Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Glaucoma | Research

Pathological high intraocular pressure induces glial cell reactive proliferation contributing to neuroinflammation of the blood-retinal barrier via the NOX2/ET-1 axis-controlled ERK1/2 pathway

Authors: Xin Shi, Panpan Li, Marc Herb, Hanhan Liu, Maoren Wang, Xiaosha Wang, Yuan Feng, Tim van Beers, Ning Xia, Huige Li, Verena Prokosch

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat.

Methods

Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 −/− mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study.

Results

We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst.

Conclusions

Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tham Y-C, et al. Global prevalence of Glaucoma and projections of Glaucoma Burden through 2040: a systematic review and Meta-analysis. Ophthalmology. 2014;121(11):2081–90.PubMedCrossRef Tham Y-C, et al. Global prevalence of Glaucoma and projections of Glaucoma Burden through 2040: a systematic review and Meta-analysis. Ophthalmology. 2014;121(11):2081–90.PubMedCrossRef
4.
go back to reference Faraci FM. Reactive oxygen species: influence on cerebral vascular tone J Appl Physiol (1985). 2006;100(2):739 – 43. Faraci FM. Reactive oxygen species: influence on cerebral vascular tone J Appl Physiol (1985). 2006;100(2):739 – 43.
5.
go back to reference Himori N, et al. The association between systemic oxidative stress and ocular blood flow in patients with normal-tension glaucoma. Graefe’s Archive Clin Experimental Ophthalmol. 2016;254(2):333–41.CrossRef Himori N, et al. The association between systemic oxidative stress and ocular blood flow in patients with normal-tension glaucoma. Graefe’s Archive Clin Experimental Ophthalmol. 2016;254(2):333–41.CrossRef
6.
go back to reference Ju WK, et al. Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci. 2007;48(5):2145–51.PubMedCrossRef Ju WK, et al. Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci. 2007;48(5):2145–51.PubMedCrossRef
7.
go back to reference Hernandez MR, et al. Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia. 2002;38(1):45–64.PubMedCrossRef Hernandez MR, et al. Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia. 2002;38(1):45–64.PubMedCrossRef
8.
go back to reference Agapova OA, Kaufman PL, Hernandez MR. Androgen receptor and NFkB expression in human normal and glaucomatous optic nerve head astrocytes in vitro and in experimental glaucoma. Exp Eye Res. 2006;82(6):1053–9.PubMedCrossRef Agapova OA, Kaufman PL, Hernandez MR. Androgen receptor and NFkB expression in human normal and glaucomatous optic nerve head astrocytes in vitro and in experimental glaucoma. Exp Eye Res. 2006;82(6):1053–9.PubMedCrossRef
9.
go back to reference Ruan Y, et al. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies. Antioxidants (Basel); 2020;9:8. Ruan Y, et al. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies. Antioxidants (Basel); 2020;9:8.
10.
go back to reference Göllner M, et al. NOX2ko mice show largely increased expression of a mutated NOX2 mRNA encoding an inactive NOX2 protein. Antioxidants. 2020;9(11):1043.PubMedPubMedCentralCrossRef Göllner M, et al. NOX2ko mice show largely increased expression of a mutated NOX2 mRNA encoding an inactive NOX2 protein. Antioxidants. 2020;9(11):1043.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Lassegue B, Clempus RE. Vascular NAD (P) H oxidases: specific features, expression, and regulation. Am J Physiology-Regulatory Integr Comp Physiol. 2003;285(2):R277–97.CrossRef Lassegue B, Clempus RE. Vascular NAD (P) H oxidases: specific features, expression, and regulation. Am J Physiology-Regulatory Integr Comp Physiol. 2003;285(2):R277–97.CrossRef
14.
go back to reference Henry E, et al. Peripheral endothelial dysfunction in normal pressure Glaucoma. Investig Ophthalmol Vis Sci. 1999;40(8):1710–4. Henry E, et al. Peripheral endothelial dysfunction in normal pressure Glaucoma. Investig Ophthalmol Vis Sci. 1999;40(8):1710–4.
15.
go back to reference Sugiyama T, et al. Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol. 1995;39:S49–56.PubMedCrossRef Sugiyama T, et al. Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol. 1995;39:S49–56.PubMedCrossRef
16.
go back to reference Kaiser HJ, et al. Endothelin-1 plasma levels in normal-tension glaucoma: abnormal response to postural changes. Graefe’s Archive Clin Experimental Ophthalmol. 1995;233(8):484–8.CrossRef Kaiser HJ, et al. Endothelin-1 plasma levels in normal-tension glaucoma: abnormal response to postural changes. Graefe’s Archive Clin Experimental Ophthalmol. 1995;233(8):484–8.CrossRef
17.
go back to reference Noske W, Hensen J, Wiederholt M. Endothelin-like immunoreactivity in aqueous humor of patients with primary open-angle glaucoma and cataract. Graefe’s Archive Clin Experimental Ophthalmol. 1997;235(9):551–2.CrossRef Noske W, Hensen J, Wiederholt M. Endothelin-like immunoreactivity in aqueous humor of patients with primary open-angle glaucoma and cataract. Graefe’s Archive Clin Experimental Ophthalmol. 1997;235(9):551–2.CrossRef
18.
go back to reference Wilkinson-Berka JL, et al. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circul Res. 2009;104(1):124–33.CrossRef Wilkinson-Berka JL, et al. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circul Res. 2009;104(1):124–33.CrossRef
19.
go back to reference Gericke A et al. Elevated intraocular pressure causes abnormal reactivity of mouse retinal arterioles Oxidative medicine and cellular longevity, 2019. 2019. Gericke A et al. Elevated intraocular pressure causes abnormal reactivity of mouse retinal arterioles Oxidative medicine and cellular longevity, 2019. 2019.
21.
go back to reference Urner S, et al. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. Antioxid Redox Signal. 2020;33(6):415–34.PubMedCrossRef Urner S, et al. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications. Antioxid Redox Signal. 2020;33(6):415–34.PubMedCrossRef
22.
go back to reference Yokota H, et al. Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Investig Ophthalmol Vis Sci. 2011;52(11):8123–31.CrossRef Yokota H, et al. Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Investig Ophthalmol Vis Sci. 2011;52(11):8123–31.CrossRef
23.
go back to reference Ruiz-Ederra J, Verkman AS. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Exp Eye Res. 2006;82(5):879–84.PubMedCrossRef Ruiz-Ederra J, Verkman AS. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Exp Eye Res. 2006;82(5):879–84.PubMedCrossRef
24.
go back to reference Chen H, et al. Progressive Degeneration of Retinal and Superior Collicular Functions in mice with sustained ocular hypertension. Investig Ophthalmol Vis Sci. 2015;56(3):1971–84.CrossRef Chen H, et al. Progressive Degeneration of Retinal and Superior Collicular Functions in mice with sustained ocular hypertension. Investig Ophthalmol Vis Sci. 2015;56(3):1971–84.CrossRef
25.
go back to reference Thomson BR, et al. Angiopoietin-1 knockout mice as a genetic model of Open-Angle Glaucoma. Translational Vision Science & Technology; 2020;9(4):16–16. Thomson BR, et al. Angiopoietin-1 knockout mice as a genetic model of Open-Angle Glaucoma. Translational Vision Science & Technology; 2020;9(4):16–16.
26.
go back to reference Cai H, Griendling KK, Harrison DG. The vascular NAD (P) H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24(9):471–8.PubMedCrossRef Cai H, Griendling KK, Harrison DG. The vascular NAD (P) H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24(9):471–8.PubMedCrossRef
27.
go back to reference Rey F, et al. Novel competitive inhibitor of NAD (P) H oxidase assembly attenuates vascular O2 – and systolic blood pressure in mice. Circul Res. 2001;89(5):408–14.CrossRef Rey F, et al. Novel competitive inhibitor of NAD (P) H oxidase assembly attenuates vascular O2 – and systolic blood pressure in mice. Circul Res. 2001;89(5):408–14.CrossRef
28.
go back to reference Fawell S, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci. 1994;91(2):p664–668.CrossRef Fawell S, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci. 1994;91(2):p664–668.CrossRef
29.
go back to reference Lian H, Roy E, Zheng H. Protocol for primary Microglial Culture Preparation. Bio Protoc, 2016. 6(21). Lian H, Roy E, Zheng H. Protocol for primary Microglial Culture Preparation. Bio Protoc, 2016. 6(21).
30.
go back to reference Miller WP, et al. Deletion of the Akt/mTORC1 Repressor REDD1 prevents visual dysfunction in a Rodent Model of type 1 diabetes. Diabetes. 2018;67(1):110–9.PubMedCrossRef Miller WP, et al. Deletion of the Akt/mTORC1 Repressor REDD1 prevents visual dysfunction in a Rodent Model of type 1 diabetes. Diabetes. 2018;67(1):110–9.PubMedCrossRef
31.
go back to reference Zadeh JK et al. Apolipoprotein e deficiency causes endothelial dysfunction in the mouse retina Oxidative medicine and cellular longevity, 2019. 2019. Zadeh JK et al. Apolipoprotein e deficiency causes endothelial dysfunction in the mouse retina Oxidative medicine and cellular longevity, 2019. 2019.
32.
go back to reference Wang M, et al. Intraocular pressure-Induced endothelial dysfunction of retinal blood vessels is persistent, but does not trigger retinal ganglion cell loss. Antioxidants. 2022;11(10):1864.PubMedPubMedCentralCrossRef Wang M, et al. Intraocular pressure-Induced endothelial dysfunction of retinal blood vessels is persistent, but does not trigger retinal ganglion cell loss. Antioxidants. 2022;11(10):1864.PubMedPubMedCentralCrossRef
33.
go back to reference Oelze M, et al. NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKβ1–/– mice. Arterioscler Thromb Vasc Biol. 2006;26(8):p1753–1759.CrossRef Oelze M, et al. NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKβ1–/– mice. Arterioscler Thromb Vasc Biol. 2006;26(8):p1753–1759.CrossRef
34.
go back to reference Stein JD, Khawaja AP, Weizer JS. Glaucoma in Adults-Screening, diagnosis, and management: a review. JAMA. 2021;325(2):164–74.PubMedCrossRef Stein JD, Khawaja AP, Weizer JS. Glaucoma in Adults-Screening, diagnosis, and management: a review. JAMA. 2021;325(2):164–74.PubMedCrossRef
35.
go back to reference Tonner H, et al. A monoclonal Anti-HMGB1 antibody attenuates neurodegeneration in an experimental animal model of Glaucoma. Int J Mol Sci. 2022;23(8):4107.PubMedPubMedCentralCrossRef Tonner H, et al. A monoclonal Anti-HMGB1 antibody attenuates neurodegeneration in an experimental animal model of Glaucoma. Int J Mol Sci. 2022;23(8):4107.PubMedPubMedCentralCrossRef
36.
go back to reference Chidlow G, et al. Spatiotemporal characterization of optic nerve degeneration after chronic hypoperfusion in the rat. Investig Ophthalmol Vis Sci. 2010;51(3):1483–97.CrossRef Chidlow G, et al. Spatiotemporal characterization of optic nerve degeneration after chronic hypoperfusion in the rat. Investig Ophthalmol Vis Sci. 2010;51(3):1483–97.CrossRef
37.
go back to reference Wisniewski J, et al. Universal sample preparation method for proteome analysis. Nat Meth. 2009;6(5):359–62.CrossRef Wisniewski J, et al. Universal sample preparation method for proteome analysis. Nat Meth. 2009;6(5):359–62.CrossRef
38.
39.
go back to reference Laspas P, et al. The M1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci Rep. 2019;9(1):1–12.CrossRef Laspas P, et al. The M1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci Rep. 2019;9(1):1–12.CrossRef
41.
go back to reference Chan EC, et al. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther. 2009;122(2):97–108.PubMedCrossRef Chan EC, et al. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther. 2009;122(2):97–108.PubMedCrossRef
42.
go back to reference Herb M, et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal. 2019;12(568):eaar5926.PubMedCrossRef Herb M, et al. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal. 2019;12(568):eaar5926.PubMedCrossRef
43.
go back to reference Fan Gaskin JC, Shah MH, Chan EC. Oxidative stress and the role of NADPH oxidase in Glaucoma. Antioxid (Basel), 2021. 10(2). Fan Gaskin JC, Shah MH, Chan EC. Oxidative stress and the role of NADPH oxidase in Glaucoma. Antioxid (Basel), 2021. 10(2).
44.
go back to reference O’Leary F, Campbell M. The blood-retina barrier in health and disease. Febs j. 2023;290(4):878–91.PubMedCrossRef O’Leary F, Campbell M. The blood-retina barrier in health and disease. Febs j. 2023;290(4):878–91.PubMedCrossRef
45.
go back to reference Bringmann A, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424.PubMedCrossRef Bringmann A, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424.PubMedCrossRef
47.
49.
go back to reference Kamhieh-Milz J, et al. Ang II promotes ET-1 production by regulating NOX2 activity through transcription factor Oct-1. Arterioscler Thromb Vasc Biol. 2023;43(8):1429–40.PubMedCrossRef Kamhieh-Milz J, et al. Ang II promotes ET-1 production by regulating NOX2 activity through transcription factor Oct-1. Arterioscler Thromb Vasc Biol. 2023;43(8):1429–40.PubMedCrossRef
50.
go back to reference Abdul Y, et al. Endothelin-1 (ET-1) promotes a proinflammatory microglia phenotype in diabetic conditions. Can J Physiol Pharmacol. 2020;98(9):596–603.PubMedPubMedCentralCrossRef Abdul Y, et al. Endothelin-1 (ET-1) promotes a proinflammatory microglia phenotype in diabetic conditions. Can J Physiol Pharmacol. 2020;98(9):596–603.PubMedPubMedCentralCrossRef
51.
go back to reference Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.PubMedCrossRef Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.PubMedCrossRef
52.
go back to reference Schinelli S, et al. Stimulation of endothelin B receptors in astrocytes induces cAMP response element-binding protein phosphorylation and c-fos expression via multiple mitogen-activated protein kinase signaling pathways. J Neurosci. 2001;21(22):8842–53.PubMedPubMedCentralCrossRef Schinelli S, et al. Stimulation of endothelin B receptors in astrocytes induces cAMP response element-binding protein phosphorylation and c-fos expression via multiple mitogen-activated protein kinase signaling pathways. J Neurosci. 2001;21(22):8842–53.PubMedPubMedCentralCrossRef
53.
go back to reference Group CN-TGS. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126(4):487–97.CrossRef Group CN-TGS. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126(4):487–97.CrossRef
54.
go back to reference Lichter PR, et al. Interim clinical outcomes in the collaborative initial Glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108(11):1943–53.PubMedCrossRef Lichter PR, et al. Interim clinical outcomes in the collaborative initial Glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108(11):1943–53.PubMedCrossRef
55.
go back to reference Heijl A, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest Glaucoma trial. Arch Ophthalmol. 2002;120(10):1268–79.PubMedCrossRef Heijl A, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest Glaucoma trial. Arch Ophthalmol. 2002;120(10):1268–79.PubMedCrossRef
56.
go back to reference Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology. 2013;14:461–82.PubMedPubMedCentralCrossRef Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology. 2013;14:461–82.PubMedPubMedCentralCrossRef
58.
go back to reference Yamamoto K, et al. The novel rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma. Investig Ophthalmol Vis Sci. 2014;55(11):7126–36.CrossRef Yamamoto K, et al. The novel rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma. Investig Ophthalmol Vis Sci. 2014;55(11):7126–36.CrossRef
59.
go back to reference Hadi HA, Carr CS, Al J, Suwaidi. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98.PubMedPubMedCentral Hadi HA, Carr CS, Al J, Suwaidi. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98.PubMedPubMedCentral
61.
go back to reference Maqbool A, et al. Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance-related vascular damage. Am J Physiol Cell Physiol. 2020;319(1):C64–74.PubMedPubMedCentralCrossRef Maqbool A, et al. Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance-related vascular damage. Am J Physiol Cell Physiol. 2020;319(1):C64–74.PubMedPubMedCentralCrossRef
62.
63.
go back to reference Zadeh JK, et al. Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS). Exp Eye Res. 2019;184:152–61.PubMedCrossRef Zadeh JK, et al. Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS). Exp Eye Res. 2019;184:152–61.PubMedCrossRef
65.
go back to reference Fan LM, et al. Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radic Biol Med. 2017;108:940–51.PubMedPubMedCentralCrossRef Fan LM, et al. Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radic Biol Med. 2017;108:940–51.PubMedPubMedCentralCrossRef
66.
go back to reference Cahill-Smith S, Li JM. Oxidative stress, redox signalling and endothelial dysfunction in ageing‐related neurodegenerative diseases: a role of NADPH oxidase 2. Br J Clin Pharmacol. 2014;78(3):441–53.PubMedPubMedCentralCrossRef Cahill-Smith S, Li JM. Oxidative stress, redox signalling and endothelial dysfunction in ageing‐related neurodegenerative diseases: a role of NADPH oxidase 2. Br J Clin Pharmacol. 2014;78(3):441–53.PubMedPubMedCentralCrossRef
68.
go back to reference Mehrabian Z, et al. Oligodendrocyte death, neuroinflammation, and the effects of minocycline in a rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION). Mol Vis. 2017;23:963.PubMedPubMedCentral Mehrabian Z, et al. Oligodendrocyte death, neuroinflammation, and the effects of minocycline in a rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION). Mol Vis. 2017;23:963.PubMedPubMedCentral
69.
go back to reference Sapienza A, et al. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflamm. 2016;13(1):1–16.CrossRef Sapienza A, et al. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflamm. 2016;13(1):1–16.CrossRef
70.
go back to reference Sumi N, et al. Lipopolysaccharide-activated microglia induce dysfunction of the blood–brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol. 2010;30:247–53.PubMedCrossRef Sumi N, et al. Lipopolysaccharide-activated microglia induce dysfunction of the blood–brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol. 2010;30:247–53.PubMedCrossRef
71.
go back to reference Yenari MA, et al. Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37(4):1087–93.PubMedCrossRef Yenari MA, et al. Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37(4):1087–93.PubMedCrossRef
72.
go back to reference Bonkowski D, et al. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011;8(1):8.PubMedPubMedCentralCrossRef Bonkowski D, et al. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011;8(1):8.PubMedPubMedCentralCrossRef
73.
go back to reference Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.PubMedCrossRef Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.PubMedCrossRef
74.
go back to reference Clayton DF, George JM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1999;58(1):120–9.PubMedCrossRef Clayton DF, George JM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1999;58(1):120–9.PubMedCrossRef
75.
go back to reference Becher B, Prat A, Antel JP. Brain-immune connection: immuno‐regulatory properties of CNS‐resident cells. Glia. 2000;29(4):293–304.PubMedCrossRef Becher B, Prat A, Antel JP. Brain-immune connection: immuno‐regulatory properties of CNS‐resident cells. Glia. 2000;29(4):293–304.PubMedCrossRef
76.
77.
go back to reference Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med, 2014. 4(8). Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med, 2014. 4(8).
78.
go back to reference Zhang L, et al. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation. 2003;108(4):472–8.PubMedCrossRef Zhang L, et al. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation. 2003;108(4):472–8.PubMedCrossRef
79.
go back to reference Luo M, Tian R, Lu N. Nitric oxide protected against NADPH oxidase-derived superoxide generation in vascular endothelium: critical role for heme oxygenase-1. Int J Biol Macromol. 2019;126:549–54.PubMedCrossRef Luo M, Tian R, Lu N. Nitric oxide protected against NADPH oxidase-derived superoxide generation in vascular endothelium: critical role for heme oxygenase-1. Int J Biol Macromol. 2019;126:549–54.PubMedCrossRef
80.
go back to reference Bendall JK, et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circul Res. 2007;100(7):1016–25.CrossRef Bendall JK, et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circul Res. 2007;100(7):1016–25.CrossRef
81.
go back to reference Sandbach JM, et al. Ocular pathology in mitochondrial superoxide dismutase (Sod2)-deficient mice. Invest Ophthalmol Vis Sci. 2001;42(10):2173–8.PubMed Sandbach JM, et al. Ocular pathology in mitochondrial superoxide dismutase (Sod2)-deficient mice. Invest Ophthalmol Vis Sci. 2001;42(10):2173–8.PubMed
82.
go back to reference Usui S, et al. Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radic Biol Med. 2011;51(7):1347–54.PubMedPubMedCentralCrossRef Usui S, et al. Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radic Biol Med. 2011;51(7):1347–54.PubMedPubMedCentralCrossRef
83.
go back to reference Justilien V, et al. SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci. 2007;48(10):4407–20.PubMedCrossRef Justilien V, et al. SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci. 2007;48(10):4407–20.PubMedCrossRef
84.
go back to reference Sánchez A, et al. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: role of ET(A) and ET(B) receptors. Br J Pharmacol. 2014;171(24):5682–95.PubMedPubMedCentralCrossRef Sánchez A, et al. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: role of ET(A) and ET(B) receptors. Br J Pharmacol. 2014;171(24):5682–95.PubMedPubMedCentralCrossRef
85.
go back to reference Källberg ME, et al. Endothelin 1 levels in the aqueous humor of dogs with glaucoma. J Glaucoma. 2002;11(2):105–9.PubMedCrossRef Källberg ME, et al. Endothelin 1 levels in the aqueous humor of dogs with glaucoma. J Glaucoma. 2002;11(2):105–9.PubMedCrossRef
86.
go back to reference Thanos S, Naskar R. Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant. Exp Eye Res. 2004;79(1):119–29.PubMedCrossRef Thanos S, Naskar R. Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant. Exp Eye Res. 2004;79(1):119–29.PubMedCrossRef
87.
go back to reference Prasanna G, et al. Effect of elevated intraocular pressure on endothelin-1 in a rat model of glaucoma. Pharmacol Res. 2005;51(1):41–50.PubMedCrossRef Prasanna G, et al. Effect of elevated intraocular pressure on endothelin-1 in a rat model of glaucoma. Pharmacol Res. 2005;51(1):41–50.PubMedCrossRef
88.
go back to reference Maki S, et al. The endothelin receptor antagonist ameliorates the hypertensive phenotypes of transgenic hypertensive mice with renin-angiotensin genes and discloses roles of organ specific activation of endothelin system in transgenic mice. Life Sci. 2004;74(9):1105–18.PubMedCrossRef Maki S, et al. The endothelin receptor antagonist ameliorates the hypertensive phenotypes of transgenic hypertensive mice with renin-angiotensin genes and discloses roles of organ specific activation of endothelin system in transgenic mice. Life Sci. 2004;74(9):1105–18.PubMedCrossRef
89.
go back to reference Rautureau Y, et al. Inducible human endothelin-1 overexpression in endothelium raises blood pressure via endothelin type A receptors. Hypertension. 2015;66(2):347–55.PubMedCrossRef Rautureau Y, et al. Inducible human endothelin-1 overexpression in endothelium raises blood pressure via endothelin type A receptors. Hypertension. 2015;66(2):347–55.PubMedCrossRef
90.
go back to reference Meyer MR, Barton M, Prossnitz ER. Functional heterogeneity of NADPH oxidase-mediated contractions to endothelin with vascular aging. Life Sci. 2014;118(2):226–31.PubMedCrossRef Meyer MR, Barton M, Prossnitz ER. Functional heterogeneity of NADPH oxidase-mediated contractions to endothelin with vascular aging. Life Sci. 2014;118(2):226–31.PubMedCrossRef
91.
go back to reference Sadoshima J-i, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75(5):977–84.PubMedCrossRef Sadoshima J-i, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75(5):977–84.PubMedCrossRef
92.
go back to reference Ito H, et al. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Investig. 1993;92(1):398–403.PubMedPubMedCentralCrossRef Ito H, et al. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Investig. 1993;92(1):398–403.PubMedPubMedCentralCrossRef
93.
go back to reference Amiri F, et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation. 2004;110(15):2233–40.PubMedCrossRef Amiri F, et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation. 2004;110(15):2233–40.PubMedCrossRef
94.
go back to reference Amiri F, et al. Vascular inflammation in absence of blood pressure elevation in transgenic murine model overexpressing endothelin-1 in endothelial cells. J Hypertens. 2008;26(6):1102–9.PubMedCrossRef Amiri F, et al. Vascular inflammation in absence of blood pressure elevation in transgenic murine model overexpressing endothelin-1 in endothelial cells. J Hypertens. 2008;26(6):1102–9.PubMedCrossRef
95.
go back to reference Kugler EC, Greenwood J, MacDonald RB. The Neuro-glial-vascular unit: the role of Glia in neurovascular unit formation and dysfunction. Front Cell Dev Biology, 2021. 9. Kugler EC, Greenwood J, MacDonald RB. The Neuro-glial-vascular unit: the role of Glia in neurovascular unit formation and dysfunction. Front Cell Dev Biology, 2021. 9.
96.
go back to reference Gadea A, Schinelli S, Gallo V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci. 2008;28(10):2394–408.PubMedPubMedCentralCrossRef Gadea A, Schinelli S, Gallo V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci. 2008;28(10):2394–408.PubMedPubMedCentralCrossRef
97.
go back to reference Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc Natl Acad Sci. 2018;115(40):E9429–38.PubMedPubMedCentralCrossRef Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc Natl Acad Sci. 2018;115(40):E9429–38.PubMedPubMedCentralCrossRef
99.
go back to reference Marina N, et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia. 2018;66(6):1185–99.PubMedCrossRef Marina N, et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia. 2018;66(6):1185–99.PubMedCrossRef
100.
go back to reference Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15(4):209–16.PubMedCrossRef Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15(4):209–16.PubMedCrossRef
101.
go back to reference Hu X, et al. Microglial and macrophage polarization—new prospects for brain repair. Nat Reviews Neurol. 2015;11(1):56–64.CrossRef Hu X, et al. Microglial and macrophage polarization—new prospects for brain repair. Nat Reviews Neurol. 2015;11(1):56–64.CrossRef
102.
go back to reference Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28(4):202–8.PubMedCrossRef Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28(4):202–8.PubMedCrossRef
103.
go back to reference Willis CL. Glia-induced reversible disruption of blood–brain barrier integrity and neuropathological response of the neurovascular unit. Toxicol Pathol. 2011;39(1):172–85.PubMedCrossRef Willis CL. Glia-induced reversible disruption of blood–brain barrier integrity and neuropathological response of the neurovascular unit. Toxicol Pathol. 2011;39(1):172–85.PubMedCrossRef
Metadata
Title
Pathological high intraocular pressure induces glial cell reactive proliferation contributing to neuroinflammation of the blood-retinal barrier via the NOX2/ET-1 axis-controlled ERK1/2 pathway
Authors
Xin Shi
Panpan Li
Marc Herb
Hanhan Liu
Maoren Wang
Xiaosha Wang
Yuan Feng
Tim van Beers
Ning Xia
Huige Li
Verena Prokosch
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Glaucoma
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03075-x

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue