Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Osteoporosis | Research

Molecular mechanism of resveratrol promoting differentiation of preosteoblastic MC3T3-E1 cells based on network pharmacology and experimental validation

Authors: Yu He, Fei Liu, Mingjuan He, Fayu Long, Ding Hu, Jingwen Chen, Miao Fang, Zhenlong Wang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

The purpose of this study was to investigate the mechanism by which resveratrol (Res) inhibits apoptosis and promotes proliferation and differentiation of pre-osteoblastic MC3T3-E1 cells, laying the groundwork for the treatment of osteoporosis (OP). The TCMSP database was used to find the gene targets for Res. The GeneCards database acquire the gene targets for OP. After discovering the potential target genes, GO, KEGG, and Reactome enrichment analysis were conducted. Verifying the major proteins involved in apoptosis can bind to Res using molecular docking. CCK8 measured the proliferative activity of mouse pre-osteoblasts in every group following Res intervention. Alkaline phosphatase staining (ALP) and alizarin red staining to measure the ability of osteogenic differentiation. RT-qPCR to determine the expression levels of Runx2 and OPG genes for osteogenic differentiation ability of cells. Western blot to measure the degree of apoptosis-related protein activity in each group following Res intervention. The biological processes investigated for GO of Res therapeutic OP involved in cytokine-mediated signaling pathway, negative regulation of apoptotic process, Aging, extrinsic apoptotic signaling pathway in absence of ligand, according to potential therapeutic target enrichment study. Apoptosis, FoxO signaling pathway, and TNF signaling pathway are the primary KEGG signaling pathways. Recactome pathways are primarily engaged in Programmed Cell Death, Apoptosis, Intrinsic Apoptotic Pathway, and Caspase activation via extrinsic apoptotic signaling pathways. This research established a new approach for Res treatment of OP by demonstrating how Res controls the apoptosis-related proteins TNF, IL6, and CASP3 to suppress osteoblast death and increase osteoclastogenesis.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Wang L, Yu W, Yin X, Cui L, Tang S, Jiang N, Cui L, Zhao N, Lin Q, Chen L, et al. Prevalence of osteoporosis and fracture in China: the china osteoporosis prevalence study. JAMA Netw Open. 2021;4(8):e2121106.PubMedPubMedCentralCrossRef Wang L, Yu W, Yin X, Cui L, Tang S, Jiang N, Cui L, Zhao N, Lin Q, Chen L, et al. Prevalence of osteoporosis and fracture in China: the china osteoporosis prevalence study. JAMA Netw Open. 2021;4(8):e2121106.PubMedPubMedCentralCrossRef
3.
go back to reference Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14–21.PubMedCrossRef Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14–21.PubMedCrossRef
4.
go back to reference Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62.PubMedCrossRef Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254–62.PubMedCrossRef
5.
go back to reference Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V, Bagur A, Malouf-Sierra J, Lakatos P, Fahrleitner-Pammer A, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391(10117):230–40.PubMedCrossRef Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V, Bagur A, Malouf-Sierra J, Lakatos P, Fahrleitner-Pammer A, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391(10117):230–40.PubMedCrossRef
6.
go back to reference LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, Siris ES. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–102.PubMedPubMedCentralCrossRef LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, Siris ES. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–102.PubMedPubMedCentralCrossRef
7.
go back to reference Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44.PubMedCrossRef Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44.PubMedCrossRef
8.
go back to reference Management of osteoporosis in postmenopausal women. the 2021 position statement of The North American Menopause Society. Menopause. 2021;28(9):973–97.CrossRef Management of osteoporosis in postmenopausal women. the 2021 position statement of The North American Menopause Society. Menopause. 2021;28(9):973–97.CrossRef
9.
go back to reference Rozenberg S, Al-Daghri N, Aubertin-Leheudre M, Brandi ML, Cano A, Collins P, Cooper C, Genazzani AR, Hillard T, Kanis JA, et al. Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis? Osteoporos Int. 2020;31(12):2271–86.PubMedPubMedCentralCrossRef Rozenberg S, Al-Daghri N, Aubertin-Leheudre M, Brandi ML, Cano A, Collins P, Cooper C, Genazzani AR, Hillard T, Kanis JA, et al. Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis? Osteoporos Int. 2020;31(12):2271–86.PubMedPubMedCentralCrossRef
10.
