Skip to main content
Top
Published in: The Cerebellum 2/2024

31-03-2023 | Gaze-Evoked Nystagmus | Review

A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias

Authors: Mehri Salari, Masoud Etemadifar, Ronak Rashedi, Sayna Mardani

Published in: The Cerebellum | Issue 2/2024

Login to get access

Abstract

Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Appendix
Available only for authorised users
Literature
2.
go back to reference Joo B-E, Lee C-N, Park K-W. Prevalence rate and functional status of cerebellar ataxia in Korea. The Cerebellum. 2012;11(3):733–8.PubMedCrossRef Joo B-E, Lee C-N, Park K-W. Prevalence rate and functional status of cerebellar ataxia in Korea. The Cerebellum. 2012;11(3):733–8.PubMedCrossRef
3.
go back to reference Musselman KE, Stoyanov CT, Marasigan R, Jenkins ME, Konczak J, Morton SM, et al. Prevalence of ataxia in children: a systematic review. Neurology. 2014;82(1):80–9.PubMedPubMedCentralCrossRef Musselman KE, Stoyanov CT, Marasigan R, Jenkins ME, Konczak J, Morton SM, et al. Prevalence of ataxia in children: a systematic review. Neurology. 2014;82(1):80–9.PubMedPubMedCentralCrossRef
4.
go back to reference Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ. A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PLoS One. 2018;13(11):e0203924.PubMedPubMedCentralCrossRef Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ. A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PLoS One. 2018;13(11):e0203924.PubMedPubMedCentralCrossRef
5.
go back to reference Lopez A, Ferrero F, Postolache O. An affordable method for evaluation of ataxic disorders based on electrooculography. Sensors (Basel). 2019;19(17):3756.PubMedCrossRef Lopez A, Ferrero F, Postolache O. An affordable method for evaluation of ataxic disorders based on electrooculography. Sensors (Basel). 2019;19(17):3756.PubMedCrossRef
9.
go back to reference Alexandre MF, Rivaud-Pechoux S, Challe G, Durr A, Gaymard B. Functional consequences of oculomotor disorders in hereditary cerebellar ataxias. Cerebellum. 2013;12(3):396–405.PubMedCrossRef Alexandre MF, Rivaud-Pechoux S, Challe G, Durr A, Gaymard B. Functional consequences of oculomotor disorders in hereditary cerebellar ataxias. Cerebellum. 2013;12(3):396–405.PubMedCrossRef
10.
go back to reference Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, et al. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Commun. 2022;4(2):fcac030.PubMedPubMedCentralCrossRef Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, et al. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Commun. 2022;4(2):fcac030.PubMedPubMedCentralCrossRef
11.
go back to reference Du Y-C, Ma Y, Shao Y-R, Gan S-R, Dong Y, Wu Z-Y. Factors associated with intergenerational instability of ATXN3 CAG repeat and genetic anticipation in Chinese patients with spinocerebellar ataxia type 3. The Cerebellum. 2020;19(6):902–6.PubMedCrossRef Du Y-C, Ma Y, Shao Y-R, Gan S-R, Dong Y, Wu Z-Y. Factors associated with intergenerational instability of ATXN3 CAG repeat and genetic anticipation in Chinese patients with spinocerebellar ataxia type 3. The Cerebellum. 2020;19(6):902–6.PubMedCrossRef
12.
13.
go back to reference Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2011;6(1):33.PubMedPubMedCentralCrossRef Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2011;6(1):33.PubMedPubMedCentralCrossRef
14.
go back to reference Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. Brain. 1982;105(1):1–28.PubMedCrossRef Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. Brain. 1982;105(1):1–28.PubMedCrossRef
15.
go back to reference Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2013;8(1):14.PubMedPubMedCentralCrossRef Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 2013;8(1):14.PubMedPubMedCentralCrossRef
16.
go back to reference Orr HT, Chung M, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6.PubMedCrossRef Orr HT, Chung M, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6.PubMedCrossRef
18.
go back to reference Adachi M, Kawanami T, Ohshima H, Hosoya T. Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology. 2006;48(1):8–13.PubMedCrossRef Adachi M, Kawanami T, Ohshima H, Hosoya T. Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology. 2006;48(1):8–13.PubMedCrossRef
19.
go back to reference Ishida C, Komai K, Yonezawa K, Sakajiri K-I, Nitta E, Kawashima A, et al. An autopsy case of an aged patient with spinocerebellar ataxia type 2. Neuropathology. 2011;31(5):510–8.PubMedCrossRef Ishida C, Komai K, Yonezawa K, Sakajiri K-I, Nitta E, Kawashima A, et al. An autopsy case of an aged patient with spinocerebellar ataxia type 2. Neuropathology. 2011;31(5):510–8.PubMedCrossRef
20.
go back to reference Vale J, Bugalho P, Silveira I, Sequeiros J, Guimarães J, Coutinho P. Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal. Eur J Neurol. 2010;17(1):124–8.PubMedCrossRef Vale J, Bugalho P, Silveira I, Sequeiros J, Guimarães J, Coutinho P. Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal. Eur J Neurol. 2010;17(1):124–8.PubMedCrossRef
21.
go back to reference Rossi M, Perez-Lloret S, Doldan L, Cerquetti D, Balej J, Millar Vernetti P, et al. Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol. 2014;21(4):607–15.PubMedCrossRef Rossi M, Perez-Lloret S, Doldan L, Cerquetti D, Balej J, Millar Vernetti P, et al. Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol. 2014;21(4):607–15.PubMedCrossRef
22.
go back to reference Moscovich M, Okun MS, Favilla C, Figueroa KP, Pulst SM, Perlman S, et al. Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J neuro-ophthalmology Off J North Am Neuro-Ophthalmology Soc. 2015;35(1):16–21.CrossRef Moscovich M, Okun MS, Favilla C, Figueroa KP, Pulst SM, Perlman S, et al. Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J neuro-ophthalmology Off J North Am Neuro-Ophthalmology Soc. 2015;35(1):16–21.CrossRef
23.
go back to reference Nishiguchi KM, Aoki M, Nakazawa T, Abe T. Macular degeneration as a common cause of visual loss in spinocerebellar ataxia type 1 (SCA1) patients. Ophthalmic Genet. 2019;40(1):49–53.PubMedCrossRef Nishiguchi KM, Aoki M, Nakazawa T, Abe T. Macular degeneration as a common cause of visual loss in spinocerebellar ataxia type 1 (SCA1) patients. Ophthalmic Genet. 2019;40(1):49–53.PubMedCrossRef
24.
go back to reference Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(5):1497–505.PubMedCrossRef Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(5):1497–505.PubMedCrossRef
25.
go back to reference Rodriguez-Labrada R, Velazquez-Perez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, et al. Spinocerebellar ataxia type 2: measures of saccade changes improve power for clinical trials. Mov Disord. 2016;31(4):570–8.PubMedCrossRef Rodriguez-Labrada R, Velazquez-Perez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, et al. Spinocerebellar ataxia type 2: measures of saccade changes improve power for clinical trials. Mov Disord. 2016;31(4):570–8.PubMedCrossRef
26.
go back to reference Kim JS, Kim JS, Youn J, Seo D-W, Jeong Y, Kang J-H, et al. Ocular motor characteristics of different subtypes of spinocerebellar ataxia: distinguishing features. Mov Disord. 2013;28(9):1271–7.PubMedCrossRef Kim JS, Kim JS, Youn J, Seo D-W, Jeong Y, Kang J-H, et al. Ocular motor characteristics of different subtypes of spinocerebellar ataxia: distinguishing features. Mov Disord. 2013;28(9):1271–7.PubMedCrossRef
27.
go back to reference Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246(9):789–97.PubMedCrossRef Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246(9):789–97.PubMedCrossRef
28.
go back to reference Harmuth T, Weber JJ, Zimmer AJ, Sowa AS, Schmidt J, Fitzgerald JC, et al. Mitochondrial dysfunction in spinocerebellar ataxia type 3 is linked to VDAC1 deubiquitination. Int J Mol Sci. 2022;23(11):5933.PubMedPubMedCentralCrossRef Harmuth T, Weber JJ, Zimmer AJ, Sowa AS, Schmidt J, Fitzgerald JC, et al. Mitochondrial dysfunction in spinocerebellar ataxia type 3 is linked to VDAC1 deubiquitination. Int J Mol Sci. 2022;23(11):5933.PubMedPubMedCentralCrossRef
29.
go back to reference Koeppen AH. The neuropathology of spinocerebellar ataxia type 3/Machado-Joseph disease. Adv Exp Med Biol. 2018;1049:233–41.PubMedCrossRef Koeppen AH. The neuropathology of spinocerebellar ataxia type 3/Machado-Joseph disease. Adv Exp Med Biol. 2018;1049:233–41.PubMedCrossRef
30.
go back to reference Clausi S, De Luca M, Chiricozzi FR, Tedesco AM, Casali C, Molinari M, et al. Oculomotor deficits affect neuropsychological performance in oculomotor apraxia type 2. Cortex. 2013;49(3):691–701.PubMedCrossRef Clausi S, De Luca M, Chiricozzi FR, Tedesco AM, Casali C, Molinari M, et al. Oculomotor deficits affect neuropsychological performance in oculomotor apraxia type 2. Cortex. 2013;49(3):691–701.PubMedCrossRef
31.
33.
go back to reference Butteriss D, Chinnery P, Birchall D. Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol. 2005;78(932):694–6.PubMedCrossRef Butteriss D, Chinnery P, Birchall D. Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol. 2005;78(932):694–6.PubMedCrossRef
34.
go back to reference Franklin GL, Meira AT, Camargo CHF, Nascimento FA, Teive HAG. Upward gaze palsy: a valuable sign to distinguish spinocerebellar ataxias. The Cerebellum. 2020;19(5):685–90.PubMedCrossRef Franklin GL, Meira AT, Camargo CHF, Nascimento FA, Teive HAG. Upward gaze palsy: a valuable sign to distinguish spinocerebellar ataxias. The Cerebellum. 2020;19(5):685–90.PubMedCrossRef
35.
go back to reference Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet. 1996;59(2):392–9.PubMedPubMedCentral Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet. 1996;59(2):392–9.PubMedPubMedCentral
36.
go back to reference Hellenbroich Y, Bernard V, Zühlke C. Spinocerebellar ataxia type 4 and 16q22.1-linked Japanese ataxia are not allelic. J Neurol. 2008;255(4):612–3.PubMedCrossRef Hellenbroich Y, Bernard V, Zühlke C. Spinocerebellar ataxia type 4 and 16q22.1-linked Japanese ataxia are not allelic. J Neurol. 2008;255(4):612–3.PubMedCrossRef
37.
go back to reference Hellenbroich Y, Gierga K, Reusche E, Schwinger E, Deller T, de Vos RAI, et al. Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm. 2006;113(7):829–43.PubMedCrossRef Hellenbroich Y, Gierga K, Reusche E, Schwinger E, Deller T, de Vos RAI, et al. Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm. 2006;113(7):829–43.PubMedCrossRef
38.
go back to reference Maschke M, Oehlert G, Xie T-D, Perlman S, Subramony SH, Kumar N, et al. Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov Disord. 2005;20:1405–12.PubMedCrossRef Maschke M, Oehlert G, Xie T-D, Perlman S, Subramony SH, Kumar N, et al. Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov Disord. 2005;20:1405–12.PubMedCrossRef
39.
go back to reference Accogli A, St-Onge J, Addour-Boudrahem N, Lafond-Lapalme J, Laporte AD, Rouleau GA, et al. Heterozygous missense pathogenic variants within the second spectrin repeat of SPTBN2 lead to infantile-onset cerebellar ataxia. J Child Neurol. 2020;35(2):106–10.PubMedCrossRef Accogli A, St-Onge J, Addour-Boudrahem N, Lafond-Lapalme J, Laporte AD, Rouleau GA, et al. Heterozygous missense pathogenic variants within the second spectrin repeat of SPTBN2 lead to infantile-onset cerebellar ataxia. J Child Neurol. 2020;35(2):106–10.PubMedCrossRef
40.
go back to reference Dick KA, Ikeda Y, Day JW, Ranum LPW. Spinocerebellar ataxia type 5. Handb Clin Neurol. 2012;103:451–9.PubMedCrossRef Dick KA, Ikeda Y, Day JW, Ranum LPW. Spinocerebellar ataxia type 5. Handb Clin Neurol. 2012;103:451–9.PubMedCrossRef
41.
go back to reference Burk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C, et al. Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology. 2004;62(2):327–9.PubMedCrossRef Burk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C, et al. Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology. 2004;62(2):327–9.PubMedCrossRef
42.
go back to reference Rosini F, Pretegiani E, Battisti C, Dotti MT, Federico A, Rufa A. Eye movement changes in autosomal dominant spinocerebellar ataxias. Neurol Sci. 2020;41:1719–34.PubMedCrossRef Rosini F, Pretegiani E, Battisti C, Dotti MT, Federico A, Rufa A. Eye movement changes in autosomal dominant spinocerebellar ataxias. Neurol Sci. 2020;41:1719–34.PubMedCrossRef
43.
go back to reference Nicita F, Nardella M, Bellacchio E, Alfieri P, Terrone G, Piccini G, et al. Heterozygous missense variants of SPTBN2 are a frequent cause of congenital cerebellar ataxia. Clin Genet. 2019;96(2):169–75.PubMedCrossRef Nicita F, Nardella M, Bellacchio E, Alfieri P, Terrone G, Piccini G, et al. Heterozygous missense variants of SPTBN2 are a frequent cause of congenital cerebellar ataxia. Clin Genet. 2019;96(2):169–75.PubMedCrossRef
44.
go back to reference Spagnoli C, Frattini D, Gozzi F, Rizzi S, Salerno GG, Cimino L, et al. Infantile-onset spinocerebellar ataxia type 5 (SCA5) with optic atrophy and peripheral neuropathy. The Cerebellum. 2021;20(3):481–3.PubMedCrossRef Spagnoli C, Frattini D, Gozzi F, Rizzi S, Salerno GG, Cimino L, et al. Infantile-onset spinocerebellar ataxia type 5 (SCA5) with optic atrophy and peripheral neuropathy. The Cerebellum. 2021;20(3):481–3.PubMedCrossRef
45.
go back to reference Rentiya Z, Hutnik R, Mekkam YQ, Bae J. The pathophysiology and clinical manifestations of spinocerebellar ataxia type 6. Cerebellum. 2020;19:459–64.PubMedCrossRef Rentiya Z, Hutnik R, Mekkam YQ, Bae J. The pathophysiology and clinical manifestations of spinocerebellar ataxia type 6. Cerebellum. 2020;19:459–64.PubMedCrossRef
46.
go back to reference Sinke RJ, Ippel EF, Diepstraten CM, Beemer FA, Wokke JH, van Hilten BJ, et al. Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Arch Neurol. 2001;58:1839–44.PubMedCrossRef Sinke RJ, Ippel EF, Diepstraten CM, Beemer FA, Wokke JH, van Hilten BJ, et al. Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Arch Neurol. 2001;58:1839–44.PubMedCrossRef
47.
go back to reference Christova P, Anderson JH, Gomez CM. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch Neurol. 2008;65(4):530–6.PubMedCrossRef Christova P, Anderson JH, Gomez CM. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch Neurol. 2008;65(4):530–6.PubMedCrossRef
48.
go back to reference Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42(6):933–50.PubMedCrossRef Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42(6):933–50.PubMedCrossRef
50.
go back to reference Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf H-W, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124(1):1–21.PubMedCrossRef Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf H-W, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124(1):1–21.PubMedCrossRef
51.
go back to reference Isashiki Y, Kii Y, Ohba N, Nakagawa M. Retinopathy associated with Machado--Joseph disease (spinocerebellar ataxia 3) with CAG trinucleotide repeat expansion. Am J Ophthalmol. 2001;131(6):808–10.PubMedCrossRef Isashiki Y, Kii Y, Ohba N, Nakagawa M. Retinopathy associated with Machado--Joseph disease (spinocerebellar ataxia 3) with CAG trinucleotide repeat expansion. Am J Ophthalmol. 2001;131(6):808–10.PubMedCrossRef
52.
go back to reference Stephen CD, Schmahmann JD. Eye movement abnormalities are ubiquitous in the spinocerebellar ataxias. Cerebellum. 2019;18(6):1130–6.PubMedCrossRef Stephen CD, Schmahmann JD. Eye movement abnormalities are ubiquitous in the spinocerebellar ataxias. Cerebellum. 2019;18(6):1130–6.PubMedCrossRef
53.
go back to reference Oh AK, Jacobson KM, Jen JC, Baloh RW. Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol. 2001;49(6):801–4.PubMedCrossRef Oh AK, Jacobson KM, Jen JC, Baloh RW. Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol. 2001;49(6):801–4.PubMedCrossRef
54.
go back to reference Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21(4):379–84.PubMedCrossRef Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21(4):379–84.PubMedCrossRef
55.
go back to reference Zeman A. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry. 2004;75(3):459–65.PubMedPubMedCentralCrossRef Zeman A. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry. 2004;75(3):459–65.PubMedPubMedCentralCrossRef
56.
go back to reference Kim JS, Son TO, Youn J, Ki C-S, Cho JW. Non-ataxic phenotypes of SCA8 mimicking amyotrophic lateral sclerosis and Parkinson disease. J Clin Neurol. 2013;9(4):274.PubMedPubMedCentralCrossRef Kim JS, Son TO, Youn J, Ki C-S, Cho JW. Non-ataxic phenotypes of SCA8 mimicking amyotrophic lateral sclerosis and Parkinson disease. J Clin Neurol. 2013;9(4):274.PubMedPubMedCentralCrossRef
57.
go back to reference Zhou Y, Yuan Y, Liu Z, Zeng S, Chen Z, Shen L, et al. Genetic and clinical analyses of spinocerebellar ataxia type 8 in mainland China. J Neurol. 2019;266:2979–86.PubMedCrossRef Zhou Y, Yuan Y, Liu Z, Zeng S, Chen Z, Shen L, et al. Genetic and clinical analyses of spinocerebellar ataxia type 8 in mainland China. J Neurol. 2019;266:2979–86.PubMedCrossRef
58.
go back to reference Hernandez-Castillo CR, Diaz R, Vaca-Palomares I, Torres DL, Chirino A, Campos-Romo A, et al. Extensive cerebellar and thalamic degeneration in spinocerebellar ataxia type 10. Parkinsonism Relat Disord. 2019;66:182–8.PubMedCrossRef Hernandez-Castillo CR, Diaz R, Vaca-Palomares I, Torres DL, Chirino A, Campos-Romo A, et al. Extensive cerebellar and thalamic degeneration in spinocerebellar ataxia type 10. Parkinsonism Relat Disord. 2019;66:182–8.PubMedCrossRef
59.
go back to reference Teive HAG, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, et al. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo). 2012;67(5):443–9.PubMedPubMedCentralCrossRef Teive HAG, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, et al. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo). 2012;67(5):443–9.PubMedPubMedCentralCrossRef
61.
go back to reference Sullivan R, Yau WY, O’Connor E, Houlden H. Spinocerebellar ataxia: an update. J Neurol. 2019;266(2):533–44.PubMedCrossRef Sullivan R, Yau WY, O’Connor E, Houlden H. Spinocerebellar ataxia: an update. J Neurol. 2019;266(2):533–44.PubMedCrossRef
62.
go back to reference Johnson J, Wood N, Giunti P, Houlden H. Clinical and genetic analysis of spinocerebellar ataxia type 11. The Cerebellum. 2008;7(2):159–64.PubMedCrossRef Johnson J, Wood N, Giunti P, Houlden H. Clinical and genetic analysis of spinocerebellar ataxia type 11. The Cerebellum. 2008;7(2):159–64.PubMedCrossRef
63.
go back to reference Cohen RL, Margolis RL. Spinocerebellar ataxia type 12: clues to pathogenesis. Curr Opin Neurol. 2016;29(6):735–42.PubMedCrossRef Cohen RL, Margolis RL. Spinocerebellar ataxia type 12: clues to pathogenesis. Curr Opin Neurol. 2016;29(6):735–42.PubMedCrossRef
64.
go back to reference Ganaraja VH, Holla VV, Stezin A, Kamble N, Yadav R, Purushottam M, et al. Clinical, radiological, and genetic profile of spinocerebellar ataxia 12: a hospital-based cohort analysis. Tremor Other Hyperkinet Mov. 2022;12(1):1–11. Ganaraja VH, Holla VV, Stezin A, Kamble N, Yadav R, Purushottam M, et al. Clinical, radiological, and genetic profile of spinocerebellar ataxia 12: a hospital-based cohort analysis. Tremor Other Hyperkinet Mov. 2022;12(1):1–11.
65.
68.
go back to reference Chen D-H, Raskind WH, Bird TD. Spinocerebellar ataxia type 14. Handb Clin Neurol. 2012;103:555–9.PubMedCrossRef Chen D-H, Raskind WH, Bird TD. Spinocerebellar ataxia type 14. Handb Clin Neurol. 2012;103:555–9.PubMedCrossRef
69.
go back to reference Gardner RJM, Knight MA, Hara K, Tsuji S, Forrest SM, Storey E. Spinocerebellar ataxia type 15. Cerebellum. 2005;4(1):47–50.PubMedCrossRef Gardner RJM, Knight MA, Hara K, Tsuji S, Forrest SM, Storey E. Spinocerebellar ataxia type 15. Cerebellum. 2005;4(1):47–50.PubMedCrossRef
73.
go back to reference Toyoshima Y, Takahashi H. Spinocerebellar ataxia type 17 (SCA17). Adv Exp Med Biol. 2018;1049:219–31.PubMedCrossRef Toyoshima Y, Takahashi H. Spinocerebellar ataxia type 17 (SCA17). Adv Exp Med Biol. 2018;1049:219–31.PubMedCrossRef
76.
go back to reference Hubner J, Sprenger A, Klein C, Hagenah J, Rambold H, Zuhlke C, et al. Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology. 2007;69(11):1160–8.PubMedCrossRef Hubner J, Sprenger A, Klein C, Hagenah J, Rambold H, Zuhlke C, et al. Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology. 2007;69(11):1160–8.PubMedCrossRef
78.
go back to reference Lin P, Zhang D, Xu G, Yan C. Identification of IFRD1 variant in a Han Chinese family with autosomal dominant hereditary spastic paraplegia associated with peripheral neuropathy and ataxia. J Hum Genet. 2018;63(4):521–4.PubMedCrossRef Lin P, Zhang D, Xu G, Yan C. Identification of IFRD1 variant in a Han Chinese family with autosomal dominant hereditary spastic paraplegia associated with peripheral neuropathy and ataxia. J Hum Genet. 2018;63(4):521–4.PubMedCrossRef
79.
go back to reference Schelhaas HJ, van de Warrenburg BPC. Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum. 2005;4(1):51–4.PubMedCrossRef Schelhaas HJ, van de Warrenburg BPC. Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum. 2005;4(1):51–4.PubMedCrossRef
80.
go back to reference Chung M-Y, Lu Y-C, Cheng N-C, Soong B-W. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003;126(Pt 6):1293–9.PubMedCrossRef Chung M-Y, Lu Y-C, Cheng N-C, Soong B-W. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003;126(Pt 6):1293–9.PubMedCrossRef
81.
83.
go back to reference Knight MA, Gardner RJM, Bahlo M, Matsuura T, Dixon JA, Forrest SM, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain. 2004;127(Pt 5):1172–81.PubMedCrossRef Knight MA, Gardner RJM, Bahlo M, Matsuura T, Dixon JA, Forrest SM, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain. 2004;127(Pt 5):1172–81.PubMedCrossRef
84.
go back to reference Storey E, Knight MA, Forrest SM, Gardner RJM. Spinocerebellar ataxia type 20. Cerebellum. 2005;4(1):55–7.PubMedCrossRef Storey E, Knight MA, Forrest SM, Gardner RJM. Spinocerebellar ataxia type 20. Cerebellum. 2005;4(1):55–7.PubMedCrossRef
85.
go back to reference Delplanque J, Devos D, Vuillaume I, De Becdelievre A, Vangelder E, Maurage CA, et al. Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). Cerebellum. 2008;7(2):179–83.PubMedCrossRef Delplanque J, Devos D, Vuillaume I, De Becdelievre A, Vangelder E, Maurage CA, et al. Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). Cerebellum. 2008;7(2):179–83.PubMedCrossRef
86.
go back to reference Traschütz A, van Gaalen J, Oosterloo M, Vreeburg M, Kamsteeg E-J, Deininger N, et al. The movement disorder spectrum of SCA21 (ATX-TMEM240): 3 novel families and systematic review of the literature. Parkinsonism Relat Disord. 2019;62:215–20.PubMedCrossRef Traschütz A, van Gaalen J, Oosterloo M, Vreeburg M, Kamsteeg E-J, Deininger N, et al. The movement disorder spectrum of SCA21 (ATX-TMEM240): 3 novel families and systematic review of the literature. Parkinsonism Relat Disord. 2019;62:215–20.PubMedCrossRef
87.
go back to reference Yahikozawa H, Miyatake S, Sakai T, Uehara T, Yamada M, Hanyu N, et al. A Japanese family of spinocerebellar ataxia type 21: clinical and neuropathological studies. Cerebellum. 2018;17(5):525–30.PubMedCrossRef Yahikozawa H, Miyatake S, Sakai T, Uehara T, Yamada M, Hanyu N, et al. A Japanese family of spinocerebellar ataxia type 21: clinical and neuropathological studies. Cerebellum. 2018;17(5):525–30.PubMedCrossRef
88.
89.
go back to reference Liu Y-T, Tang B-S, Wang J-L, Guan W-J, Shen L, Shi Y-T, et al. Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population. Neurosci Lett. 2012;528(1):51–4.PubMedCrossRef Liu Y-T, Tang B-S, Wang J-L, Guan W-J, Shen L, Shi Y-T, et al. Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population. Neurosci Lett. 2012;528(1):51–4.PubMedCrossRef
90.
go back to reference Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J, et al. Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol. 2013;260(7):1807–12.PubMedCrossRef Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J, et al. Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol. 2013;260(7):1807–12.PubMedCrossRef
91.
go back to reference Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol. 2004;55(1):97–104.PubMedCrossRef Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol. 2004;55(1):97–104.PubMedCrossRef
92.
go back to reference Yu G-Y, Howell MJ, Roller MJ, Xie T-D, Gomez CM. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol. 2005;57(3):349–54.PubMedCrossRef Yu G-Y, Howell MJ, Roller MJ, Xie T-D, Gomez CM. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol. 2005;57(3):349–54.PubMedCrossRef
93.
go back to reference Groth CL, Berman BD. Spinocerebellar ataxia 27: a review and characterization of an evolving phenotype. Tremor Other Hyperkinet Mov (N Y). 2018;8:534.PubMedCrossRef Groth CL, Berman BD. Spinocerebellar ataxia 27: a review and characterization of an evolving phenotype. Tremor Other Hyperkinet Mov (N Y). 2018;8:534.PubMedCrossRef
94.
go back to reference Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): a new phenotype. Mov Disord. 2006;21(3):396–401.PubMedCrossRef Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): a new phenotype. Mov Disord. 2006;21(3):396–401.PubMedCrossRef
95.
go back to reference Strupp M, Maul S, Konte B, Hartmann AM, Giegling I, Wollenteit S, et al. A variation in FGF14 is associated with downbeat nystagmus in a genome-wide association study. Cerebellum. 2020;19(3):348–57.PubMedPubMedCentralCrossRef Strupp M, Maul S, Konte B, Hartmann AM, Giegling I, Wollenteit S, et al. A variation in FGF14 is associated with downbeat nystagmus in a genome-wide association study. Cerebellum. 2020;19(3):348–57.PubMedPubMedCentralCrossRef
96.
go back to reference Mariotti C, Brusco A, Di Bella D, Cagnoli C, Seri M, Gellera C, et al. Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum. 2008;7(2):184–8.PubMedCrossRef Mariotti C, Brusco A, Di Bella D, Cagnoli C, Seri M, Gellera C, et al. Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum. 2008;7(2):184–8.PubMedCrossRef
97.
go back to reference Politi LS, Bianchi Marzoli S, Godi C, Panzeri M, Ciasca P, Brugnara G, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis Sci. 2016;57(6):2714–20.PubMedCrossRef Politi LS, Bianchi Marzoli S, Godi C, Panzeri M, Ciasca P, Brugnara G, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis Sci. 2016;57(6):2714–20.PubMedCrossRef
99.
go back to reference Zambonin JL, Bellomo A, Ben-Pazi H, Everman DB, Frazer LM, Geraghty MT, et al. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia. Orphanet J Rare Dis. 2017;12(1):121.PubMedPubMedCentralCrossRef Zambonin JL, Bellomo A, Ben-Pazi H, Everman DB, Frazer LM, Geraghty MT, et al. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia. Orphanet J Rare Dis. 2017;12(1):121.PubMedPubMedCentralCrossRef
100.
go back to reference Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis. 2012;7:67.PubMedPubMedCentralCrossRef Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis. 2012;7:67.PubMedPubMedCentralCrossRef
101.
go back to reference Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJM. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry. 2009;80(4):408–11.PubMedCrossRef Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJM. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry. 2009;80(4):408–11.PubMedCrossRef
102.
go back to reference Nakamura K, Yoshida K, Matsushima A, Shimizu Y, Sato S, Yahikozawa H, et al. Natural history of spinocerebellar ataxia type 31: a 4-year prospective study. Cerebellum. 2017;16(2):518–24.PubMedCrossRef Nakamura K, Yoshida K, Matsushima A, Shimizu Y, Sato S, Yahikozawa H, et al. Natural history of spinocerebellar ataxia type 31: a 4-year prospective study. Cerebellum. 2017;16(2):518–24.PubMedCrossRef
103.
go back to reference Adachi T, Kitayama M, Nakano T, Adachi Y, Kato S, Nakashima K. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology. 2015;35(3):273–9.PubMedCrossRef Adachi T, Kitayama M, Nakano T, Adachi Y, Kato S, Nakashima K. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology. 2015;35(3):273–9.PubMedCrossRef
104.
go back to reference Beaudin M, Sellami L, Martel C, Touzel-Deschênes L, Houle G, Martineau L, et al. Characterization of the phenotype with cognitive impairment and protein mislocalization in SCA34. Neurol Genet. 2020;6(2):e403.PubMedPubMedCentralCrossRef Beaudin M, Sellami L, Martel C, Touzel-Deschênes L, Houle G, Martineau L, et al. Characterization of the phenotype with cognitive impairment and protein mislocalization in SCA34. Neurol Genet. 2020;6(2):e403.PubMedPubMedCentralCrossRef
105.
go back to reference Ozaki K, Ansai A, Nobuhara K, Araki T, Kubodera T, Ishii T, et al. Prevalence and clinicoradiological features of spinocerebellar ataxia type 34 in a Japanese ataxia cohort. Parkinsonism Relat Disord. 2019;65:238–42.PubMedCrossRef Ozaki K, Ansai A, Nobuhara K, Araki T, Kubodera T, Ishii T, et al. Prevalence and clinicoradiological features of spinocerebellar ataxia type 34 in a Japanese ataxia cohort. Parkinsonism Relat Disord. 2019;65:238–42.PubMedCrossRef
107.
go back to reference Ozaki K, Doi H, Mitsui J, Sato N, Iikuni Y, Majima T, et al. A novel mutation in ELOVL4 leading to spinocerebellar ataxia (SCA) with the hot cross bun sign but lacking erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol. 2015;72(7):797–805.PubMedCrossRef Ozaki K, Doi H, Mitsui J, Sato N, Iikuni Y, Majima T, et al. A novel mutation in ELOVL4 leading to spinocerebellar ataxia (SCA) with the hot cross bun sign but lacking erythrokeratodermia: a broadened spectrum of SCA34. JAMA Neurol. 2015;72(7):797–805.PubMedCrossRef
108.
go back to reference Lin C-C, Gan S-R, Gupta D, Alaedini A, Green PH, Kuo S-H. Hispanic spinocerebellar ataxia type 35 (SCA35) with a novel frameshift mutation. Cerebellum. 2019;18(2):291–4.PubMedPubMedCentralCrossRef Lin C-C, Gan S-R, Gupta D, Alaedini A, Green PH, Kuo S-H. Hispanic spinocerebellar ataxia type 35 (SCA35) with a novel frameshift mutation. Cerebellum. 2019;18(2):291–4.PubMedPubMedCentralCrossRef
109.
go back to reference Guo Y-C, Lin J-J, Liao Y-C, Tsai P-C, Lee Y-C, Soong B-W. Spinocerebellar ataxia 35: novel mutations in TGM6 with clinical and genetic characterization. Neurology. 2014;83(17):1554–61.PubMedCrossRef Guo Y-C, Lin J-J, Liao Y-C, Tsai P-C, Lee Y-C, Soong B-W. Spinocerebellar ataxia 35: novel mutations in TGM6 with clinical and genetic characterization. Neurology. 2014;83(17):1554–61.PubMedCrossRef
115.
go back to reference Arias M, García-Murias M, Sobrido MJ. Spinocerebellar ataxia 36 (SCA36): «Costa da Morte ataxia». Neurologia. 2017;32(6):386–93.PubMedCrossRef Arias M, García-Murias M, Sobrido MJ. Spinocerebellar ataxia 36 (SCA36): «Costa da Morte ataxia». Neurologia. 2017;32(6):386–93.PubMedCrossRef
118.
go back to reference Corral-Juan M, Serrano-Munuera C, Rábano A, Cota-González D, Segarra-Roca A, Ispierto L, et al. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain. 2018;141(7):1981–97.PubMedCrossRef Corral-Juan M, Serrano-Munuera C, Rábano A, Cota-González D, Segarra-Roca A, Ispierto L, et al. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain. 2018;141(7):1981–97.PubMedCrossRef
119.
go back to reference Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolás H, Roig C, Corral J, et al. New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol. 2013;70(6):764–71.PubMedCrossRef Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolás H, Roig C, Corral J, et al. New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol. 2013;70(6):764–71.PubMedCrossRef
120.
go back to reference Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, et al. A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet. 2017;101(1):87–103.PubMedPubMedCentralCrossRef Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, et al. A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet. 2017;101(1):87–103.PubMedPubMedCentralCrossRef
121.
go back to reference Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, et al. ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet. 2014;95(2):209–17.PubMedPubMedCentralCrossRef Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, et al. ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet. 2014;95(2):209–17.PubMedPubMedCentralCrossRef
122.
go back to reference Borroni B, Di Gregorio E, Orsi L, Vaula G, Costanzi C, Tempia F, et al. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Parkinsonism Relat Disord. 2016;28:80–6.PubMedPubMedCentralCrossRef Borroni B, Di Gregorio E, Orsi L, Vaula G, Costanzi C, Tempia F, et al. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Parkinsonism Relat Disord. 2016;28:80–6.PubMedPubMedCentralCrossRef
123.
go back to reference Gazulla J, Orduna-Hospital E, Benavente I, Rodríguez-Valle A, Osorio-Caicedo P, Alvarez-de Andrés S, et al. Contributions to the study of spinocerebellar ataxia type 38 (SCA38). J Neurol. 2020;267:2288–95.PubMedCrossRef Gazulla J, Orduna-Hospital E, Benavente I, Rodríguez-Valle A, Osorio-Caicedo P, Alvarez-de Andrés S, et al. Contributions to the study of spinocerebellar ataxia type 38 (SCA38). J Neurol. 2020;267:2288–95.PubMedCrossRef
125.
go back to reference Tsoi H, Yu ACS, Chen ZS, Ng NKN, Chan AYY, Yuen LYP, et al. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 2014;51(9):590–5.PubMedCrossRef Tsoi H, Yu ACS, Chen ZS, Ng NKN, Chan AYY, Yuen LYP, et al. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 2014;51(9):590–5.PubMedCrossRef
126.
go back to reference Ngo K, Aker M, Petty LE, Chen J, Cavalcanti F, Nelson AB, et al. Expanding the global prevalence of spinocerebellar ataxia type 42. Neurol Genet. 2018;4(3):e232.PubMedPubMedCentralCrossRef Ngo K, Aker M, Petty LE, Chen J, Cavalcanti F, Nelson AB, et al. Expanding the global prevalence of spinocerebellar ataxia type 42. Neurol Genet. 2018;4(3):e232.PubMedPubMedCentralCrossRef
127.
go back to reference Kimura M, Yabe I, Hama Y, Eguchi K, Ura S, Tsuzaka K, et al. SCA42 mutation analysis in a case series of Japanese patients with spinocerebellar ataxia. J Hum Genet. 2017;62(9):857–9.PubMedCrossRef Kimura M, Yabe I, Hama Y, Eguchi K, Ura S, Tsuzaka K, et al. SCA42 mutation analysis in a case series of Japanese patients with spinocerebellar ataxia. J Hum Genet. 2017;62(9):857–9.PubMedCrossRef
128.
go back to reference Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet. 2016;2(5):e94.PubMedPubMedCentralCrossRef Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet. 2016;2(5):e94.PubMedPubMedCentralCrossRef
129.
go back to reference Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, et al. Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am J Hum Genet. 2017;101(3):451–8.PubMedPubMedCentralCrossRef Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, et al. Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am J Hum Genet. 2017;101(3):451–8.PubMedPubMedCentralCrossRef
130.
go back to reference Parodi L, Coarelli G, Stevanin G, Brice A, Durr A. Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol. 2018;31(4):462–71.PubMedCrossRef Parodi L, Coarelli G, Stevanin G, Brice A, Durr A. Hereditary ataxias and paraparesias: clinical and genetic update. Curr Opin Neurol. 2018;31(4):462–71.PubMedCrossRef
133.
go back to reference Lai K-L, Liao Y-C, Tsai P-C, Hsiao C-T, Soong B-W, Lee Y-C. Investigating PUM1 mutations in a Taiwanese cohort with cerebellar ataxia. Parkinsonism Relat Disord. 2019;66:220–3.PubMedCrossRef Lai K-L, Liao Y-C, Tsai P-C, Hsiao C-T, Soong B-W, Lee Y-C. Investigating PUM1 mutations in a Taiwanese cohort with cerebellar ataxia. Parkinsonism Relat Disord. 2019;66:220–3.PubMedCrossRef
134.
go back to reference Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, et al. A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell. 2018;172(5):924–936.e11.PubMedPubMedCentralCrossRef Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, et al. A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell. 2018;172(5):924–936.e11.PubMedPubMedCentralCrossRef
135.
go back to reference De Michele G, Lieto M, Galatolo D, Salvatore E, Cocozza S, Barghigiani M, et al. Spinocerebellar ataxia 48 presenting with ataxia associated with cognitive, psychiatric, and extrapyramidal features: a report of two Italian families. Parkinsonism Relat Disord. 2019;65:91–6.PubMedCrossRef De Michele G, Lieto M, Galatolo D, Salvatore E, Cocozza S, Barghigiani M, et al. Spinocerebellar ataxia 48 presenting with ataxia associated with cognitive, psychiatric, and extrapyramidal features: a report of two Italian families. Parkinsonism Relat Disord. 2019;65:91–6.PubMedCrossRef
136.
go back to reference Palvadeau R, Kaya-Güleç ZE, Şimşir G, Vural A, Öztop-Çakmak Ö, Genç G, et al. Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family. Neurogenetics. 2020;21(1):51–8.PubMedCrossRef Palvadeau R, Kaya-Güleç ZE, Şimşir G, Vural A, Öztop-Çakmak Ö, Genç G, et al. Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family. Neurogenetics. 2020;21(1):51–8.PubMedCrossRef
137.
go back to reference Lieto M, Riso V, Galatolo D, De Michele G, Rossi S, Barghigiani M, et al. The complex phenotype of spinocerebellar ataxia type 48 in eight unrelated Italian families. Eur J Neurol. 2020;27(3):498–505.PubMedCrossRef Lieto M, Riso V, Galatolo D, De Michele G, Rossi S, Barghigiani M, et al. The complex phenotype of spinocerebellar ataxia type 48 in eight unrelated Italian families. Eur J Neurol. 2020;27(3):498–505.PubMedCrossRef
138.
go back to reference Cocozza S, Pontillo G, De Michele G, Perillo T, Guerriero E, Ugga L, et al. The “crab sign”: an imaging feature of spinocerebellar ataxia type 48. Neuroradiology. 2020;62:1095–103.PubMedCrossRef Cocozza S, Pontillo G, De Michele G, Perillo T, Guerriero E, Ugga L, et al. The “crab sign”: an imaging feature of spinocerebellar ataxia type 48. Neuroradiology. 2020;62:1095–103.PubMedCrossRef
139.
go back to reference Silver MR, Sethi KD, Mehta SH, Nichols FT, Morgan JC. Case report of optic atrophy in dentatorubropallidoluysian atrophy (DRPLA). BMC Neurol. 2015;15:260.PubMedPubMedCentralCrossRef Silver MR, Sethi KD, Mehta SH, Nichols FT, Morgan JC. Case report of optic atrophy in dentatorubropallidoluysian atrophy (DRPLA). BMC Neurol. 2015;15:260.PubMedPubMedCentralCrossRef
140.
go back to reference Muñoz E, Milà M, Sánchez A, Latorre P, Ariza A, Codina M, et al. Dentatorubropallidoluysian atrophy in a spanish family: a clinical, radiological, pathological, and genetic study. J Neurol Neurosurg Psychiatry. 1999;67(6):811–4.PubMedPubMedCentralCrossRef Muñoz E, Milà M, Sánchez A, Latorre P, Ariza A, Codina M, et al. Dentatorubropallidoluysian atrophy in a spanish family: a clinical, radiological, pathological, and genetic study. J Neurol Neurosurg Psychiatry. 1999;67(6):811–4.PubMedPubMedCentralCrossRef
141.
go back to reference Rocha Cabrero F, De Jesus O. Dentatorubral pallidoluysian atrophy. Treasure Island (FL); 2022. Rocha Cabrero F, De Jesus O. Dentatorubral pallidoluysian atrophy. Treasure Island (FL); 2022.
142.
go back to reference Vinton A, Fahey MC, O’Brien TJ, Shaw J, Storey E, Gardner RJM, et al. Dentatorubral-pallidoluysian atrophy in three generations, with clinical courses from nearly asymptomatic elderly to severe juvenile, in an Australian family of Macedonian descent. Am J Med Genet A. 2005;136(2):201–4.PubMedCrossRef Vinton A, Fahey MC, O’Brien TJ, Shaw J, Storey E, Gardner RJM, et al. Dentatorubral-pallidoluysian atrophy in three generations, with clinical courses from nearly asymptomatic elderly to severe juvenile, in an Australian family of Macedonian descent. Am J Med Genet A. 2005;136(2):201–4.PubMedCrossRef
144.
go back to reference Graves TD, Griggs RC, Bundy BN, Jen JC, Baloh RW, Hanna MG, et al. Episodic ataxia type 1: natural history and effect on quality of life. The Cerebellum. 2022:1–9. Graves TD, Griggs RC, Bundy BN, Jen JC, Baloh RW, Hanna MG, et al. Episodic ataxia type 1: natural history and effect on quality of life. The Cerebellum. 2022:1–9.
145.
go back to reference Choi J-H, Oh EH, Choi SY, Kim HJ, Lee SK, Choi JY, et al. Vestibular impairments in episodic ataxia type 2. J Neurol. 2022;269(5):2687–95.PubMedCrossRef Choi J-H, Oh EH, Choi SY, Kim HJ, Lee SK, Choi JY, et al. Vestibular impairments in episodic ataxia type 2. J Neurol. 2022;269(5):2687–95.PubMedCrossRef
146.
go back to reference Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636–46.PubMedCrossRef Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636–46.PubMedCrossRef
148.
go back to reference Al-Din AS, Al-Kurdi A, Al-Salem MK, Al-Nassar KE, Al-Zuhair A, Rudwan MA, et al. Autosomal recessive ataxia, slow eye movements, dementia and extrapyramidal disturbances. J Neurol Sci. 1990;96(2–3):191–205.PubMedCrossRef Al-Din AS, Al-Kurdi A, Al-Salem MK, Al-Nassar KE, Al-Zuhair A, Rudwan MA, et al. Autosomal recessive ataxia, slow eye movements, dementia and extrapyramidal disturbances. J Neurol Sci. 1990;96(2–3):191–205.PubMedCrossRef
149.
go back to reference Vankan P. Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J Neurochem. 2013;126:11–20.PubMedCrossRef Vankan P. Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J Neurochem. 2013;126:11–20.PubMedCrossRef
150.
go back to reference Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science (80- ). 1996 Mar;271(5254):1423–7.CrossRef Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science (80- ). 1996 Mar;271(5254):1423–7.CrossRef
151.
go back to reference Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104(3):589–620.PubMedCrossRef Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104(3):589–620.PubMedCrossRef
152.
go back to reference Lecocq C, Charles P, Azulay J-P, Meissner W, Rai M, N’Guyen K, et al. Delayed-onset Friedreich’s ataxia revisited. Mov Disord. 2016;31(1):62–9.PubMedCrossRef Lecocq C, Charles P, Azulay J-P, Meissner W, Rai M, N’Guyen K, et al. Delayed-onset Friedreich’s ataxia revisited. Mov Disord. 2016;31(1):62–9.PubMedCrossRef
153.
go back to reference Santos R, Lefevre S, Sliwa D, Seguin A, Camadro J-M, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13(5):651–90.PubMedPubMedCentralCrossRef Santos R, Lefevre S, Sliwa D, Seguin A, Camadro J-M, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal. 2010;13(5):651–90.PubMedPubMedCentralCrossRef
154.
go back to reference Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem. 2013;126(Suppl):103–17.PubMedCrossRef Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem. 2013;126(Suppl):103–17.PubMedCrossRef
155.
go back to reference Spieker S, Schulz JB, Petersen D, Fetter M, Klockgether T, Dichgans J. Fixation instability and oculomotor abnormalities in Friedreich’s ataxia. J Neurol. 1995;242(8):517–21.PubMedCrossRef Spieker S, Schulz JB, Petersen D, Fetter M, Klockgether T, Dichgans J. Fixation instability and oculomotor abnormalities in Friedreich’s ataxia. J Neurol. 1995;242(8):517–21.PubMedCrossRef
156.
go back to reference Bogdanova-Mihaylova P, Plapp HM, Chen H, Early A, Cassidy L, Walsh RA, et al. Longitudinal assessment using optical coherence tomography in patients with Friedreich’s ataxia. Tomography. 2021;7(4):915–31.PubMedPubMedCentralCrossRef Bogdanova-Mihaylova P, Plapp HM, Chen H, Early A, Cassidy L, Walsh RA, et al. Longitudinal assessment using optical coherence tomography in patients with Friedreich’s ataxia. Tomography. 2021;7(4):915–31.PubMedPubMedCentralCrossRef
157.
go back to reference Fahey MC, Cremer PD, Aw ST, Millist L, Todd MJ, White OB, et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain. 2008;131(Pt 4):1035–45.PubMedCrossRef Fahey MC, Cremer PD, Aw ST, Millist L, Todd MJ, White OB, et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain. 2008;131(Pt 4):1035–45.PubMedCrossRef
158.
go back to reference Furman JM, Perlman S, Baloh RW. Eye movements in Friedreich’s ataxia. Arch Neurol. 1983;40(6):343–6.PubMedCrossRef Furman JM, Perlman S, Baloh RW. Eye movements in Friedreich’s ataxia. Arch Neurol. 1983;40(6):343–6.PubMedCrossRef
159.
go back to reference Bhidayasiri R, Perlman SL, Pulst S-M, Geschwind DH. Late-onset Friedreich ataxia. Arch Neurol. 2005;62:1865.PubMedCrossRef Bhidayasiri R, Perlman SL, Pulst S-M, Geschwind DH. Late-onset Friedreich ataxia. Arch Neurol. 2005;62:1865.PubMedCrossRef
160.
go back to reference Perlman S, Becker-Catania S, Gatti RA. Ataxia-telangiectasia: diagnosis and treatment. Semin Pediatr Neurol. 2003;10(3):173–82.PubMedCrossRef Perlman S, Becker-Catania S, Gatti RA. Ataxia-telangiectasia: diagnosis and treatment. Semin Pediatr Neurol. 2003;10(3):173–82.PubMedCrossRef
161.
go back to reference Chun HH, Gatti RA. Ataxia–telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004;3(8–9):1187–96.PubMedCrossRef Chun HH, Gatti RA. Ataxia–telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004;3(8–9):1187–96.PubMedCrossRef
163.
go back to reference Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.PubMedCrossRef Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.PubMedCrossRef
164.
go back to reference Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.PubMedCrossRef Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.PubMedCrossRef
165.
go back to reference Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.PubMedCrossRef Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.PubMedCrossRef
166.
go back to reference Cogan DG. A type of congenital ocular motor apraxia presenting jerky head movements*. Am J Ophthalmol. 1953;36(4):433–41.PubMedCrossRef Cogan DG. A type of congenital ocular motor apraxia presenting jerky head movements*. Am J Ophthalmol. 1953;36(4):433–41.PubMedCrossRef
167.
go back to reference Harris CM, Shawkat F, Russell-Eggitt I, Wilson J, Taylor D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br J Ophthalmol. 1996;80(2):151–8.PubMedPubMedCentralCrossRef Harris CM, Shawkat F, Russell-Eggitt I, Wilson J, Taylor D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br J Ophthalmol. 1996;80(2):151–8.PubMedPubMedCentralCrossRef
168.
go back to reference Onodera O. Spinocerebellar ataxia with ocular motor apraxia and DNA repair. Neuropathology. 2006;26(4):361–7.PubMedCrossRef Onodera O. Spinocerebellar ataxia with ocular motor apraxia and DNA repair. Neuropathology. 2006;26(4):361–7.PubMedCrossRef
169.
go back to reference Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596.PubMedPubMedCentralCrossRef Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596.PubMedPubMedCentralCrossRef
170.
go back to reference Khan AO, Oystreck DT, Koenig M, Salih MA. Ophthalmic features of ataxia telangiectasia-like disorder. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2008;12(2):186–9. Khan AO, Oystreck DT, Koenig M, Salih MA. Ophthalmic features of ataxia telangiectasia-like disorder. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus. 2008;12(2):186–9.
171.
go back to reference Moreira M-C, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet. 2001;29(2):189–93.PubMedCrossRef Moreira M-C, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet. 2001;29(2):189–93.PubMedCrossRef
172.
go back to reference Sano Y, Date H, Igarashi S, Onodera O, Oyake M, Takahashi T, et al. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann Neurol. 2004;55(2):241–9.PubMedCrossRef Sano Y, Date H, Igarashi S, Onodera O, Oyake M, Takahashi T, et al. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann Neurol. 2004;55(2):241–9.PubMedCrossRef
173.
go back to reference Sekijima Y, Ohara S, Nakagawa S, Tabata K, Yoshida K, Ishigame H, et al. Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci. 1998;158(1):30–7.PubMedCrossRef Sekijima Y, Ohara S, Nakagawa S, Tabata K, Yoshida K, Ishigame H, et al. Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci. 1998;158(1):30–7.PubMedCrossRef
174.
go back to reference Le Ber I, Moreira M-C, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain. 2003;126(Pt 12):2761–72.PubMedCrossRef Le Ber I, Moreira M-C, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain. 2003;126(Pt 12):2761–72.PubMedCrossRef
175.
go back to reference Wolf NI, Koenig M. Progressive cerebellar atrophy: hereditary ataxias and disorders with spinocerebellar degeneration. Handb Clin Neurol. 2013;113:1869–78.PubMedCrossRef Wolf NI, Koenig M. Progressive cerebellar atrophy: hereditary ataxias and disorders with spinocerebellar degeneration. Handb Clin Neurol. 2013;113:1869–78.PubMedCrossRef
176.
go back to reference Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.PubMedCrossRef Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.PubMedCrossRef
177.
go back to reference Le Ber I, Brice A, Dürr A. New autosomal recessive cerebellar ataxias with oculomotor apraxia. Curr Neurol Neurosci Rep. 2005;5(5):411–7.PubMedCrossRef Le Ber I, Brice A, Dürr A. New autosomal recessive cerebellar ataxias with oculomotor apraxia. Curr Neurol Neurosci Rep. 2005;5(5):411–7.PubMedCrossRef
179.
go back to reference Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab. 2012;106(3):330–44.PubMedCrossRef Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab. 2012;106(3):330–44.PubMedCrossRef
180.
go back to reference Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science (80- ). 1997 Jul;277(5323):228–31.CrossRef Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science (80- ). 1997 Jul;277(5323):228–31.CrossRef
181.
go back to reference Devaraj R, Mahale RR, Sindhu DM, Stezin A, Kamble N, Holla VV, et al. Spectrum of movement disorders in Niemann-Pick disease type C. Tremor Other Hyperkinet Mov (N Y). 2022;12:28.PubMedCrossRef Devaraj R, Mahale RR, Sindhu DM, Stezin A, Kamble N, Holla VV, et al. Spectrum of movement disorders in Niemann-Pick disease type C. Tremor Other Hyperkinet Mov (N Y). 2022;12:28.PubMedCrossRef
182.
go back to reference Tang Y, Li H, Liu J-P. Niemann-Pick disease type C: from molecule to clinic. Clin Exp Pharmacol Physiol. 2010;37(1):132–40.PubMedCrossRef Tang Y, Li H, Liu J-P. Niemann-Pick disease type C: from molecule to clinic. Clin Exp Pharmacol Physiol. 2010;37(1):132–40.PubMedCrossRef
183.
go back to reference Rottach KG, Von Maydell RD, Das VE, Zivotofsky AZ, Discenna AO, Gordon JL, et al. Evidence for independent feedback control of horizontal and vertical saccades from Niemann-Pick type C disease. Vision Res. 1997;37(24):3627–38.PubMedCrossRef Rottach KG, Von Maydell RD, Das VE, Zivotofsky AZ, Discenna AO, Gordon JL, et al. Evidence for independent feedback control of horizontal and vertical saccades from Niemann-Pick type C disease. Vision Res. 1997;37(24):3627–38.PubMedCrossRef
184.
go back to reference Solomon D, Winkelman AC, Zee DS, Gray L, Büttner-Ennever J. Niemann-Pick type C disease in two affected sisters: ocular motor recordings and brain-stem neuropathology. Ann N Y Acad Sci. 2005 Apr;1039(1):436–45.PubMedCrossRef Solomon D, Winkelman AC, Zee DS, Gray L, Büttner-Ennever J. Niemann-Pick type C disease in two affected sisters: ocular motor recordings and brain-stem neuropathology. Ann N Y Acad Sci. 2005 Apr;1039(1):436–45.PubMedCrossRef
185.
go back to reference Abel LA, Walterfang M, Fietz M, Bowman EA, Velakoulis D. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits. Neurology. 2009;72(12):1083–6.PubMedCrossRef Abel LA, Walterfang M, Fietz M, Bowman EA, Velakoulis D. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits. Neurology. 2009;72(12):1083–6.PubMedCrossRef
Metadata
Title
A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias
Authors
Mehri Salari
Masoud Etemadifar
Ronak Rashedi
Sayna Mardani
Publication date
31-03-2023
Publisher
Springer US
Published in
The Cerebellum / Issue 2/2024
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-023-01554-0

Other articles of this Issue 2/2024

The Cerebellum 2/2024 Go to the issue