Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Review

Genus Curcuma: chemical and ethnopharmacological role in aging process

Authors: Esraa A. Elhawary, Ashaimaa Y. Moussa, Abdel Nasser B. Singab

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.
Literature
1.
go back to reference Butnariu M: Plant genome engineering for improved flavonoids production. Plants as Bioreactors for Industrial Molecules 2023:215–240. Butnariu M: Plant genome engineering for improved flavonoids production. Plants as Bioreactors for Industrial Molecules 2023:215–240.
2.
go back to reference Chaachouay N, Benkhnigue O, Fadli M, El Ibaoui H, El Ayadi R, Zidane L. Ethnobotanical and ethnopharmacological study of medicinal and aromatic plants used in the treatment of respiratory system disorders in the Moroccan Rif. Ethnobot Res Appl. 2019;18:1–16. Chaachouay N, Benkhnigue O, Fadli M, El Ibaoui H, El Ayadi R, Zidane L. Ethnobotanical and ethnopharmacological study of medicinal and aromatic plants used in the treatment of respiratory system disorders in the Moroccan Rif. Ethnobot Res Appl. 2019;18:1–16.
3.
go back to reference Cefalu CA. Theories and mechanisms of aging. Clin Geriat Med. 2011;27(4):491–506.CrossRef Cefalu CA. Theories and mechanisms of aging. Clin Geriat Med. 2011;27(4):491–506.CrossRef
5.
go back to reference Ashraf H, Moussa A, Seleem A, Eldahshan OA, Singab A-N. UPLC-ESI/MS/MS profiling and anti-inflammatory activity of Gleditsia caspica. Arch Pharm Sci Ain Shams Uni. 2020;4(1):124–34. Ashraf H, Moussa A, Seleem A, Eldahshan OA, Singab A-N. UPLC-ESI/MS/MS profiling and anti-inflammatory activity of Gleditsia caspica. Arch Pharm Sci Ain Shams Uni. 2020;4(1):124–34.
6.
go back to reference Ashraf H, Moussa AY, Eldahshan OA, Singab ANB. Genus Gleditsia: a phytochemical and biological review (2015–2020). J Biol Act Prod Nat. 2022;12(1):1–23. Ashraf H, Moussa AY, Eldahshan OA, Singab ANB. Genus Gleditsia: a phytochemical and biological review (2015–2020). J Biol Act Prod Nat. 2022;12(1):1–23.
8.
go back to reference Rejeski WJ, Fanning J. Models and theories of health behavior and clinical interventions in aging: a contemporary, integrative approach. Clin Interv Aging. 2019;14:1007.PubMedPubMedCentralCrossRef Rejeski WJ, Fanning J. Models and theories of health behavior and clinical interventions in aging: a contemporary, integrative approach. Clin Interv Aging. 2019;14:1007.PubMedPubMedCentralCrossRef
10.
go back to reference Benameur T, Soleti R, Panaro MA, La Torre ME, Monda V, Messina G, Porro C. Curcumin as prospective anti-aging natural compound: focus on brain. Molecules. 2021;26(16):4794.PubMedPubMedCentralCrossRef Benameur T, Soleti R, Panaro MA, La Torre ME, Monda V, Messina G, Porro C. Curcumin as prospective anti-aging natural compound: focus on brain. Molecules. 2021;26(16):4794.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Ding A-J, Zheng S-Q, Huang X-B, Xing T-K, Wu G-S, Sun H-Y, Qi S-H, Luo H-R. Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect. 2017;7:335–404.PubMedPubMedCentralCrossRef Ding A-J, Zheng S-Q, Huang X-B, Xing T-K, Wu G-S, Sun H-Y, Qi S-H, Luo H-R. Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect. 2017;7:335–404.PubMedPubMedCentralCrossRef
13.
go back to reference Qiao J, Wang C, Chen Y, Yu S, Liu Y, Yu S, Jiang L, Jin C, Wang X, Zhang P. Herbal/natural compounds resist hallmarks of brain aging: from molecular mechanisms to therapeutic strategies. Antioxidants. 2023;12(4):920.PubMedPubMedCentralCrossRef Qiao J, Wang C, Chen Y, Yu S, Liu Y, Yu S, Jiang L, Jin C, Wang X, Zhang P. Herbal/natural compounds resist hallmarks of brain aging: from molecular mechanisms to therapeutic strategies. Antioxidants. 2023;12(4):920.PubMedPubMedCentralCrossRef
15.
go back to reference Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural compounds and products from an anti-aging perspective. Molecules. 2022;27(20):7084.PubMedPubMedCentralCrossRef Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural compounds and products from an anti-aging perspective. Molecules. 2022;27(20):7084.PubMedPubMedCentralCrossRef
16.
go back to reference Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors. 2022;48(3):611–33.PubMedCrossRef Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors. 2022;48(3):611–33.PubMedCrossRef
17.
go back to reference Benameur T, Giacomucci G, Panaro MA, Ruggiero M, Trotta T, Monda V, Pizzolorusso I, Lofrumento DD, Porro C, Messina G. New promising therapeutic avenues of curcumin in brain diseases. Molecules. 2021;27(1):236.PubMedPubMedCentralCrossRef Benameur T, Giacomucci G, Panaro MA, Ruggiero M, Trotta T, Monda V, Pizzolorusso I, Lofrumento DD, Porro C, Messina G. New promising therapeutic avenues of curcumin in brain diseases. Molecules. 2021;27(1):236.PubMedPubMedCentralCrossRef
18.
go back to reference Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, et al. Ethnobotany, phytochemistry and traditional uses of Curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): a review. Curr Pharma Des. 2019;25(8):871–935. Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, et al. Ethnobotany, phytochemistry and traditional uses of Curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): a review. Curr Pharma Des. 2019;25(8):871–935.
