Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Pityriasis Lichenoides Chronica | Hypothesis

Molecular evidence reveals thyrotropin intervention enhances the risk of developing radioiodine-refractory differentiated thyroid carcinoma

Authors: Hilda Samimi, Vahid Haghpanah

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Radioiodine (RAI) is the mainstay of treatment for differentiated thyroid carcinoma (DTC) following total thyroidectomy. Nevertheless, about 5% of patients with DTC are RAI-refractory (RAI-R). Understanding the molecular mechanisms associated with DTC during progression towards RAI-R DTC, including thyroid-stimulating hormone levels, may help to explain the pathophysiology of challenging RAI-R DTC clinical cases.

Graphical Abstract

Literature
1.
go back to reference Jung CK, Little MP, Lubin JH, Brenner AV, Wells SA, Sigurdson AJ, et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab. 2014;99(2):E276–85.CrossRef Jung CK, Little MP, Lubin JH, Brenner AV, Wells SA, Sigurdson AJ, et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab. 2014;99(2):E276–85.CrossRef
2.
go back to reference Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K, et al. European Thyroid Association Guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J. 2019;8(5):227–45.CrossRef Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K, et al. European Thyroid Association Guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J. 2019;8(5):227–45.CrossRef
3.
go back to reference Wang LY, Smith AW, Palmer FL, Tuttle RM, Mahrous A, Nixon IJ, et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low-and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid. 2015;25(3):300–7.CrossRef Wang LY, Smith AW, Palmer FL, Tuttle RM, Mahrous A, Nixon IJ, et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low-and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid. 2015;25(3):300–7.CrossRef
4.
go back to reference Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli J, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.CrossRef Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli J, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.CrossRef
5.
go back to reference Huang H, Shi Y, Liang B, Cai H, Cai Q. Iodinated TG in thyroid follicles regulate TSH/TSHR signaling for NIS expression. Biol Trace Elem Res. 2017;180(2):206–13.CrossRef Huang H, Shi Y, Liang B, Cai H, Cai Q. Iodinated TG in thyroid follicles regulate TSH/TSHR signaling for NIS expression. Biol Trace Elem Res. 2017;180(2):206–13.CrossRef
6.
go back to reference Huang H, Shi Y, Liang B, Cai H, Cai Q. Iodinated TG in thyroid follicular lumen regulates TTF-1 and PAX8 expression via TSH/TSHR signaling pathway. J Cell Biochem. 2017;118(10):3444–51.CrossRef Huang H, Shi Y, Liang B, Cai H, Cai Q. Iodinated TG in thyroid follicular lumen regulates TTF-1 and PAX8 expression via TSH/TSHR signaling pathway. J Cell Biochem. 2017;118(10):3444–51.CrossRef
7.
go back to reference García-Jiménez C, Santisteban P. TSH signalling and cancer. Arq Bras Endocrinol Metabol. 2007;51(5):654–71.CrossRef García-Jiménez C, Santisteban P. TSH signalling and cancer. Arq Bras Endocrinol Metabol. 2007;51(5):654–71.CrossRef
8.
go back to reference Suzuki K, Lavaroni S, Mori A, Ohta M, Saito J, Pietrarelli M, et al. Autoregulation of thyroid-specific gene transcription by thyroglobulin. Proc Natl Acad Sci USA. 1998;95(14):8251–6.CrossRef Suzuki K, Lavaroni S, Mori A, Ohta M, Saito J, Pietrarelli M, et al. Autoregulation of thyroid-specific gene transcription by thyroglobulin. Proc Natl Acad Sci USA. 1998;95(14):8251–6.CrossRef
9.
go back to reference Akamizu T, Ikuyama S, Saji M, Kosugi S, Kozak C, McBride OW, et al. Cloning, chromosomal assignment, and regulation of the rat thyrotropin receptor: expression of the gene is regulated by thyrotropin, agents that increase cAMP levels, and thyroid autoantibodies. Proc Natl Acad Sci USA. 1990;87(15):5677–81.CrossRef Akamizu T, Ikuyama S, Saji M, Kosugi S, Kozak C, McBride OW, et al. Cloning, chromosomal assignment, and regulation of the rat thyrotropin receptor: expression of the gene is regulated by thyrotropin, agents that increase cAMP levels, and thyroid autoantibodies. Proc Natl Acad Sci USA. 1990;87(15):5677–81.CrossRef
10.
go back to reference Rivas M, Santisteban P. TSH-activated signaling pathways in thyroid tumorigenesis. Mol Cell Endocrinol. 2003;213(1):31–45.CrossRef Rivas M, Santisteban P. TSH-activated signaling pathways in thyroid tumorigenesis. Mol Cell Endocrinol. 2003;213(1):31–45.CrossRef
11.
go back to reference Yanagita Y, Okajima F, Sho K, Nagamachi Y, Kondo Y. An adenosine derivative cooperates with TSH and Graves’ IgG to induce Ca2+ mobilization in single human thyroid cells. Mol Cell Endocrinol. 1996;118(1–2):47–56.CrossRef Yanagita Y, Okajima F, Sho K, Nagamachi Y, Kondo Y. An adenosine derivative cooperates with TSH and Graves’ IgG to induce Ca2+ mobilization in single human thyroid cells. Mol Cell Endocrinol. 1996;118(1–2):47–56.CrossRef
12.
go back to reference Laurent E, Mockel J, Van Sande J, Graff I, Dumont JE. Dual activation by thyrotropin of the phospholipase C and cyclic AMP cascades in human thyroid. Mol Cell Endocrinol. 1987;52(3):273–8.CrossRef Laurent E, Mockel J, Van Sande J, Graff I, Dumont JE. Dual activation by thyrotropin of the phospholipase C and cyclic AMP cascades in human thyroid. Mol Cell Endocrinol. 1987;52(3):273–8.CrossRef
13.
go back to reference D’Arcangelo D, Silletta MG, Di Francesco AL, Bonfitto N, Di Cerbo A, Falasca M, et al. Physiological concentrations of thyrotropin increase cytosolic calcium levels in primary cultures of human thyroid cells. J Clin Endocrinol Metab. 1995;80(4):1136–43.PubMed D’Arcangelo D, Silletta MG, Di Francesco AL, Bonfitto N, Di Cerbo A, Falasca M, et al. Physiological concentrations of thyrotropin increase cytosolic calcium levels in primary cultures of human thyroid cells. J Clin Endocrinol Metab. 1995;80(4):1136–43.PubMed
14.
go back to reference Roger PP, Reuse S, Servais P, Van Heuverswyn B, Dumont JE. Stimulation of cell proliferation and inhibition of differentiation expression by tumor-promoting phorbol esters in dog thyroid cells in primary culture. Cancer Res. 1986;46(2):898–906.PubMed Roger PP, Reuse S, Servais P, Van Heuverswyn B, Dumont JE. Stimulation of cell proliferation and inhibition of differentiation expression by tumor-promoting phorbol esters in dog thyroid cells in primary culture. Cancer Res. 1986;46(2):898–906.PubMed
15.
go back to reference Tuncel M. Thyroid stimulating hormone receptor. Mol Imaging Radionucl Ther. 2017;26(Suppl 1):87.CrossRef Tuncel M. Thyroid stimulating hormone receptor. Mol Imaging Radionucl Ther. 2017;26(Suppl 1):87.CrossRef
16.
go back to reference Melmed S, Koenig R, Rosen C, Auchus R, Goldfine A. Williams Textbook of Endocrinology E-Book. 14th ed. Edinburgh: Elsevier Health Sciences; 2019. Melmed S, Koenig R, Rosen C, Auchus R, Goldfine A. Williams Textbook of Endocrinology E-Book. 14th ed. Edinburgh: Elsevier Health Sciences; 2019.
17.
go back to reference Kogai T, Taki K, Brent G. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer. 2006;13(3):797–826.CrossRef Kogai T, Taki K, Brent G. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer. 2006;13(3):797–826.CrossRef
18.
go back to reference Kopp P. Human genome and diseases: review the TSH receptor and its role in thyroid disease. Cell Mol Life Sci. 2001;58(9):1301–22.CrossRef Kopp P. Human genome and diseases: review the TSH receptor and its role in thyroid disease. Cell Mol Life Sci. 2001;58(9):1301–22.CrossRef
19.
go back to reference Xiao J, Yun C, Cao J, Ding S, Shao C, Wang L, et al. A pre-ablative thyroid-stimulating hormone with 30–70 mIU/L achieves better response to initial radioiodine remnant ablation in differentiated thyroid carcinoma patients. Sci Rep. 2021;11(1):1348.CrossRef Xiao J, Yun C, Cao J, Ding S, Shao C, Wang L, et al. A pre-ablative thyroid-stimulating hormone with 30–70 mIU/L achieves better response to initial radioiodine remnant ablation in differentiated thyroid carcinoma patients. Sci Rep. 2021;11(1):1348.CrossRef
20.
go back to reference Citterio CE, Targovnik HM, Arvan P. The role of thyroglobulin in thyroid hormonogenesis. Nat Rev Endocrinol. 2019;15(6):323–38.CrossRef Citterio CE, Targovnik HM, Arvan P. The role of thyroglobulin in thyroid hormonogenesis. Nat Rev Endocrinol. 2019;15(6):323–38.CrossRef
21.
go back to reference Druetta L, Bornet H, Sassolas G, Rousset B. Identification of thyroid hormone residues on serum thyroglobulin: a clue to the source of circulating thyroglobulin in thyroid diseases. Eur J Endocrinol. 1999;140(5):457–67.CrossRef Druetta L, Bornet H, Sassolas G, Rousset B. Identification of thyroid hormone residues on serum thyroglobulin: a clue to the source of circulating thyroglobulin in thyroid diseases. Eur J Endocrinol. 1999;140(5):457–67.CrossRef
22.
go back to reference Brix K, Herzog V. Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages. J Clin Invest. 1994;93(4):1388–96.CrossRef Brix K, Herzog V. Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages. J Clin Invest. 1994;93(4):1388–96.CrossRef
23.
go back to reference Brix K, Wirtz R, Herzog V. Paracrine interaction between hepatocytes and macrophages after extrathyroidal proteolysis of thyroglobulin. Hepatology. 1997;26(5):1232–40.PubMed Brix K, Wirtz R, Herzog V. Paracrine interaction between hepatocytes and macrophages after extrathyroidal proteolysis of thyroglobulin. Hepatology. 1997;26(5):1232–40.PubMed
24.
go back to reference Suzuki K, Mori A, Saito J, Moriyama E, Ullianich L, Kohn LD. Follicular thyroglobulin suppresses iodide uptake by suppressing expression of the sodium/iodide symporter gene. Endocrinology. 1999;140(11):5422–30.CrossRef Suzuki K, Mori A, Saito J, Moriyama E, Ullianich L, Kohn LD. Follicular thyroglobulin suppresses iodide uptake by suppressing expression of the sodium/iodide symporter gene. Endocrinology. 1999;140(11):5422–30.CrossRef
25.
go back to reference Liu J, Liu R, Shen X, Zhu G, Li B, Xing M. The genetic duet of BRAF V600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer. J Nucl Med. 2020;61(2):177–82.CrossRef Liu J, Liu R, Shen X, Zhu G, Li B, Xing M. The genetic duet of BRAF V600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer. J Nucl Med. 2020;61(2):177–82.CrossRef
Metadata
Title
Molecular evidence reveals thyrotropin intervention enhances the risk of developing radioiodine-refractory differentiated thyroid carcinoma
Authors
Hilda Samimi
Vahid Haghpanah
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02484-3

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine