Skip to main content
Top
Published in: International Journal of Diabetes in Developing Countries 4/2016

01-12-2016 | Original Article

Gene expression profiling of the peripheral blood mononuclear cells of offspring of one type 2 diabetic parent

Authors: Sher Zaman Safi, Rajes Qvist, Karuthan Chinna, Muhammad Aqeel Ashraf, Darishiani Paramasivam, Ikram Shah Ismail

Published in: International Journal of Diabetes in Developing Countries | Issue 4/2016

Login to get access

Abstract

Several lines of evidence from studies of both twins and offspring of people with type 2 diabetes have shown the importance of genetics in its pathogenesis. Impaired glucose tolerance (IGT) may reflect these genetic changes during the prediabetic stage. Thus, we performed a comprehensive analysis of the gene expression profiles of the peripheral blood mononuclear cells among offspring of one type 2 diabetic parent with normal glucose tolerance and impaired glucose tolerance in comparison to newly diagnosed diabetics and normal controls. Data were analysed from offspring of one type 2 diabetic parent. Gene expression profiles of 84 genes related to insulin-responsive genes were analysed using human insulin signalling pathway array. Of the 84 genes, 42 diabetic genes had at least a twofold change in expression for at least one comparison between the diabetic subjects, offspring with NGT and offspring with IGT as compared with controls. The most significant findings were that FOXP3 and SNAP25 were highly expressed in the offspring with IGT as compared with the controls, with a sixfold change in expression. The differential expression of the 42 genes among the offspring with IGT mainly demonstrates a defect in insulin secretion which suggests β cell dysfunction. The preponderance of experimental evidence favours the presence of impaired rather than excessive insulin secretion in the offspring before the development of IGT and thus supports the concept that the initial lesion in type 2 diabetes may involve impaired insulin secretion rather than insulin resistance. The results from our study suggest that β cell dysfunction starts early in the pathologic process and does not necessarily follow the stage of insulin resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference BennettPH BC, TuommilehtoJ ZP. Epidemiology and natural history of NIDDM: non obese and obese. In: Alberti KGMM, De Fronzo RA, Keen H, Zimmet P, editors. International textbook of diabetes mellitus. Chichester: Wiley; 1992. p. 148–69. BennettPH BC, TuommilehtoJ ZP. Epidemiology and natural history of NIDDM: non obese and obese. In: Alberti KGMM, De Fronzo RA, Keen H, Zimmet P, editors. International textbook of diabetes mellitus. Chichester: Wiley; 1992. p. 148–69.
2.
go back to reference Ebelin SC. Genetics of type 2 diabetes: an overview for the millennium. Diabetes Technol Ther. 2000;2:391–400.CrossRef Ebelin SC. Genetics of type 2 diabetes: an overview for the millennium. Diabetes Technol Ther. 2000;2:391–400.CrossRef
3.
go back to reference McCarthy MI, Hitman GA, Shields DC, Morton NE, Snehalatha C, et al. Family studies of non-insulin dependent diabetes mellitus in South Indians. Diabetologia. 1994;37:1221–30.CrossRefPubMed McCarthy MI, Hitman GA, Shields DC, Morton NE, Snehalatha C, et al. Family studies of non-insulin dependent diabetes mellitus in South Indians. Diabetologia. 1994;37:1221–30.CrossRefPubMed
4.
go back to reference HaffnerSM SMP, Hazula HP, Pugh H, Patterson JK. Increased insulin concentrations in non-diabetic offspring of diabetic patients. Nengl J Med. 1988;319:1297–301.CrossRef HaffnerSM SMP, Hazula HP, Pugh H, Patterson JK. Increased insulin concentrations in non-diabetic offspring of diabetic patients. Nengl J Med. 1988;319:1297–301.CrossRef
5.
go back to reference Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Järvinen H, et al. Impaired glucose tolerance as a disorder of insulin action: longitudinal and cross-sectional studies in Pima Indians. N Engl J Med. 1988;318:1217–25.CrossRefPubMed Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Järvinen H, et al. Impaired glucose tolerance as a disorder of insulin action: longitudinal and cross-sectional studies in Pima Indians. N Engl J Med. 1988;318:1217–25.CrossRefPubMed
6.
go back to reference Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. 2014;2014. doi:10.1155/2014/801269. Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. 2014;2014. doi:10.​1155/​2014/​801269.
7.
go back to reference Poulsen P, Kyvik KO, Vaag A, Beck-Nielson H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose signalling population based twin study. Diabetologia. 1999;42:139–45.CrossRefPubMed Poulsen P, Kyvik KO, Vaag A, Beck-Nielson H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose signalling population based twin study. Diabetologia. 1999;42:139–45.CrossRefPubMed
8.
9.
go back to reference Stegenga ME, Van de Crabben SN, Dessing MC, Pater JM, Van den Panggart PS, et al. Effect of acute hyperglycaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med. 2008;25:157–64.CrossRefPubMedPubMedCentral Stegenga ME, Van de Crabben SN, Dessing MC, Pater JM, Van den Panggart PS, et al. Effect of acute hyperglycaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med. 2008;25:157–64.CrossRefPubMedPubMedCentral
10.
go back to reference Choong CL, Jun M, Hong CT, et al. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Med. 2006;147:126–32.CrossRef Choong CL, Jun M, Hong CT, et al. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Med. 2006;147:126–32.CrossRef
11.
go back to reference Gokulakrishnan K, Mohanavalli KT, Monickaraj F, et al. Subclinical inflammation/oxidation as revealed by altered gene expression profiles in subjects with impaired glucose tolerance and type 2 diabetes patients. Mol Cell Biochem. 2009;324:173–81.CrossRefPubMed Gokulakrishnan K, Mohanavalli KT, Monickaraj F, et al. Subclinical inflammation/oxidation as revealed by altered gene expression profiles in subjects with impaired glucose tolerance and type 2 diabetes patients. Mol Cell Biochem. 2009;324:173–81.CrossRefPubMed
12.
go back to reference Palsgaard J, Bronse C, Fredrichsen M, Dominguez H, Jensen M, et al. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signalling pathways. PLoS One. 2009;4(e):6575.CrossRef Palsgaard J, Bronse C, Fredrichsen M, Dominguez H, Jensen M, et al. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signalling pathways. PLoS One. 2009;4(e):6575.CrossRef
13.
go back to reference National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose tolerance. Diabetes. 1979;28:1039–47.CrossRef National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose tolerance. Diabetes. 1979;28:1039–47.CrossRef
14.
go back to reference Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma without the use of preparatory centrifuge. Clin Chem. 1972;18:499–503.PubMed Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma without the use of preparatory centrifuge. Clin Chem. 1972;18:499–503.PubMed
15.
go back to reference Zraika S, Dunlop ME, Proietto J, Andrikopoulos S. Elevated SNAP-25 is associated with fatty acid induced impairment of mouse islet function. Biochem Biophys Res Commun. 2004;317:472–7.CrossRefPubMed Zraika S, Dunlop ME, Proietto J, Andrikopoulos S. Elevated SNAP-25 is associated with fatty acid induced impairment of mouse islet function. Biochem Biophys Res Commun. 2004;317:472–7.CrossRefPubMed
16.
go back to reference Eliasson L, GaisanoS VJ. Reduced stimulation by cAMP in insulin secreting calls over expressing truncated SNAP 25. Diabetologia. 2005;48:A172.CrossRef Eliasson L, GaisanoS VJ. Reduced stimulation by cAMP in insulin secreting calls over expressing truncated SNAP 25. Diabetologia. 2005;48:A172.CrossRef
17.
go back to reference Liston A, Katherine N, Andrew F, Jennifer L, Jeffery R, et al. Differentiation of regulatory Foxp3 + T cells in the thymic cortex. Proc Natl Acad Sci USA. 2008;105:11903–8.CrossRefPubMedPubMedCentral Liston A, Katherine N, Andrew F, Jennifer L, Jeffery R, et al. Differentiation of regulatory Foxp3 + T cells in the thymic cortex. Proc Natl Acad Sci USA. 2008;105:11903–8.CrossRefPubMedPubMedCentral
18.
go back to reference Wan JC. TGF-β regulates reciprocal differentiation of CD4 + CD25 + Foxp3 + regulatory T cells and IL-17-producing Th17 cells from naïve CD4 + CD25—T cells. In: Jiang and Shuiping (eds.) Regulatory T cells and clinical application. Springer: 2009. pp. 111–134.doi: 10.1007/978-0-387-77909-6- 7. Wan JC. TGF-β regulates reciprocal differentiation of CD4 + CD25 + Foxp3 + regulatory T cells and IL-17-producing Th17 cells from naïve CD4 + CD25—T cells. In: Jiang and Shuiping (eds.) Regulatory T cells and clinical application. Springer: 2009. pp. 111–134.doi: 10.1007/978-0-387-77909-6- 7.
19.
20.
go back to reference Huehn J, Polansky JK, Hamann A. Epigenetic control of Foxp3 expression: the key to a stable regulatory T-cell lineage. Nat Rev Immunol. 2009;9(2):83–9.CrossRefPubMed Huehn J, Polansky JK, Hamann A. Epigenetic control of Foxp3 expression: the key to a stable regulatory T-cell lineage. Nat Rev Immunol. 2009;9(2):83–9.CrossRefPubMed
21.
go back to reference Polansky JK, Kretchmer K, Freyer J, Floess S, Garbe A, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008;38:1654–63.CrossRefPubMed Polansky JK, Kretchmer K, Freyer J, Floess S, Garbe A, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008;38:1654–63.CrossRefPubMed
22.
go back to reference Voo KS, Wang YH, Santori FR, Boggiano C, Wang YH, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Immunology. 2009;106:4793–8. Voo KS, Wang YH, Santori FR, Boggiano C, Wang YH, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Immunology. 2009;106:4793–8.
23.
go back to reference Jagannathan-BM MDME, ShinH RQ, Hasturk H, et al. Elevated proinflammatory cytokine production by a22ignal cell compartment requires monocytes and promotes inflammation in type 2 diabetes. Jimmunol. 2011;185:1162–72.CrossRef Jagannathan-BM MDME, ShinH RQ, Hasturk H, et al. Elevated proinflammatory cytokine production by a22ignal cell compartment requires monocytes and promotes inflammation in type 2 diabetes. Jimmunol. 2011;185:1162–72.CrossRef
24.
go back to reference Zuniga LA, Shen WJ, Joyce- Shaikh B, Pyatnova EA, Richards AG, et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol. 2010;185:6947–59.CrossRefPubMedPubMedCentral Zuniga LA, Shen WJ, Joyce- Shaikh B, Pyatnova EA, Richards AG, et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol. 2010;185:6947–59.CrossRefPubMedPubMedCentral
25.
go back to reference Sharma AM, Staels B. Peroxisome proliferator-activated receptor gamma and adipose tissue: understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metabol. 2007;92:386–95.CrossRef Sharma AM, Staels B. Peroxisome proliferator-activated receptor gamma and adipose tissue: understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metabol. 2007;92:386–95.CrossRef
26.
go back to reference Puigserver P, Spiegelmen BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.CrossRefPubMed Puigserver P, Spiegelmen BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.CrossRefPubMed
27.
28.
go back to reference Parton LE, Diraison F, Neill SE, Ghosh SK, Rubino MA, et al. Impact of PPARγ overexpression and activation on pancreatic islet gene expression profile ignalli with oligonucleotide microarrays. Am J Physiol Endocrinol Metab. 2004;287:E390–404.CrossRefPubMed Parton LE, Diraison F, Neill SE, Ghosh SK, Rubino MA, et al. Impact of PPARγ overexpression and activation on pancreatic islet gene expression profile ignalli with oligonucleotide microarrays. Am J Physiol Endocrinol Metab. 2004;287:E390–404.CrossRefPubMed
29.
go back to reference Jeffrey E, Pessin, Alan RS. Signaling pathways in insulin action: molecular targets of insulin resistance. J ClinInves. 2000;106(2):165–9. Jeffrey E, Pessin, Alan RS. Signaling pathways in insulin action: molecular targets of insulin resistance. J ClinInves. 2000;106(2):165–9.
30.
go back to reference Lorella M, Jeffrey T, Sonika D, Dennis CS, Arun S, et al. Gene expression profiles of beta-cell encroached tissue obtained by laser capture microdissection from subjects with type 2 diabetes. Plos One. 2010;5(7):e11499.CrossRef Lorella M, Jeffrey T, Sonika D, Dennis CS, Arun S, et al. Gene expression profiles of beta-cell encroached tissue obtained by laser capture microdissection from subjects with type 2 diabetes. Plos One. 2010;5(7):e11499.CrossRef
31.
go back to reference Herman C, Goke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56(2):117–26.CrossRef Herman C, Goke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56(2):117–26.CrossRef
32.
go back to reference Kamuichi K, Hasegawa G, Obayashi H, Kitamura A, Ishii M, et al. Leukocyte-endothelial cell adhesion molecule 1 (LECAM-1) polymorphism is associated with diabetic nephropathy in type 2 diabetes mellitus. J Diabetes Complications. 2002;16:333–7.CrossRef Kamuichi K, Hasegawa G, Obayashi H, Kitamura A, Ishii M, et al. Leukocyte-endothelial cell adhesion molecule 1 (LECAM-1) polymorphism is associated with diabetic nephropathy in type 2 diabetes mellitus. J Diabetes Complications. 2002;16:333–7.CrossRef
33.
go back to reference Jiyoung P, Sung SC, Hyun AC, Kang HK, Myeong JY, et al. Increase in glucose-6-phosphate dehydrogenase in adipocytes stimulates oxidative stress and inflammatory signals. Diabetes. 2006;55:2939–49.CrossRef Jiyoung P, Sung SC, Hyun AC, Kang HK, Myeong JY, et al. Increase in glucose-6-phosphate dehydrogenase in adipocytes stimulates oxidative stress and inflammatory signals. Diabetes. 2006;55:2939–49.CrossRef
34.
go back to reference Xu J, Han J, Long YS, Lock J, Weir GC, et al. Malic enzyme is present in mouse islets and modulates insulin secretion. Diabetalogia. 2008;51(12):2281–9.CrossRef Xu J, Han J, Long YS, Lock J, Weir GC, et al. Malic enzyme is present in mouse islets and modulates insulin secretion. Diabetalogia. 2008;51(12):2281–9.CrossRef
35.
go back to reference Boni-Schnetzler M, Thorne J, Parmaud G, Marselli L, Ehes JA, et al. Increased interleukin-1 βmessenger ribonucleic acid expression in β cells of individuals with type 2 diabetes and regulation of IL-β in human islets by glucose and autostimulation. J Clin Endocrinol Metab. 2008;93:4065–74.CrossRefPubMedPubMedCentral Boni-Schnetzler M, Thorne J, Parmaud G, Marselli L, Ehes JA, et al. Increased interleukin-1 βmessenger ribonucleic acid expression in β cells of individuals with type 2 diabetes and regulation of IL-β in human islets by glucose and autostimulation. J Clin Endocrinol Metab. 2008;93:4065–74.CrossRefPubMedPubMedCentral
36.
go back to reference Lupi R, Del Prato S. Beta cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes Metab. 2008;34 Suppl 2:56–64.CrossRef Lupi R, Del Prato S. Beta cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes Metab. 2008;34 Suppl 2:56–64.CrossRef
37.
go back to reference Cerasi E, Kaiser N, Leibowitz G. Type 2 diabetes and beta cell apoptosis. Diabetes Metab. 2000;26(Suppl3):13–26.PubMed Cerasi E, Kaiser N, Leibowitz G. Type 2 diabetes and beta cell apoptosis. Diabetes Metab. 2000;26(Suppl3):13–26.PubMed
38.
go back to reference Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576:1–14.CrossRefPubMed Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576:1–14.CrossRefPubMed
39.
go back to reference Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:179–83.CrossRefPubMed Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:179–83.CrossRefPubMed
40.
go back to reference Trumper A, TrumperK HD. Mechanism of mitogenic and anti-apoptotic signalling by glucose-dependent insulinotropic polypeptide in β (INS-1)-cells. J Endocrinol. 2002;174:233–46.CrossRefPubMed Trumper A, TrumperK HD. Mechanism of mitogenic and anti-apoptotic signalling by glucose-dependent insulinotropic polypeptide in β (INS-1)-cells. J Endocrinol. 2002;174:233–46.CrossRefPubMed
42.
go back to reference Fida B, So JL, Neslihan G, Silva AA. From prediabetes to type 2 diabetes in obese youth. Diabetes Care. 2010;33(10):2225–31.CrossRef Fida B, So JL, Neslihan G, Silva AA. From prediabetes to type 2 diabetes in obese youth. Diabetes Care. 2010;33(10):2225–31.CrossRef
43.
go back to reference Timon WVH, Walkyria P, Asimina M, et al. Disturbances in β-cell function in impaired fasting glycemia. Diabetes. 2002;51 Suppl 1:S265–70. Timon WVH, Walkyria P, Asimina M, et al. Disturbances in β-cell function in impaired fasting glycemia. Diabetes. 2002;51 Suppl 1:S265–70.
Metadata
Title
Gene expression profiling of the peripheral blood mononuclear cells of offspring of one type 2 diabetic parent
Authors
Sher Zaman Safi
Rajes Qvist
Karuthan Chinna
Muhammad Aqeel Ashraf
Darishiani Paramasivam
Ikram Shah Ismail
Publication date
01-12-2016
Publisher
Springer India
Published in
International Journal of Diabetes in Developing Countries / Issue 4/2016
Print ISSN: 0973-3930
Electronic ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-015-0369-1

Other articles of this Issue 4/2016

International Journal of Diabetes in Developing Countries 4/2016 Go to the issue