19.
go back to reference Zhang J. Plantlist: looking up the status of plant scientific names based on the plant list database. R package version 0.5. 3. 2019. Accessed Nov 2023. Zhang J. Plantlist: looking up the status of plant scientific names based on the plant list database. R package version 0.5. 3. 2019. Accessed Nov 2023.
22.
go back to reference Meghwal M, Devu S, Singh H, Goswami TK. Piperine and curcumin. In: A Centum of Valuable Plant Bioactives. 1st ed. Elsevier; 2021. p. 589–612. eBook ISBN: 9780128229248. Meghwal M, Devu S, Singh H, Goswami TK. Piperine and curcumin. In: A Centum of Valuable Plant Bioactives. 1st ed. Elsevier; 2021. p. 589–612. eBook ISBN: 9780128229248.
26.
go back to reference Sari AP, Supratman U. Phytochemistry and biological activities of Curcuma aeruginosa (Roxb.). Ind J Chem. 2022;22(2):576–98. Sari AP, Supratman U. Phytochemistry and biological activities of Curcuma aeruginosa (Roxb.). Ind J Chem. 2022;22(2):576–98.
28.
go back to reference Lobo R, Prabhu KS, Shirwaikar A, Shirwaikar A. Curcuma zedoaria Rosc. (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J Pharm Pharmacol. 2009;61(1):13–21. Lobo R, Prabhu KS, Shirwaikar A, Shirwaikar A. Curcuma zedoaria Rosc. (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J Pharm Pharmacol. 2009;61(1):13–21.
30.
go back to reference Muzammil A, Waqas M, Umar A, Sufyan M, Rehman A, Haider A, Akram H, Khan SA, Afzal M, Wajid M. Anti-aging natural compounds and their role in the regulation of metabolic pathways leading to longevity. Mini Rev Med Chem. 2021;21(18):2630–56.PubMedCrossRef Muzammil A, Waqas M, Umar A, Sufyan M, Rehman A, Haider A, Akram H, Khan SA, Afzal M, Wajid M. Anti-aging natural compounds and their role in the regulation of metabolic pathways leading to longevity. Mini Rev Med Chem. 2021;21(18):2630–56.PubMedCrossRef
31.
go back to reference Cătană C-S, Atanasov AG, Berindan-Neagoe I. Natural products with anti-aging potential: affected targets and molecular mechanisms. Biotechnol Adv. 2018;36(6):1649–56.PubMedCrossRef Cătană C-S, Atanasov AG, Berindan-Neagoe I. Natural products with anti-aging potential: affected targets and molecular mechanisms. Biotechnol Adv. 2018;36(6):1649–56.PubMedCrossRef
32.
go back to reference Bamba Y, Yun YS, Kunugi A, Inoue H. Compounds isolated from Curcuma aromatica Salisb. inhibit human P450 enzymes. J Nat Med. 2011;65:583–7.PubMedCrossRef Bamba Y, Yun YS, Kunugi A, Inoue H. Compounds isolated from Curcuma aromatica Salisb. inhibit human P450 enzymes. J Nat Med. 2011;65:583–7.PubMedCrossRef
33.
go back to reference Pant N, Misra H, Jain D. Phytochemical investigation of ethyl acetate extract from Curcuma aromatica Salisb rhizomes. Arab J Chem. 2013;6(3):279–83.CrossRef Pant N, Misra H, Jain D. Phytochemical investigation of ethyl acetate extract from Curcuma aromatica Salisb rhizomes. Arab J Chem. 2013;6(3):279–83.CrossRef
34.
go back to reference Ahmad S, Ali M, Ansari S, Ahmed F. Chemical constituents from the rhizomes of Curcuma aromatica Salisb. Der Pharma Chem. 2011;3(2):505–11. Ahmad S, Ali M, Ansari S, Ahmed F. Chemical constituents from the rhizomes of Curcuma aromatica Salisb. Der Pharma Chem. 2011;3(2):505–11.
35.
go back to reference Araújo CC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz Rio de Janerio. 2001;96:723–8. Araújo CC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz Rio de Janerio. 2001;96:723–8.
36.
go back to reference Abdel-Lateef E, Mahmoud F, Hammam O, El-Ahwany E, El-Wakil E, Kandil S, et al. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharma. 2016;66(3):387–3980. Abdel-Lateef E, Mahmoud F, Hammam O, El-Ahwany E, El-Wakil E, Kandil S, et al. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharma. 2016;66(3):387–3980.
37.
go back to reference Malek SNA, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber J-F, et al. Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes. Molecules. 2011;16(6):4539–48. Malek SNA, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber J-F, et al. Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes. Molecules. 2011;16(6):4539–48.
38.
go back to reference Suksamrarn A, Eiamong S, Piyachaturawat P, Charoenpiboonsin J. Phenolic diarylheptanoids from Curcuma xanthorrhiza. Phytochemistry. 1994;36(6):1505–8.CrossRef Suksamrarn A, Eiamong S, Piyachaturawat P, Charoenpiboonsin J. Phenolic diarylheptanoids from Curcuma xanthorrhiza. Phytochemistry. 1994;36(6):1505–8.CrossRef
39.
go back to reference Chen J-J, Tsai T-H, Liao H-R, Chen L-C, Kuo Y-H, Sung P-J, et al. New sesquiterpenoids and anti-platelet aggregation constituents from the rhizomes of Curcuma zedoaria. Molecules. 2016;21(10):1385. Chen J-J, Tsai T-H, Liao H-R, Chen L-C, Kuo Y-H, Sung P-J, et al. New sesquiterpenoids and anti-platelet aggregation constituents from the rhizomes of Curcuma zedoaria. Molecules. 2016;21(10):1385.
40.
go back to reference Jang MK, Lee HJ, Kim JS, Ryu J-H. A curcuminoid and two sesquiterpenoids from Curcuma zedoaria as inhibitors of nitric oxide synthesis in activated macrophages. Arch Pharm Res. 2004;27:1220–5.PubMedCrossRef Jang MK, Lee HJ, Kim JS, Ryu J-H. A curcuminoid and two sesquiterpenoids from Curcuma zedoaria as inhibitors of nitric oxide synthesis in activated macrophages. Arch Pharm Res. 2004;27:1220–5.PubMedCrossRef
41.
go back to reference Gupta A, Gupta M, Kumar S. Simultaneous determination of curcuminoids in Curcuma samples using high performance thin layer chromatography. J Liq Chromatogr Relat Technol. 1999;22(10):1561–9.CrossRef Gupta A, Gupta M, Kumar S. Simultaneous determination of curcuminoids in Curcuma samples using high performance thin layer chromatography. J Liq Chromatogr Relat Technol. 1999;22(10):1561–9.CrossRef
43.
go back to reference Liu Y, Nair MG. Curcuma longa and Curcuma mangga leaves exhibit functional food property. Food Chem. 2012;135(2):634–40.PubMedCrossRef Liu Y, Nair MG. Curcuma longa and Curcuma mangga leaves exhibit functional food property. Food Chem. 2012;135(2):634–40.PubMedCrossRef
44.
go back to reference Park B-S, Kim J-G, Kim M-R, Lee S-E, Takeoka GR, Oh K-B, et al. Curcuma longa L. constituents inhibit sortase A and Staphylococcus aureus cell adhesion to fibronectin. J Agric Food Chem. 2005;53(23):9005–9. Park B-S, Kim J-G, Kim M-R, Lee S-E, Takeoka GR, Oh K-B, et al. Curcuma longa L. constituents inhibit sortase A and Staphylococcus aureus cell adhesion to fibronectin. J Agric Food Chem. 2005;53(23):9005–9.
45.
go back to reference Li W, Wang S, Feng J, Xiao Y, Xue X, Zhang H, et al. Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magn Reson Chem. 2009;47(10):902–8. Li W, Wang S, Feng J, Xiao Y, Xue X, Zhang H, et al. Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magn Reson Chem. 2009;47(10):902–8.
46.
go back to reference Kita T, Imai S, Sawada H, Seto H. Isolation of dihydrocurcuminoids from cell clumps and their distribution in various parts of turmeric (Curcuma longa). Biosci Biotechnol Biochem. 2009;73(5):1113–7.PubMedCrossRef Kita T, Imai S, Sawada H, Seto H. Isolation of dihydrocurcuminoids from cell clumps and their distribution in various parts of turmeric (Curcuma longa). Biosci Biotechnol Biochem. 2009;73(5):1113–7.PubMedCrossRef
47.
go back to reference Li J, Zhao F, Li MZ, Chen LX, Qiu F. Diarylheptanoids from the rhizomes of Curcuma kwangsiensis. J Nat Prod. 2010;73(10):1667–71.PubMedCrossRef Li J, Zhao F, Li MZ, Chen LX, Qiu F. Diarylheptanoids from the rhizomes of Curcuma kwangsiensis. J Nat Prod. 2010;73(10):1667–71.PubMedCrossRef
48.
go back to reference Septaningsih DA, Darusman LK, Afendi FM, Heryanto R. Liquid chromatography mass spectrometry (LC-MS) fingerprint combined with chemometrics for identification of metabolites content and biological activities of Curcuma aeruginosa. Ind J Chem. 2018;18(1):43–52. Septaningsih DA, Darusman LK, Afendi FM, Heryanto R. Liquid chromatography mass spectrometry (LC-MS) fingerprint combined with chemometrics for identification of metabolites content and biological activities of Curcuma aeruginosa. Ind J Chem. 2018;18(1):43–52.
49.
go back to reference Masuda T, Jitoe A, Isobe J, Nakatani N, Yonemori S. Anti-oxidative and anti-inflammatory curcumin-related phenolics from rhizomes of Curcuma domestica. Phytochemistry. 1993;32(6):1557–60.CrossRef Masuda T, Jitoe A, Isobe J, Nakatani N, Yonemori S. Anti-oxidative and anti-inflammatory curcumin-related phenolics from rhizomes of Curcuma domestica. Phytochemistry. 1993;32(6):1557–60.CrossRef
50.
go back to reference Park S-Y, Kim DS. Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease. J Nat Prod. 2002;65(9):1227–31.PubMedCrossRef Park S-Y, Kim DS. Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease. J Nat Prod. 2002;65(9):1227–31.PubMedCrossRef
51.
go back to reference Wang X, Jiang Y, Wang Y-W, Huang M-T, Ho C-T, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108(2):419–24.PubMedCrossRef Wang X, Jiang Y, Wang Y-W, Huang M-T, Ho C-T, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108(2):419–24.PubMedCrossRef
52.
go back to reference Li R, Xiang C, Ye M, Li H-F, Zhang X, Guo D-A. Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chem. 2011;126(4):1890–5.PubMedCrossRef Li R, Xiang C, Ye M, Li H-F, Zhang X, Guo D-A. Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chem. 2011;126(4):1890–5.PubMedCrossRef
53.
go back to reference Xiao J, Nian S, Huang Q. Assembly of kafirin/carboxymethyl chitosan nanoparticles to enhance the cellular uptake of curcumin. Food Hydrocoll. 2015;51:166–75.CrossRef Xiao J, Nian S, Huang Q. Assembly of kafirin/carboxymethyl chitosan nanoparticles to enhance the cellular uptake of curcumin. Food Hydrocoll. 2015;51:166–75.CrossRef
54.
go back to reference Dao TT, Nguyen PH, Won HK, Kim EH, Park J, Won BY, et al. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem. 2012;134(1):21–8. Dao TT, Nguyen PH, Won HK, Kim EH, Park J, Won BY, et al. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem. 2012;134(1):21–8.
55.
go back to reference Wang L-Y, Zhang M, Zhang C-F, Wang Z-T. Diaryl derivatives from the root tuber of Curcuma longa. Biochem Sys Ecol. 2008;5(36):476–80.CrossRef Wang L-Y, Zhang M, Zhang C-F, Wang Z-T. Diaryl derivatives from the root tuber of Curcuma longa. Biochem Sys Ecol. 2008;5(36):476–80.CrossRef
56.
go back to reference Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, et al. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr. 2017;57(7):1451–523. Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, et al. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr. 2017;57(7):1451–523.
57.
go back to reference Xia Q, Zhao KJ, Huang ZG, Zhang P, Dong TT, Li SP, Tsim KW. Molecular genetic and chemical assessment of Rhizoma Curcumae in China. J Agric Food Chem. 2005;53(15):6019–26.PubMedCrossRef Xia Q, Zhao KJ, Huang ZG, Zhang P, Dong TT, Li SP, Tsim KW. Molecular genetic and chemical assessment of Rhizoma Curcumae in China. J Agric Food Chem. 2005;53(15):6019–26.PubMedCrossRef
58.
go back to reference Huang X, Qin F, Zhang H-M, Xiao H-B, Wang L-X, Zhang X-Y, Ren P. Cardioprotection by Guanxin II in rats with acute myocardial infarction is related to its three compounds. J Ethnopharmacol. 2009;121(2):268–73.PubMedCrossRef Huang X, Qin F, Zhang H-M, Xiao H-B, Wang L-X, Zhang X-Y, Ren P. Cardioprotection by Guanxin II in rats with acute myocardial infarction is related to its three compounds. J Ethnopharmacol. 2009;121(2):268–73.PubMedCrossRef
59.
go back to reference Ma Z-J, Meng Z-K, Zhang P. Chemical constituents from the radix of Curcuma wenyujin. Fitoterapia. 2009;80(6):374–6.PubMedCrossRef Ma Z-J, Meng Z-K, Zhang P. Chemical constituents from the radix of Curcuma wenyujin. Fitoterapia. 2009;80(6):374–6.PubMedCrossRef
60.
go back to reference Wang R, Li Y-B, Li Y-H, Xu Y. Wu H-l, Li X-J: Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 2008;1210:84–91.PubMedCrossRef Wang R, Li Y-B, Li Y-H, Xu Y. Wu H-l, Li X-J: Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 2008;1210:84–91.PubMedCrossRef
61.
go back to reference Chokchaisiri R, Innok P, Suksamrarn A. Flavonoid glycosides from the aerial parts of Curcuma comosa. Phytochem Lett. 2012;5(2):361–6.CrossRef Chokchaisiri R, Innok P, Suksamrarn A. Flavonoid glycosides from the aerial parts of Curcuma comosa. Phytochem Lett. 2012;5(2):361–6.CrossRef
62.
go back to reference Kim DW, Lee SM, Woo HS, Park J-Y, Ko BS, Heo JD, et al. Chemical constituents and anti-inflammatory activity of the aerial parts of Curcuma longa. J Funct Food. 2016;26:485–93. Kim DW, Lee SM, Woo HS, Park J-Y, Ko BS, Heo JD, et al. Chemical constituents and anti-inflammatory activity of the aerial parts of Curcuma longa. J Funct Food. 2016;26:485–93.
63.
go back to reference Sugita P, Octaviana N, Wukirsari T, Rahayu D. Chemical constituent and antioxidant activity of methanol extract from Indonesian Curcuma aeruginosa Roxb. rhizome. Drug Invent Today. 2018;10(1):293–7. Sugita P, Octaviana N, Wukirsari T, Rahayu D. Chemical constituent and antioxidant activity of methanol extract from Indonesian Curcuma aeruginosa Roxb. rhizome. Drug Invent Today. 2018;10(1):293–7.
64.
go back to reference Yuan H-L, Zhao Y-L, Ding C-F, Zhu P-F, Jin Q, Liu Y-P, et al. Anti-inflammatory and antinociceptive effects of Curcuma kwangsiensis and its bioactive terpenoids in vivo and in vitro. J Ethnopharmacol. 2020;259:112935. Yuan H-L, Zhao Y-L, Ding C-F, Zhu P-F, Jin Q, Liu Y-P, et al. Anti-inflammatory and antinociceptive effects of Curcuma kwangsiensis and its bioactive terpenoids in vivo and in vitro. J Ethnopharmacol. 2020;259:112935.
65.
go back to reference Zhou C-X, Zhang L-S, Chen F-F, Wu H-S, Mo J-X, Gan L-S. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells. Fitoterapia. 2017;121:141–5.PubMedCrossRef Zhou C-X, Zhang L-S, Chen F-F, Wu H-S, Mo J-X, Gan L-S. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells. Fitoterapia. 2017;121:141–5.PubMedCrossRef
67.
go back to reference Gandhi R, Vig O, Mukherji S. Terpenoids—VI: a novel unambiguous synthesis of DL-ar-turmerone. Tetrahedron. 1959;7(3–4):236–40. Gandhi R, Vig O, Mukherji S. Terpenoids—VI: a novel unambiguous synthesis of DL-ar-turmerone. Tetrahedron. 1959;7(3–4):236–40.
68.
go back to reference Liu Y, Ma J, Wang Y, Donkor PO, Li Q, Gao S, et al. Eudesmane-type sesquiterpenes from Curcuma phaeocaulis and their inhibitory activities on nitric oxide production in RAW 264.7 cells. Eu J Org Chem. 2014;2014(25):5540–8. Liu Y, Ma J, Wang Y, Donkor PO, Li Q, Gao S, et al. Eudesmane-type sesquiterpenes from Curcuma phaeocaulis and their inhibitory activities on nitric oxide production in RAW 264.7 cells. Eu J Org Chem. 2014;2014(25):5540–8.
69.
go back to reference Shiobara Y, Asakawa Y, Kodama M, Yasuda K, Takemoto T. Curcumenone, curcumanolide A and curcumanolide B, three sesquiterpenoids from Curcuma zedoaria. Phytochemistry. 1985;24(11):2629–33.CrossRef Shiobara Y, Asakawa Y, Kodama M, Yasuda K, Takemoto T. Curcumenone, curcumanolide A and curcumanolide B, three sesquiterpenoids from Curcuma zedoaria. Phytochemistry. 1985;24(11):2629–33.CrossRef
70.
go back to reference Klau ME, Rohaeti E, Rafi M, Artika IM, Ambarsari L, Nurcholis W. Metabolite profiling of Curcuma xanthorriza varieties grown in different regions using UHPLC-Q-Orbitrap-HRMS and chemometrics analysis. Biointerface Res Appl Chem. 2023;13:1–13. Klau ME, Rohaeti E, Rafi M, Artika IM, Ambarsari L, Nurcholis W. Metabolite profiling of Curcuma xanthorriza varieties grown in different regions using UHPLC-Q-Orbitrap-HRMS and chemometrics analysis. Biointerface Res Appl Chem. 2023;13:1–13.
71.
go back to reference Ganur AN, Kurniawanti K, Sugita P, Ambarsari L, Syahbirin G, Ilmiawati A, et al. Identified compounds from ethyl acetate phase of temu mangga (Curcuma mangga Val.) using LC-MS/MS and their potential as anticancer against MCF-7 cells. Trop J Nat Prod Res. 2022;6(12):1941–6. https://doi.org/10.26538/tjnpr/v6i12.7. Ganur AN, Kurniawanti K, Sugita P, Ambarsari L, Syahbirin G, Ilmiawati A, et al. Identified compounds from ethyl acetate phase of temu mangga (Curcuma mangga Val.) using LC-MS/MS and their potential as anticancer against MCF-7 cells. Trop J Nat Prod Res. 2022;6(12):1941–6. https://​doi.​org/​10.​26538/​tjnpr/​v6i12.​7.
72.
go back to reference Ganur AN, Rahayu DU, Dianhar H, Irwanto I, Sugita P. Terpenoid from Indonesian temu mangga (Curcuma mangga, Val) rhizomes and review of its anticancer towards MCF-7 breast cells. In: AIP Conference Proceedings. AIP Publishing; 2021. https://doi.org/10.1063/5.0051538. Ganur AN, Rahayu DU, Dianhar H, Irwanto I, Sugita P. Terpenoid from Indonesian temu mangga (Curcuma mangga, Val) rhizomes and review of its anticancer towards MCF-7 breast cells. In: AIP Conference Proceedings. AIP Publishing; 2021. https://​doi.​org/​10.​1063/​5.​0051538.
73.
go back to reference Siddaraju MN, Dharmesh SM. Inhibition of gastric H+, K+-ATPase and Helicobacter pylori growth by phenolic antioxidants of Zingiber officinale. Mol Nutr Food Res. 2007;51(3):324–32.PubMedCrossRef Siddaraju MN, Dharmesh SM. Inhibition of gastric H+, K+-ATPase and Helicobacter pylori growth by phenolic antioxidants of Zingiber officinale. Mol Nutr Food Res. 2007;51(3):324–32.PubMedCrossRef
74.
go back to reference Chen J-J, Tsai C-S, Hwang T-L, Shieh P-C, Chen J-F, Sung P-J. Sesquiterpenes from the rhizome of Curcuma longa with inhibitory activity on superoxide generation and elastase release by neutrophils. Food Chem. 2010;119(3):974–80.CrossRef Chen J-J, Tsai C-S, Hwang T-L, Shieh P-C, Chen J-F, Sung P-J. Sesquiterpenes from the rhizome of Curcuma longa with inhibitory activity on superoxide generation and elastase release by neutrophils. Food Chem. 2010;119(3):974–80.CrossRef
75.
go back to reference Khumaida N, Syukur M, Bintang M, Nurcholis W. Phenolic and flavonoid content in ethanol extract and agro-morphological diversity of Curcuma aeruginosa accessions growing in West Java. Indonesia Biodivers J Biol Divers. 2019;20(3):656–63.CrossRef Khumaida N, Syukur M, Bintang M, Nurcholis W. Phenolic and flavonoid content in ethanol extract and agro-morphological diversity of Curcuma aeruginosa accessions growing in West Java. Indonesia Biodivers J Biol Divers. 2019;20(3):656–63.CrossRef
76.
go back to reference Hayat S, Sabri AN. Screening for antibiofilm and antioxidant potential of turmeric (Curcuma longa) extracts. Pak J Pharma Sci. 2016;29(4):1163–70. Hayat S, Sabri AN. Screening for antibiofilm and antioxidant potential of turmeric (Curcuma longa) extracts. Pak J Pharma Sci. 2016;29(4):1163–70.
79.
go back to reference Muazzam K, Darah I. The evaluation of antibacterial activity of fungal endophyte Ceratobasidium ramicola IBRLCM127 colonizing in rhizomes of medicinal plant, Curcuma mangga Valeton & Zijp. In: IOP Conference Series: Earth and Environmental Science: 2020. IOP Publishing; 2020. p. 012083. https://doi.org/10.1088/1755-1315/596/1/012083. Muazzam K, Darah I. The evaluation of antibacterial activity of fungal endophyte Ceratobasidium ramicola IBRLCM127 colonizing in rhizomes of medicinal plant, Curcuma mangga Valeton & Zijp. In: IOP Conference Series: Earth and Environmental Science: 2020. IOP Publishing; 2020. p. 012083. https://​doi.​org/​10.​1088/​1755-1315/​596/​1/​012083.
81.
go back to reference Krishnapura PR, Belur PD. Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. J Mol Catal B: Enzymatic. 2016;124:83–91.CrossRef Krishnapura PR, Belur PD. Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. J Mol Catal B: Enzymatic. 2016;124:83–91.CrossRef
82.
go back to reference Rahman KAMA, Ibrahim D. Ceratobasidium ramicola IBRLCM127, an endophytic fungus isolated from Curcuma mangga Valeton & Zijp with strong anti-candidal activity. J Appl Pharma Sci. 2019;9(11):086–92.CrossRef Rahman KAMA, Ibrahim D. Ceratobasidium ramicola IBRLCM127, an endophytic fungus isolated from Curcuma mangga Valeton & Zijp with strong anti-candidal activity. J Appl Pharma Sci. 2019;9(11):086–92.CrossRef
83.
go back to reference Rachman F, Septiana E, Lekatompessy S, Widowati T, Sukiman HI, Simanjuntak P. Screening for endophytic fungi from turmeric plant (Curcuma longa L.) of Sukabumi and Cibinong with potency as antioxidant compounds producer. Pak J Biol Sci: PJBS. 2015;18(1):42–5.PubMed Rachman F, Septiana E, Lekatompessy S, Widowati T, Sukiman HI, Simanjuntak P. Screening for endophytic fungi from turmeric plant (Curcuma longa L.) of Sukabumi and Cibinong with potency as antioxidant compounds producer. Pak J Biol Sci: PJBS. 2015;18(1):42–5.PubMed
84.
go back to reference Yan J, Qi N, Wang S, Gadhave K, Yang S. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin. Curr Microbiol. 2014;69:740–4.PubMedCrossRef Yan J, Qi N, Wang S, Gadhave K, Yang S. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin. Curr Microbiol. 2014;69:740–4.PubMedCrossRef
85.
go back to reference Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X. Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine. 2012;19(3–4):364–8.PubMedCrossRef Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X. Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine. 2012;19(3–4):364–8.PubMedCrossRef
86.
go back to reference Maehara S, Ikeda M, Haraguchi H, Kitamura C, Nagoe T, Ohashi K, et al. Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa. Chem Pharma Bull. 2011;59(8):1042–4. https://doi.org/10.1248/cpb.59.1042. Maehara S, Ikeda M, Haraguchi H, Kitamura C, Nagoe T, Ohashi K, et al. Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa. Chem Pharma Bull. 2011;59(8):1042–4. https://​doi.​org/​10.​1248/​cpb.​59.​1042.
87.
go back to reference Balaji S, Chempakam B. Toxicity prediction of compounds from turmeric (Curcuma longa L). Food Chem Toxicol. 2010;48(10):2951–9.PubMedCrossRef Balaji S, Chempakam B. Toxicity prediction of compounds from turmeric (Curcuma longa L). Food Chem Toxicol. 2010;48(10):2951–9.PubMedCrossRef
88.
go back to reference Kartini S, Juariah S, Mardhiyani D, Bakar MFA, Bakar FIA, Endrini S. Phytochemical properties, antioxidant activity and α-amilase inhibitory of Curcuma caesia. J Adv Res Appl Sci Eng Technol. 2023;30(1):255–63. Kartini S, Juariah S, Mardhiyani D, Bakar MFA, Bakar FIA, Endrini S. Phytochemical properties, antioxidant activity and α-amilase inhibitory of Curcuma caesia. J Adv Res Appl Sci Eng Technol. 2023;30(1):255–63.
89.
go back to reference Borah A, Paw M, Gogoi R, Loying R, Sarma N, Munda S, et al. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North East India. Ind Crop Prod. 2019;129:448–54. Borah A, Paw M, Gogoi R, Loying R, Sarma N, Munda S, et al. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North East India. Ind Crop Prod. 2019;129:448–54.
90.
go back to reference Wuttikul K, Sainakham M. In vitro bioactivities and preparation of nanoemulsion from coconut oil loaded Curcuma aromatica extracts for cosmeceutical delivery systems. Saudi J Biol Sci. 2022;29(12):103435. Wuttikul K, Sainakham M. In vitro bioactivities and preparation of nanoemulsion from coconut oil loaded Curcuma aromatica extracts for cosmeceutical delivery systems. Saudi J Biol Sci. 2022;29(12):103435.
91.
go back to reference Kusumadewi AP, Martien R, Pramono S, Setyawan AA, Windarsih A, Rohman A. Application of FTIR spectroscopy and chemometrics for correlation of antioxidant activities, phenolics and flavonoid contents of Indonesian Curcuma xanthorrhiza. Int J Food Prop. 2022;25(1):2364–72.CrossRef Kusumadewi AP, Martien R, Pramono S, Setyawan AA, Windarsih A, Rohman A. Application of FTIR spectroscopy and chemometrics for correlation of antioxidant activities, phenolics and flavonoid contents of Indonesian Curcuma xanthorrhiza. Int J Food Prop. 2022;25(1):2364–72.CrossRef
92.
93.
go back to reference Mekonnen A, Desta W. Comparative study of the antioxidant and antibacterial activities of Rumex abyssinicus with commercially available Zingiber officinale and Curcuma longa in Bahir Dar city. Ethiopia Chem Biol Technol Agric. 2021;8:1–11. Mekonnen A, Desta W. Comparative study of the antioxidant and antibacterial activities of Rumex abyssinicus with commercially available Zingiber officinale and Curcuma longa in Bahir Dar city. Ethiopia Chem Biol Technol Agric. 2021;8:1–11.
94.
go back to reference Akter J, Hossain MA, Takara K, Islam MZ, Hou D-X. Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comp Biochem Physiol C: Toxicol Pharmacol. 2019;215:9–17.PubMed Akter J, Hossain MA, Takara K, Islam MZ, Hou D-X. Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comp Biochem Physiol C: Toxicol Pharmacol. 2019;215:9–17.PubMed
95.
go back to reference Fernandes F, Barroso MF, De Simone A, Emriková E, Dias-Teixeira M, Pereira JP, Chlebek J, Fernandes VC, Rodrigues F, Andrisano V. Multi-target neuroprotective effects of herbal medicines for Alzheimer’s disease. J Ethnopharmacol. 2022;290:115107. Fernandes F, Barroso MF, De Simone A, Emriková E, Dias-Teixeira M, Pereira JP, Chlebek J, Fernandes VC, Rodrigues F, Andrisano V. Multi-target neuroprotective effects of herbal medicines for Alzheimer’s disease. J Ethnopharmacol. 2022;290:115107.
96.
go back to reference Sudha N, Vanisree AJ. Neuroprotective role of Curcuma amada in F1 progeny of Juvenile Danio rerio (Zebrafish) from nickel chloride induced maternal stress in gestationally challenged adult fishes. Res J Pharm Technol. 2021;14(8):4215–20. Sudha N, Vanisree AJ. Neuroprotective role of Curcuma amada in F1 progeny of Juvenile Danio rerio (Zebrafish) from nickel chloride induced maternal stress in gestationally challenged adult fishes. Res J Pharm Technol. 2021;14(8):4215–20.
97.
go back to reference Pintatum A, Maneerat W, Logie E, Tuenter E, Sakavitsi ME, Pieters L, et al. In vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species and the isolation of compounds from Curcuma aromatica rhizome. Biomolecules. 2020;10(5):799. Pintatum A, Maneerat W, Logie E, Tuenter E, Sakavitsi ME, Pieters L, et al. In vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species and the isolation of compounds from Curcuma aromatica rhizome. Biomolecules. 2020;10(5):799.
98.
go back to reference Abimbola O, Ahmad M, Temitayo O. Anti-inflammatory actions and Salmonella typhimurium-bacteraemia clearance by methanol extract of Curcuma longa Linn. (turmeric). Mal J Microbiol. 2019;15(1):24–33. Abimbola O, Ahmad M, Temitayo O. Anti-inflammatory actions and Salmonella typhimurium-bacteraemia clearance by methanol extract of Curcuma longa Linn. (turmeric). Mal J Microbiol. 2019;15(1):24–33.
99.
go back to reference Doan CC, Le TL, Ho NQC, La THL, Nguyen VC, Nguyen TPT, et al. Bioactive chemical constituents, in vitro anti-proliferative activity and in vivo toxicity of the extract of Curcuma singularis Gagnep rhizomes. J Ethnopharmacol. 2022;284:114803. Doan CC, Le TL, Ho NQC, La THL, Nguyen VC, Nguyen TPT, et al. Bioactive chemical constituents, in vitro anti-proliferative activity and in vivo toxicity of the extract of Curcuma singularis Gagnep rhizomes. J Ethnopharmacol. 2022;284:114803.
100.
go back to reference Alamri AH, Debnath S, Alqahtani T, Alqahtani A, Alshehri SA, Ghosh A. Enhancing plant-derived smart nano inhibitor in targeting mammalian target of rapamycin (mTOR) in breast cancer using Curcuma longa-derived compound curcumin. Environment Sci Pollut Res Int. 2023. https://doi.org/10.1007/s11356-023-25375-0. Advance online publication. Alamri AH, Debnath S, Alqahtani T, Alqahtani A, Alshehri SA, Ghosh A. Enhancing plant-derived smart nano inhibitor in targeting mammalian target of rapamycin (mTOR) in breast cancer using Curcuma longa-derived compound curcumin. Environment Sci Pollut Res Int. 2023. https://​doi.​org/​10.​1007/​s11356-023-25375-0. Advance online publication.
101.
go back to reference Salehi B, Rodrigues CF, Peron G, Dall’Acqua S, Sharifi-Rad J, Azmi L, Shukla I, Singh Baghel U, Prakash Mishra A, Elissawy AM. Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytother Res. 2021;35(5):2487–99. Salehi B, Rodrigues CF, Peron G, Dall’Acqua S, Sharifi-Rad J, Azmi L, Shukla I, Singh Baghel U, Prakash Mishra A, Elissawy AM. Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytother Res. 2021;35(5):2487–99.
102.
go back to reference Nugraha AP, Yudianto DO, Anwar AA, Purnamasari AE, Mappananrang RA, Faradilla N, Luthfi M. Noor TNEBT, Nugraha AP, Nugraha AP: Potential of curcumin-quercetin loaded nanostructured lipid carriers as oral squamous cell carcinoma adjuvant therapy by downregulating AKT/PI3K signaling pathway. Res J Pharm Technol. 2022;15(11):5353–8.CrossRef Nugraha AP, Yudianto DO, Anwar AA, Purnamasari AE, Mappananrang RA, Faradilla N, Luthfi M. Noor TNEBT, Nugraha AP, Nugraha AP: Potential of curcumin-quercetin loaded nanostructured lipid carriers as oral squamous cell carcinoma adjuvant therapy by downregulating AKT/PI3K signaling pathway. Res J Pharm Technol. 2022;15(11):5353–8.CrossRef
103.
go back to reference Parida R, Nayak S. Anti-proliferative activity of in vitro Zingiberaceae essential oil against human cervical cancer (HeLa) cell line. Res J Pharm Technol. 2022;15(1):325–8.CrossRef Parida R, Nayak S. Anti-proliferative activity of in vitro Zingiberaceae essential oil against human cervical cancer (HeLa) cell line. Res J Pharm Technol. 2022;15(1):325–8.CrossRef
106.
go back to reference Uchendu IK, Agu CE. Anti-nephrotoxic and antihyperlipidaemic potentials of aqueous extracts of turmeric (Curcuma longa) in hypercholesterolaemic albino rat. Pharmacologyonline. 2018;3:1–11. Uchendu IK, Agu CE. Anti-nephrotoxic and antihyperlipidaemic potentials of aqueous extracts of turmeric (Curcuma longa) in hypercholesterolaemic albino rat. Pharmacologyonline. 2018;3:1–11.
107.
go back to reference Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. Phytother Res. 2018;32(6):985–95.PubMedCrossRef Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. Phytother Res. 2018;32(6):985–95.PubMedCrossRef
108.
go back to reference Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, Vannacci A. Curcumin, a golden spice with a low bioavailability. J Herb Med. 2015;5(2):57–70.CrossRef Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, Vannacci A. Curcumin, a golden spice with a low bioavailability. J Herb Med. 2015;5(2):57–70.CrossRef
109.
go back to reference Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharma. 2007;4(6):807–18.CrossRef Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharma. 2007;4(6):807–18.CrossRef
110.
go back to reference Lu PS, Inbaraj BS, Chen BH. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. J Sci Food Agric. 2018;98(1):51–63.PubMedCrossRef Lu PS, Inbaraj BS, Chen BH. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. J Sci Food Agric. 2018;98(1):51–63.PubMedCrossRef
111.
go back to reference Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B. 2007;853(1–2):183–9.CrossRef Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B. 2007;853(1–2):183–9.CrossRef
112.
go back to reference Butnariu M, Quispe C, Sharifi-Rad J, Pons-Fuster E, Lopez-Jornet P, Zam W, Das T, Dey A, Kumar M, Pentea M. Naturally-occurring bioactives in oral cancer: Preclinical and clinical studies, bottlenecks and future directions. Front Biosci-Scholar. 2022;14(3):24.CrossRef Butnariu M, Quispe C, Sharifi-Rad J, Pons-Fuster E, Lopez-Jornet P, Zam W, Das T, Dey A, Kumar M, Pentea M. Naturally-occurring bioactives in oral cancer: Preclinical and clinical studies, bottlenecks and future directions. Front Biosci-Scholar. 2022;14(3):24.CrossRef
115.
go back to reference Bielak-Zmijewska A, Grabowska W, Ciolko A, Bojko A, Mosieniak G, Bijoch Ł, Sikora E. The role of curcumin in the modulation of ageing. Int J Mol Sci. 2019;20(5):1239.PubMedPubMedCentralCrossRef Bielak-Zmijewska A, Grabowska W, Ciolko A, Bojko A, Mosieniak G, Bijoch Ł, Sikora E. The role of curcumin in the modulation of ageing. Int J Mol Sci. 2019;20(5):1239.PubMedPubMedCentralCrossRef
116.
go back to reference Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, et al. Bioactive effects of curcumin in human immunodeficiency virus infection along with the most effective isolation techniques and type of nanoformulations. Int J Nanomed. 2022:3619–32. https://doi.org/10.2147/IJN.S364501. Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, et al. Bioactive effects of curcumin in human immunodeficiency virus infection along with the most effective isolation techniques and type of nanoformulations. Int J Nanomed. 2022:3619–32. https://​doi.​org/​10.​2147/​IJN.​S364501.
117.
go back to reference Afzal A, Oriqat G, Akram Khan M, Jose J, Afzal M. Chemistry and biochemistry of terpenoids from Curcuma and related species. J Biol Act Prod Nat. 2013;3(1):1–55. Afzal A, Oriqat G, Akram Khan M, Jose J, Afzal M. Chemistry and biochemistry of terpenoids from Curcuma and related species. J Biol Act Prod Nat. 2013;3(1):1–55.
118.
go back to reference Jamwal R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. J Integr Med. 2018;16(6):367–74.PubMedCrossRef Jamwal R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. J Integr Med. 2018;16(6):367–74.PubMedCrossRef
Metadata
Title
Genus Curcuma: chemical and ethnopharmacological role in aging process
Authors
Esraa A. Elhawary
Ashaimaa Y. Moussa
Abdel Nasser B. Singab
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04317-w

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue