;139(1):33–41 (PubMed PMID: 10408906).CrossRef Marsigliante S, Biscozzo L, Marra A, Nicolardi G, Leo G, Lobreglio GB, et al. Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens. Cancer Lett. 1999;139(1):33–41 (PubMed PMID: 10408906).CrossRef
32.
go back to reference Wolf GT, Hudson JL, Peterson KA, Miller HL, McClatchey KD. Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg : official J American Acad Otolaryngol-Head Neck Surg. 1986;95(2):142–52 (PubMed PMID: 2954014).CrossRef Wolf GT, Hudson JL, Peterson KA, Miller HL, McClatchey KD. Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg : official J American Acad Otolaryngol-Head Neck Surg. 1986;95(2):142–52 (PubMed PMID: 2954014).CrossRef
33.
go back to reference Taghavi N, Mohsenifar Z, Baghban AA, Arjomandkhah A. CD20+ Tumor Infiltrating B Lymphocyte in Oral Squamous Cell Carcinoma: Correlation with Clinicopathologic Characteristics and Heat Shock Protein 70 Expression. Patholog Res Int. 2018;2018:4810751 (PubMed PMID: 29850009. Pubmed Central PMCID: 5904773). Taghavi N, Mohsenifar Z, Baghban AA, Arjomandkhah A. CD20+ Tumor Infiltrating B Lymphocyte in Oral Squamous Cell Carcinoma: Correlation with Clinicopathologic Characteristics and Heat Shock Protein 70 Expression. Patholog Res Int. 2018;2018:4810751 (PubMed PMID: 29850009. Pubmed Central PMCID: 5904773).
34.
go back to reference Zhu N, Ding L, Fu Y, Yang Y, Chen S, Chen W, et al. Tumor-infiltrating lymphocyte-derived MLL2 independently predicts disease-free survival for patients with early-stage oral squamous cell carcinoma. J Oral Pathol Med. 2020;49(2):126–36. (PubMed PMID: 31660637). Zhu N, Ding L, Fu Y, Yang Y, Chen S, Chen W, et al. Tumor-infiltrating lymphocyte-derived MLL2 independently predicts disease-free survival for patients with early-stage oral squamous cell carcinoma. J Oral Pathol Med. 2020;49(2):126–36. (PubMed PMID: 31660637).
35.
go back to reference Berghoff AS, Ricken G, Wilhelm D, Rajky O, Widhalm G, Dieckmann K, et al. Tumor infiltrating lymphocytes and PD-L1 expression in brain metastases of small cell lung cancer (SCLC). J Neurooncol. 2016;130(1):19–29 (PubMed PMID: 27436101).CrossRef Berghoff AS, Ricken G, Wilhelm D, Rajky O, Widhalm G, Dieckmann K, et al. Tumor infiltrating lymphocytes and PD-L1 expression in brain metastases of small cell lung cancer (SCLC). J Neurooncol. 2016;130(1):19–29 (PubMed PMID: 27436101).CrossRef
36.
go back to reference Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Can Res. 2008;68(13):5405–13 (PubMed PMID: 18593943).CrossRef Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Can Res. 2008;68(13):5405–13 (PubMed PMID: 18593943).CrossRef
37.
go back to reference Liao Y, Ou J, Deng J, Geng P, Zeng R, Tian Y, et al. Clinical implications of the tumor-infiltrating lymphocyte subsets in colorectal cancer. Med Oncol. 2013;30(4):727 (PubMed PMID: 24026663).CrossRef Liao Y, Ou J, Deng J, Geng P, Zeng R, Tian Y, et al. Clinical implications of the tumor-infiltrating lymphocyte subsets in colorectal cancer. Med Oncol. 2013;30(4):727 (PubMed PMID: 24026663).CrossRef
38.
go back to reference Facompre ND, Sahu V, Montone KT, Harmeyer KM, Nakagawa H, Rustgi AK, et al. Barriers to generating PDX models of HPV-related head and neck cancer. The Laryngoscope. 2017;127(12):2777–83 (PubMed PMID: 28561270. Pubmed Central PMCID: 5687999).CrossRef Facompre ND, Sahu V, Montone KT, Harmeyer KM, Nakagawa H, Rustgi AK, et al. Barriers to generating PDX models of HPV-related head and neck cancer. The Laryngoscope. 2017;127(12):2777–83 (PubMed PMID: 28561270. Pubmed Central PMCID: 5687999).CrossRef
39.
go back to reference Stevanovic S, Helman SR, Wunderlich JR, Langhan MM, Doran SL, Kwong MLM, et al. A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus-associated Epithelial Cancers. Clin Can Res : an official J American Assoc Cancer Res. 2019;25(5):1486–93 (PubMed PMID: 30518633. Pubmed Central PMCID: 6397671).CrossRef Stevanovic S, Helman SR, Wunderlich JR, Langhan MM, Doran SL, Kwong MLM, et al. A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus-associated Epithelial Cancers. Clin Can Res : an official J American Assoc Cancer Res. 2019;25(5):1486–93 (PubMed PMID: 30518633. Pubmed Central PMCID: 6397671).CrossRef
40.
go back to reference Schoof DD, Jung SE, Eberlein TJ. Human tumor-infiltrating lymphocyte (TIL) cytotoxicity facilitated by anti-T-cell receptor antibody. Int J Cancer. 1989;44(2):219–24 (PubMed PMID: 2503456).CrossRef Schoof DD, Jung SE, Eberlein TJ. Human tumor-infiltrating lymphocyte (TIL) cytotoxicity facilitated by anti-T-cell receptor antibody. Int J Cancer. 1989;44(2):219–24 (PubMed PMID: 2503456).CrossRef
41.
go back to reference Zippel D, Friedman-Eldar O, Rayman S, Hazzan D, Nissan A, Schtrechman G, et al. Tissue Harvesting for Adoptive Tumor Infiltrating Lymphocyte Therapy in Metastatic Melanoma. Anticancer Res. 2019;39(9):4995–5001 (PubMed PMID: 31519606).CrossRef Zippel D, Friedman-Eldar O, Rayman S, Hazzan D, Nissan A, Schtrechman G, et al. Tissue Harvesting for Adoptive Tumor Infiltrating Lymphocyte Therapy in Metastatic Melanoma. Anticancer Res. 2019;39(9):4995–5001 (PubMed PMID: 31519606).CrossRef
42.
go back to reference Topalian SL, Muul LM, Solomon D, Rosenberg SA. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods. 1987;102(1):127–41 (PubMed PMID: 3305708).CrossRef Topalian SL, Muul LM, Solomon D, Rosenberg SA. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods. 1987;102(1):127–41 (PubMed PMID: 3305708).CrossRef
43.
go back to reference Balch CM, Riley LB, Bae YJ, Salmeron MA, Platsoucas CD, von Eschenbach A, et al. Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg. 1990;125(2):200–5 (PubMed PMID: 1689143).CrossRef Balch CM, Riley LB, Bae YJ, Salmeron MA, Platsoucas CD, von Eschenbach A, et al. Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg. 1990;125(2):200–5 (PubMed PMID: 1689143).CrossRef
44.
go back to reference Koeck S, Kern J, Zwierzina M, Gamerith G, Lorenz E, Sopper S, et al. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3(+)CD8(+) tumor infiltrating lymphocyte subpopulations. Oncoimmunology. 2017;6(6):e1323617 (PubMed PMID: 28680763. Pubmed Central PMCID: 5486171).CrossRef Koeck S, Kern J, Zwierzina M, Gamerith G, Lorenz E, Sopper S, et al. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3(+)CD8(+) tumor infiltrating lymphocyte subpopulations. Oncoimmunology. 2017;6(6):e1323617 (PubMed PMID: 28680763. Pubmed Central PMCID: 5486171).CrossRef
45.
go back to reference Mella M, Kauppila JH, Karihtala P, Lehenkari P, Jukkola-Vuorinen A, Soini Y, et al. Tumor infiltrating CD8(+) T lymphocyte count is independent of tumor TLR9 status in treatment naive triple negative breast cancer and renal cell carcinoma. Oncoimmunology. 2015;4(6):e1002726 (PubMed PMID: 26155410. Pubmed Central PMCID: 4485740).CrossRef Mella M, Kauppila JH, Karihtala P, Lehenkari P, Jukkola-Vuorinen A, Soini Y, et al. Tumor infiltrating CD8(+) T lymphocyte count is independent of tumor TLR9 status in treatment naive triple negative breast cancer and renal cell carcinoma. Oncoimmunology. 2015;4(6):e1002726 (PubMed PMID: 26155410. Pubmed Central PMCID: 4485740).CrossRef
46.
go back to reference Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Matsutani S, et al. The Prognostic Significance of the Tumor-infiltrating Programmed Cell Death-1(+) to CD8(+) Lymphocyte Ratio in Patients with Colorectal Cancer. Anticancer Res. 2017;37(8):4165–72 (PubMed PMID: 28739701). Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Matsutani S, et al. The Prognostic Significance of the Tumor-infiltrating Programmed Cell Death-1(+) to CD8(+) Lymphocyte Ratio in Patients with Colorectal Cancer. Anticancer Res. 2017;37(8):4165–72 (PubMed PMID: 28739701).
47.
go back to reference Kadota K, Nitadori JI, Ujiie H, Buitrago DH, Woo KM, Sima CS, et al. Prognostic Impact of Immune Microenvironment in Lung Squamous Cell Carcinoma: Tumor-Infiltrating CD10+ Neutrophil/CD20+ Lymphocyte Ratio as an Independent Prognostic Factor. J Thorac Oncol : Official Pub Int Assoc Study Lung Cancer. 2015;10(9):1301–10 (Pubmed Central PMCID: 4545576).CrossRef Kadota K, Nitadori JI, Ujiie H, Buitrago DH, Woo KM, Sima CS, et al. Prognostic Impact of Immune Microenvironment in Lung Squamous Cell Carcinoma: Tumor-Infiltrating CD10+ Neutrophil/CD20+ Lymphocyte Ratio as an Independent Prognostic Factor. J Thorac Oncol : Official Pub Int Assoc Study Lung Cancer. 2015;10(9):1301–10 (Pubmed Central PMCID: 4545576).CrossRef
48.
go back to reference VaziriFard E, Ali Y, Wang XI, Saluja K, HC M, Wang L, et al. Tumor-Infiltrating Lymphocyte Volume Is a Better Predictor of Disease-Free Survival Than Stromal Tumor-Infiltrating Lymphocytes in Invasive Breast Carcinoma. American J Clin Pathol. 2019;152(5):656–65 (PubMed PMID: 31305879).CrossRef VaziriFard E, Ali Y, Wang XI, Saluja K, HC M, Wang L, et al. Tumor-Infiltrating Lymphocyte Volume Is a Better Predictor of Disease-Free Survival Than Stromal Tumor-Infiltrating Lymphocytes in Invasive Breast Carcinoma. American J Clin Pathol. 2019;152(5):656–65 (PubMed PMID: 31305879).CrossRef
49.
go back to reference Robbins PF. Tumor-Infiltrating Lymphocyte Therapy and Neoantigens. Cancer J. 2017;23(2):138–43 (PubMed PMID: 28410302).CrossRef Robbins PF. Tumor-Infiltrating Lymphocyte Therapy and Neoantigens. Cancer J. 2017;23(2):138–43 (PubMed PMID: 28410302).CrossRef
50.
go back to reference Garber K. Pursuit of tumor-infiltrating lymphocyte immunotherapy speeds up. Nat Biotechnol. 2019;37(9):969–71 (PubMed PMID: 31485043).CrossRef Garber K. Pursuit of tumor-infiltrating lymphocyte immunotherapy speeds up. Nat Biotechnol. 2019;37(9):969–71 (PubMed PMID: 31485043).CrossRef
51.
go back to reference Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185(9):4977–82 (PubMed PMID: 20962266).CrossRef Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185(9):4977–82 (PubMed PMID: 20962266).CrossRef
52.
go back to reference Zhao X, Kallakury B, Chahine JJ, Hartmann D, Zhang Y, Chen Y, et al. Surgical Resection of SCLC: Prognostic Factors and the Tumor Microenvironment. J Thorac Oncol : official publication of the International Association for the Study of Lung Cancer. 2019;14(5):914–23.CrossRef Zhao X, Kallakury B, Chahine JJ, Hartmann D, Zhang Y, Chen Y, et al. Surgical Resection of SCLC: Prognostic Factors and the Tumor Microenvironment. J Thorac Oncol : official publication of the International Association for the Study of Lung Cancer. 2019;14(5):914–23.CrossRef
53.
go back to reference Vadasz Z, Toubi E. FoxP3 Expression in Macrophages, Cancer, and B Cells-Is It Real? Clin Rev Allergy Immunol. 2017;52(3):364–72 (PubMed PMID: 27339600).CrossRef Vadasz Z, Toubi E. FoxP3 Expression in Macrophages, Cancer, and B Cells-Is It Real? Clin Rev Allergy Immunol. 2017;52(3):364–72 (PubMed PMID: 27339600).CrossRef
54.
go back to reference Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, et al. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood. 1998;92(4):1374–83 (PubMed PMID: 9694726).CrossRef Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, et al. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood. 1998;92(4):1374–83 (PubMed PMID: 9694726).CrossRef
55.
go back to reference Rezk SA, Zhao X, Weiss LM. Epstein-Barr virus (EBV)-associated lymphoid proliferations, a 2018 update. Hum Pathol. 2018;79:18–41 (PubMed PMID: 29885408).CrossRef Rezk SA, Zhao X, Weiss LM. Epstein-Barr virus (EBV)-associated lymphoid proliferations, a 2018 update. Hum Pathol. 2018;79:18–41 (PubMed PMID: 29885408).CrossRef
56.
go back to reference Kim HJ, Ko YH, Kim JE, Lee SS, Lee H, Park G, et al. Epstein-Barr Virus-Associated Lymphoproliferative Disorders: Review and Update on 2016 WHO Classification. J Pathol Transl Med. 2017;51(4):352–8 (PubMed PMID: 28592786. Pubmed Central PMCID: 5525035).CrossRef Kim HJ, Ko YH, Kim JE, Lee SS, Lee H, Park G, et al. Epstein-Barr Virus-Associated Lymphoproliferative Disorders: Review and Update on 2016 WHO Classification. J Pathol Transl Med. 2017;51(4):352–8 (PubMed PMID: 28592786. Pubmed Central PMCID: 5525035).CrossRef
57.
go back to reference Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol. 2016;7:1602 (PubMed PMID: 27826287. Pubmed Central PMCID: 5078142).CrossRef Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol. 2016;7:1602 (PubMed PMID: 27826287. Pubmed Central PMCID: 5078142).CrossRef
58.
go back to reference Yu F, Lu Y, Tao L, Jiang YY, Lin DC, Wang L, et al. Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions. Sci Rep. 2017;7(1):17359 (PubMed PMID: 29234119).CrossRef Yu F, Lu Y, Tao L, Jiang YY, Lin DC, Wang L, et al. Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions. Sci Rep. 2017;7(1):17359 (PubMed PMID: 29234119).CrossRef
59.
go back to reference Lilja-Fischer JK, Ulhoi BP, Alsner J, Stougaard M, Thomsen MS, Busk M, et al. Characterization and radiosensitivity of HPV-related oropharyngeal squamous cell carcinoma patient-derived xenografts. Acta Oncol. 2019;58(10):1489–94 (PubMed PMID: 31510843).CrossRef Lilja-Fischer JK, Ulhoi BP, Alsner J, Stougaard M, Thomsen MS, Busk M, et al. Characterization and radiosensitivity of HPV-related oropharyngeal squamous cell carcinoma patient-derived xenografts. Acta Oncol. 2019;58(10):1489–94 (PubMed PMID: 31510843).CrossRef
Metadata
Title
Primary head and neck cancer cell cultures are susceptible to proliferation of Epstein-Barr virus infected lymphocytes
Authors
Senyao Shao
Lars Uwe Scholtz
Sarah Gendreizig
Laura Martínez-Ruiz
Javier Florido
Germaine Escames
Matthias Schürmann
Carsten Hain
Leonie Hose
Almut Mentz
Pascal Schmidt
Menghang Wang
Peter Goon
Michael Wehmeier
Frank Brasch
Jörn Kalinowski
Felix Oppel
Holger Sudhoff
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-022-10481-y

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine