Skip to main content
Top
Published in: BMC Immunology 1/2012

Open Access 01-12-2012 | Research article

Glia maturation factor gamma regulates the migration and adherence of human T lymphocytes

Authors: Dustin ND Lippert, John A Wilkins

Published in: BMC Immunology | Issue 1/2012

Login to get access

Abstract

Background

Lymphocyte migration and chemotaxis are essential for effective immune surveillance. A critical aspect of migration is cell polarization and the extension of pseudopodia in the direction of movement. However, our knowledge of the underlying molecular mechanisms responsible for these events is incomplete. Proteomic analysis of the isolated leading edges of CXCL12 stimulated human T cell lines was used to identify glia maturation factor gamma (GMFG) as a component of the pseudopodia. This protein is predominantly expressed in hematopoietic cells and it has been shown to regulate cytoskeletal branching. The present studies were undertaken to examine the role of GMFG in lymphocyte migration.

Results

Microscopic analysis of migrating T-cells demonstrated that GMFG was distributed along the axis of movement with enrichment in the leading edge and behind the nucleus of these cells. Inhibition of GMFG expression in T cell lines and IL-2 dependent human peripheral blood T cells with shRNAmir reduced cellular basal and chemokine induced migration responses. The failure of the cells with reduced GMFG to migrate was associated with an apparent inability to detach from the substrates that they were moving on. It was also noted that these cells had an increased adherence to extracellular matrix proteins such as fibronectin. These changes in adherence were associated with altered patterns of β1 integrin expression and increased levels of activated integrins as detected with the activation specific antibody HUTS4. GMFG loss was also shown to increase the expression of the β2 integrin LFA-1 and to increase the adhesion of these cells to ICAM-1.

Conclusions

The present studies demonstrate that GMFG is a component of human T cell pseudopodia required for migration. The reduction in migration and increased adherence properties associated with inhibition of GMFG expression suggest that GMFG activity influences the regulation of integrin mediated adhesion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Krummel MF, Macara I: Maintenance and modulation of T cell polarity. Nat Immunol. 2006, 7: 1143-1149. 10.1038/ni1404.PubMedCrossRef Krummel MF, Macara I: Maintenance and modulation of T cell polarity. Nat Immunol. 2006, 7: 1143-1149. 10.1038/ni1404.PubMedCrossRef
2.
go back to reference Ward SG, Marelli-Berg FM: Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation. Biochem J. 2009, 418: 13-27. 10.1042/BJ20081969.PubMedCrossRef Ward SG, Marelli-Berg FM: Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation. Biochem J. 2009, 418: 13-27. 10.1042/BJ20081969.PubMedCrossRef
3.
go back to reference Morin NA, Oakes PW, Hyun YM, Lee D, Chin YE, King MR, Springer TA, Shimaoka M, Tang JX, Reichner JS: Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J Exp Med. 2008, 205: 195-205. 10.1084/jem.20071543.PubMedPubMedCentralCrossRef Morin NA, Oakes PW, Hyun YM, Lee D, Chin YE, King MR, Springer TA, Shimaoka M, Tang JX, Reichner JS: Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J Exp Med. 2008, 205: 195-205. 10.1084/jem.20071543.PubMedPubMedCentralCrossRef
4.
go back to reference Semmrich M, Smith A, Feterowski C, Beer S, Engelhardt B, Busch DH, Bartsch B, Laschinger M, Hogg N, Pfeffer K: Importance of integrin LFA-1 deactivation for the generation of immune responses. J Exp Med. 2005, 201: 1987-1998. 10.1084/jem.20041850.PubMedPubMedCentralCrossRef Semmrich M, Smith A, Feterowski C, Beer S, Engelhardt B, Busch DH, Bartsch B, Laschinger M, Hogg N, Pfeffer K: Importance of integrin LFA-1 deactivation for the generation of immune responses. J Exp Med. 2005, 201: 1987-1998. 10.1084/jem.20041850.PubMedPubMedCentralCrossRef
5.
go back to reference Aerbajinai W, Liu L, Chin K, Zhu J, Parent CA, Rodgers GP: Glia maturation factor-gamma mediates neutrophil chemotaxis. J Leukoc Biol. 2011, 90: 529-538. 10.1189/jlb.0710424.PubMedPubMedCentralCrossRef Aerbajinai W, Liu L, Chin K, Zhu J, Parent CA, Rodgers GP: Glia maturation factor-gamma mediates neutrophil chemotaxis. J Leukoc Biol. 2011, 90: 529-538. 10.1189/jlb.0710424.PubMedPubMedCentralCrossRef
6.
go back to reference Peters N, Smith JS, Tachibana I, Lee HK, Pohl U, Portier BP, Louis DN, Jenkins RB: The human glia maturation factor-gamma gene: genomic structure and mutation analysis in gliomas with chromosome 19q loss. Neurogenetics. 1999, 2: 163-166. 10.1007/s100480050077.PubMedCrossRef Peters N, Smith JS, Tachibana I, Lee HK, Pohl U, Portier BP, Louis DN, Jenkins RB: The human glia maturation factor-gamma gene: genomic structure and mutation analysis in gliomas with chromosome 19q loss. Neurogenetics. 1999, 2: 163-166. 10.1007/s100480050077.PubMedCrossRef
7.
go back to reference Ikeda K, Kundu RK, Ikeda S, Kobara M, Matsubara H, Quertermous T: Glia maturation factor-gamma is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. Circ Res. 2006, 99: 424-433. 10.1161/01.RES.0000237662.23539.0b.PubMedCrossRef Ikeda K, Kundu RK, Ikeda S, Kobara M, Matsubara H, Quertermous T: Glia maturation factor-gamma is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. Circ Res. 2006, 99: 424-433. 10.1161/01.RES.0000237662.23539.0b.PubMedCrossRef
8.
go back to reference Inagaki M, Aoyama M, Sobue K, Yamamoto N, Morishima T, Moriyama A, Katsuya H, Asai K: Sensitive immunoassays for human and rat GMFB and GMFG, tissue distribution and age-related changes. Biochim Biophys Acta. 2004, 1670: 208-216. 10.1016/j.bbagen.2003.12.006.PubMedCrossRef Inagaki M, Aoyama M, Sobue K, Yamamoto N, Morishima T, Moriyama A, Katsuya H, Asai K: Sensitive immunoassays for human and rat GMFB and GMFG, tissue distribution and age-related changes. Biochim Biophys Acta. 2004, 1670: 208-216. 10.1016/j.bbagen.2003.12.006.PubMedCrossRef
9.
go back to reference Gandhi M, Smith BA, Bovellan M, Paavilainen V, Daugherty-Clarke K, Gelles J, Lappalainen P, Goode BL: GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr Biol. 2010, 20: 861-867. 10.1016/j.cub.2010.03.026.PubMedPubMedCentralCrossRef Gandhi M, Smith BA, Bovellan M, Paavilainen V, Daugherty-Clarke K, Gelles J, Lappalainen P, Goode BL: GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr Biol. 2010, 20: 861-867. 10.1016/j.cub.2010.03.026.PubMedPubMedCentralCrossRef
10.
go back to reference Nakano K, Kuwayama H, Kawasaki M, Numata O, Takaine M: GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Cytoskeleton (Hoboken). 2010, 67: 373-382. Nakano K, Kuwayama H, Kawasaki M, Numata O, Takaine M: GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Cytoskeleton (Hoboken). 2010, 67: 373-382.
11.
go back to reference Buck CA, Horwitz AF: Integrin, a transmembrane glycoprotein complex mediating cell-substratum adhesion. J Cell Sci Suppl. 1987, 8: 231-250.PubMedCrossRef Buck CA, Horwitz AF: Integrin, a transmembrane glycoprotein complex mediating cell-substratum adhesion. J Cell Sci Suppl. 1987, 8: 231-250.PubMedCrossRef
12.
go back to reference Cardarelli PM, Pierschbacher MD: Identification of fibronectin receptors on T lymphocytes. J Cell Biol. 1987, 105: 499-506. 10.1083/jcb.105.1.499.PubMedCrossRef Cardarelli PM, Pierschbacher MD: Identification of fibronectin receptors on T lymphocytes. J Cell Biol. 1987, 105: 499-506. 10.1083/jcb.105.1.499.PubMedCrossRef
13.
go back to reference Pierschbacher MD, Ruoslahti E: Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984, 309: 30-33. 10.1038/309030a0.PubMedCrossRef Pierschbacher MD, Ruoslahti E: Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984, 309: 30-33. 10.1038/309030a0.PubMedCrossRef
14.
go back to reference Luo BH, Carman CV, Springer TA: Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007, 25: 619-647. 10.1146/annurev.immunol.25.022106.141618.PubMedPubMedCentralCrossRef Luo BH, Carman CV, Springer TA: Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007, 25: 619-647. 10.1146/annurev.immunol.25.022106.141618.PubMedPubMedCentralCrossRef
15.
go back to reference Garcia AJ, Takagi J, Boettiger D: Two-stage activation for alpha5beta1 integrin binding to surface-adsorbed fibronectin. J Biol Chem. 1998, 273: 34710-34715. 10.1074/jbc.273.52.34710.PubMedCrossRef Garcia AJ, Takagi J, Boettiger D: Two-stage activation for alpha5beta1 integrin binding to surface-adsorbed fibronectin. J Biol Chem. 1998, 273: 34710-34715. 10.1074/jbc.273.52.34710.PubMedCrossRef
16.
go back to reference Luque A, Gomez M, Puzon W, Takada Y, Sanchez-Madrid F, Cabanas C: Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J Biol Chem. 1996, 271: 11067-11075. 10.1074/jbc.271.19.11067.PubMedCrossRef Luque A, Gomez M, Puzon W, Takada Y, Sanchez-Madrid F, Cabanas C: Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J Biol Chem. 1996, 271: 11067-11075. 10.1074/jbc.271.19.11067.PubMedCrossRef
17.
go back to reference Delorme-Walker VD, Peterson JR, Chernoff J, Waterman CM, Danuser G, DerMardirossian C, Bokoch GM: Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. J Cell Biol. 2011, 193: 1289-1303. 10.1083/jcb.201010059.PubMedPubMedCentralCrossRef Delorme-Walker VD, Peterson JR, Chernoff J, Waterman CM, Danuser G, DerMardirossian C, Bokoch GM: Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. J Cell Biol. 2011, 193: 1289-1303. 10.1083/jcb.201010059.PubMedPubMedCentralCrossRef
18.
go back to reference Askari JA, Tynan CJ, Webb SE, Martin-Fernandez ML, Ballestrem C, Humphries MJ: Focal adhesions are sites of integrin extension. J Cell Biol. 2010, 188: 891-903. 10.1083/jcb.200907174.PubMedPubMedCentralCrossRef Askari JA, Tynan CJ, Webb SE, Martin-Fernandez ML, Ballestrem C, Humphries MJ: Focal adhesions are sites of integrin extension. J Cell Biol. 2010, 188: 891-903. 10.1083/jcb.200907174.PubMedPubMedCentralCrossRef
19.
go back to reference Friedland JC, Lee MH, Boettiger D: Mechanically activated integrin switch controls alpha5beta1 function. Science. 2009, 323: 642-644. 10.1126/science.1168441.PubMedCrossRef Friedland JC, Lee MH, Boettiger D: Mechanically activated integrin switch controls alpha5beta1 function. Science. 2009, 323: 642-644. 10.1126/science.1168441.PubMedCrossRef
20.
go back to reference Wang Y, Ding SJ, Wang W, Yang F, Jacobs JM, Camp D, Smith RD, Klemke RL: Methods for pseudopodia purification and proteomic analysis. Sci STKE. 2007, 2007: pl4-10.1126/stke.4002007pl4.PubMed Wang Y, Ding SJ, Wang W, Yang F, Jacobs JM, Camp D, Smith RD, Klemke RL: Methods for pseudopodia purification and proteomic analysis. Sci STKE. 2007, 2007: pl4-10.1126/stke.4002007pl4.PubMed
Metadata
Title
Glia maturation factor gamma regulates the migration and adherence of human T lymphocytes
Authors
Dustin ND Lippert
John A Wilkins
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2012
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-13-21

Other articles of this Issue 1/2012

BMC Immunology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.