go back to reference Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, et al. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med. 2022;17(1):86.PubMedPubMedCentralCrossRef Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, et al. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med. 2022;17(1):86.PubMedPubMedCentralCrossRef
11.
go back to reference Miller JL, Binns HJ, Brickman WJ. Complementary and alternative medicine use in children with type 1 diabetes: a pilot survey of parents. Explore (NY). 2008;4(5):311–4.PubMedCrossRef Miller JL, Binns HJ, Brickman WJ. Complementary and alternative medicine use in children with type 1 diabetes: a pilot survey of parents. Explore (NY). 2008;4(5):311–4.PubMedCrossRef
12.
go back to reference Mosavat SH, Pasalar M, Joulaei H, Ameli V, Heydari ST, Mirzazadeh A, Hashempur MH. Complementary and alternative medicine use among people living with HIV in Shiraz, Southern Iran. Front Public Health. 2023;11:1206665.PubMedPubMedCentralCrossRef Mosavat SH, Pasalar M, Joulaei H, Ameli V, Heydari ST, Mirzazadeh A, Hashempur MH. Complementary and alternative medicine use among people living with HIV in Shiraz, Southern Iran. Front Public Health. 2023;11:1206665.PubMedPubMedCentralCrossRef
13.
go back to reference Wang YC, Chiang JH, Hsu HC, Tsai CH. Decreased fracture incidence with traditional Chinese medicine therapy in patients with osteoporosis: a nationwide population-based cohort study. BMC Complement Altern Med. 2019;19(1):42.PubMedPubMedCentralCrossRef Wang YC, Chiang JH, Hsu HC, Tsai CH. Decreased fracture incidence with traditional Chinese medicine therapy in patients with osteoporosis: a nationwide population-based cohort study. BMC Complement Altern Med. 2019;19(1):42.PubMedPubMedCentralCrossRef
14.
go back to reference Druart L, Pinsault N. The I-CAM-FR: a French translation and cross-cultural adaptation of the I-CAM-Q. Medicines (Basel). 2018;5(3):72.PubMedCrossRef Druart L, Pinsault N. The I-CAM-FR: a French translation and cross-cultural adaptation of the I-CAM-Q. Medicines (Basel). 2018;5(3):72.PubMedCrossRef
15.
go back to reference He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R, Tao R. Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2014;151(1):78–92.PubMedCrossRef He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R, Tao R. Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2014;151(1):78–92.PubMedCrossRef
16.
go back to reference Jia Y, Sun J, Zhao Y, Tang K, Zhu R, Zhao W, Wang R, Zhang Y, Lin N, Chen W. Chinese patent medicine for osteoporosis: a systematic review and meta-analysis. Bioengineered. 2022;13(3):5581–97.PubMedPubMedCentralCrossRef Jia Y, Sun J, Zhao Y, Tang K, Zhu R, Zhao W, Wang R, Zhang Y, Lin N, Chen W. Chinese patent medicine for osteoporosis: a systematic review and meta-analysis. Bioengineered. 2022;13(3):5581–97.PubMedPubMedCentralCrossRef
17.
go back to reference Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Xu HT, Qin LP, Xin HL, Zhang QY, Li YM. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. J Ethnopharmacol. 2016;189:61–80.PubMedCrossRef Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Xu HT, Qin LP, Xin HL, Zhang QY, Li YM. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. J Ethnopharmacol. 2016;189:61–80.PubMedCrossRef
18.
go back to reference Lei SS, Su J, Zhang Y, Huang XW, Wang XP, Huang MC, Li B, Shou D. Benefits and mechanisms of polysaccharides from Chinese medicinal herbs for anti-osteoporosis therapy: A review. Int J Biol Macromol. 2021;193(Pt B):1996–2005.PubMedCrossRef Lei SS, Su J, Zhang Y, Huang XW, Wang XP, Huang MC, Li B, Shou D. Benefits and mechanisms of polysaccharides from Chinese medicinal herbs for anti-osteoporosis therapy: A review. Int J Biol Macromol. 2021;193(Pt B):1996–2005.PubMedCrossRef
19.
go back to reference Zhao BJ, Wang J, Song J, Wang CF, Gu JF, Yuan JR, Zhang L, Jiang J, Feng L, Jia XB. Beneficial effects of a flavonoid fraction of herba epimedii on bone metabolism in ovariectomized rats. Planta Med. 2016;82(4):322–9.PubMedCrossRef Zhao BJ, Wang J, Song J, Wang CF, Gu JF, Yuan JR, Zhang L, Jiang J, Feng L, Jia XB. Beneficial effects of a flavonoid fraction of herba epimedii on bone metabolism in ovariectomized rats. Planta Med. 2016;82(4):322–9.PubMedCrossRef
20.
go back to reference Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol. 2013;228(3):513–21.PubMedCrossRef Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol. 2013;228(3):513–21.PubMedCrossRef
21.
go back to reference Rayalam S, Della-Fera MA, Baile CA. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol Nutr Food Res. 2011;55(8):1177–85.PubMedCrossRef Rayalam S, Della-Fera MA, Baile CA. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol Nutr Food Res. 2011;55(8):1177–85.PubMedCrossRef
22.
go back to reference He S, Wang T, Shi C, Wang Z, Fu X. Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. J Ethnopharmacol. 2022;282: 114615.PubMedCrossRef He S, Wang T, Shi C, Wang Z, Fu X. Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. J Ethnopharmacol. 2022;282: 114615.PubMedCrossRef
23.
go back to reference Mobasheri A, Shakibaei M. Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis. Ann N Y Acad Sci. 2013;1290:59–66.ADSPubMedCrossRef Mobasheri A, Shakibaei M. Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis. Ann N Y Acad Sci. 2013;1290:59–66.ADSPubMedCrossRef
24.
go back to reference Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.PubMedPubMedCentralCrossRef Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.PubMedPubMedCentralCrossRef
25.
go back to reference UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480-d489. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480-d489.
26.
go back to reference Barshir R, Fishilevich S, Iny-Stein T, Zelig O, Mazor Y, Guan-Golan Y, Safran M, Lancet D. GeneCaRNA: a comprehensive gene-centric database of human non-coding RNAs in the GeneCards suite. J Mol Biol. 2021;433(11):166913.PubMedCrossRef Barshir R, Fishilevich S, Iny-Stein T, Zelig O, Mazor Y, Guan-Golan Y, Safran M, Lancet D. GeneCaRNA: a comprehensive gene-centric database of human non-coding RNAs in the GeneCards suite. J Mol Biol. 2021;433(11):166913.PubMedCrossRef
27.
go back to reference Sneha P, Thirumal Kumar D, Lijo J, Megha M, Siva R. George priya doss c: probing the protein-protein interaction network of proteins causing maturity onset diabetes of the young. Adv Protein Chem Struct Biol. 2018;110:167–202.PubMedCrossRef Sneha P, Thirumal Kumar D, Lijo J, Megha M, Siva R. George priya doss c: probing the protein-protein interaction network of proteins causing maturity onset diabetes of the young. Adv Protein Chem Struct Biol. 2018;110:167–202.PubMedCrossRef
28.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
29.
go back to reference De Marinis I, Lo Surdo P, Cesareni G, Perfetto L. SIGNORApp: a Cytoscape 3 application to access SIGNOR data. Bioinformatics. 2021. De Marinis I, Lo Surdo P, Cesareni G, Perfetto L. SIGNORApp: a Cytoscape 3 application to access SIGNOR data. Bioinformatics. 2021.
30.
go back to reference Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-d361.PubMedCrossRef Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-d361.PubMedCrossRef
31.
go back to reference Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498-d503.PubMed Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498-d503.PubMed
33.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-d592.PubMedCrossRef Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-d592.PubMedCrossRef
34.
go back to reference Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.PubMedPubMedCentralCrossRef Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.PubMedPubMedCentralCrossRef
35.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388-d1395.PubMedCrossRef Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388-d1395.PubMedCrossRef
36.
go back to reference Kuriakose A, Nair B, Abdelgawad MA, Adewum AT, Soliman MES, Mathew B, Nath LR. Evaluation of the active constituents of Nilavembu Kudineer for viral replication inhibition against SARS-CoV-2: An approach to targeting RNA-dependent RNA polymerase (RdRp). J Food Biochem. 2022;46(11):e14367.PubMedCrossRef Kuriakose A, Nair B, Abdelgawad MA, Adewum AT, Soliman MES, Mathew B, Nath LR. Evaluation of the active constituents of Nilavembu Kudineer for viral replication inhibition against SARS-CoV-2: An approach to targeting RNA-dependent RNA polymerase (RdRp). J Food Biochem. 2022;46(11):e14367.PubMedCrossRef
37.
go back to reference Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891–8.PubMedPubMedCentralCrossRef Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891–8.PubMedPubMedCentralCrossRef
38.
go back to reference Ma J, Wang Z, Zhao J, Miao W, Ye T, Chen A. Resveratrol Attenuates Lipopolysaccharides (LPS)-Induced Inhibition of Osteoblast Differentiation in MC3T3-E1 Cells. Med Sci Monit. 2018;24:2045–52.PubMedPubMedCentralCrossRef Ma J, Wang Z, Zhao J, Miao W, Ye T, Chen A. Resveratrol Attenuates Lipopolysaccharides (LPS)-Induced Inhibition of Osteoblast Differentiation in MC3T3-E1 Cells. Med Sci Monit. 2018;24:2045–52.PubMedPubMedCentralCrossRef
39.
go back to reference Wang Y, Zhang L, Wang K, Zhou H, Li G, Xu L, Hu Z, Cao X, Shi F, Zhang S. Circulating Exosomes from Mice with LPS-Induced Bone Loss Inhibit Osteoblast Differentiation. Calcif Tissue Int. 2022;111(2):185–95.PubMedPubMedCentralCrossRef Wang Y, Zhang L, Wang K, Zhou H, Li G, Xu L, Hu Z, Cao X, Shi F, Zhang S. Circulating Exosomes from Mice with LPS-Induced Bone Loss Inhibit Osteoblast Differentiation. Calcif Tissue Int. 2022;111(2):185–95.PubMedPubMedCentralCrossRef
40.
go back to reference Zhao H, Li X, Zhang D, Chen H, Chao Y, Wu K, Dong X, Su J. Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model. Sci Rep. 2018;8(1):16456.ADSPubMedPubMedCentralCrossRef Zhao H, Li X, Zhang D, Chen H, Chao Y, Wu K, Dong X, Su J. Integrative bone metabolomics-lipidomics strategy for pathological mechanism of postmenopausal osteoporosis mouse model. Sci Rep. 2018;8(1):16456.ADSPubMedPubMedCentralCrossRef
41.
go back to reference Liu X, Tao J, Yao Y, Yang P, Wang J, Yu M, Hou J, Zhang Y, Gui LI. Resveratrol induces proliferation in preosteoblast cell MC3T3-E1 via GATA-1 activating autophagy. Acta Biochim Biophys Sin (Shanghai). 2021;53(11):1495–504.PubMedCrossRef Liu X, Tao J, Yao Y, Yang P, Wang J, Yu M, Hou J, Zhang Y, Gui LI. Resveratrol induces proliferation in preosteoblast cell MC3T3-E1 via GATA-1 activating autophagy. Acta Biochim Biophys Sin (Shanghai). 2021;53(11):1495–504.PubMedCrossRef
42.
go back to reference Zhu W, Li Y, Zhao J, Wang Y, Li Y, Wang Y. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Ann Med. 2022;54(1):541–52.PubMedPubMedCentralCrossRef Zhu W, Li Y, Zhao J, Wang Y, Li Y, Wang Y. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Ann Med. 2022;54(1):541–52.PubMedPubMedCentralCrossRef
43.
go back to reference Jiang Y, Luo W, Wang B, Wang X, Gong P, Xiong Y. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci. 2020;246:117422.PubMedCrossRef Jiang Y, Luo W, Wang B, Wang X, Gong P, Xiong Y. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci. 2020;246:117422.PubMedCrossRef
Metadata
Title
Molecular mechanism of resveratrol promoting differentiation of preosteoblastic MC3T3-E1 cells based on network pharmacology and experimental validation
Authors
Yu He
Fei Liu
Mingjuan He
Fayu Long
Ding Hu
Jingwen Chen
Miao Fang
Zhenlong Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04396-3

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue