Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2021

01-03-2021 | Gaucher Disease | Review Paper

Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2

Authors: Emma J. Arsenault, Colin M. McGill, Brian M. Barth

Published in: NeuroMolecular Medicine | Issue 1/2021

Login to get access

Abstract

Neuro-inflammation accompanies numerous neurological disorders and conditions where it can be associated with a progressive neurodegenerative pathology. In a similar manner, alterations in sphingolipid metabolism often accompany or are causative features in degenerative neurological conditions. These include dementias, motor disorders, autoimmune conditions, inherited metabolic disorders, viral infection, traumatic brain and spinal cord injury, psychiatric conditions, and more. Sphingolipids are major regulators of cellular fate and function in addition to being important structural components of membranes. Their metabolism and signaling pathways can also be regulated by inflammatory mediators. Therefore, as certain sphingolipids exert distinct and opposing cellular roles, alterations in their metabolism can have major consequences. Recently, regulation of bioactive sphingolipids by neuro-inflammatory mediators has been shown to activate a neuronal NADPH oxidase 2 (NOX2) that can provoke damaging oxidation. Therefore, the sphingolipid-regulated neuronal NOX2 serves as a mechanistic link between neuro-inflammation and neurodegeneration. Moreover, therapeutics directed at sphingolipid metabolism or the sphingolipid-regulated NOX2 have the potential to alleviate neurodegeneration arising out of neuro-inflammation.
Literature
go back to reference Abou Daher, A., Francis, M., Azzam, P., Ahmad, A., Eid, A. A., Fornoni, A., et al. (2020). Modulation of radiation-induced damage of human glomerular endothelial cells by SMPDL3B. FASEB Journal, 34(6), 7915–7926.PubMedCrossRef Abou Daher, A., Francis, M., Azzam, P., Ahmad, A., Eid, A. A., Fornoni, A., et al. (2020). Modulation of radiation-induced damage of human glomerular endothelial cells by SMPDL3B. FASEB Journal, 34(6), 7915–7926.PubMedCrossRef
go back to reference Alayoubi, A. M., Wang, J. C., Au, B. C., Carpentier, S., Garcia, V., Dworski, S., et al. (2013). Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Molecular Medicine, 5(6), 827–842.PubMedPubMedCentralCrossRef Alayoubi, A. M., Wang, J. C., Au, B. C., Carpentier, S., Garcia, V., Dworski, S., et al. (2013). Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Molecular Medicine, 5(6), 827–842.PubMedPubMedCentralCrossRef
go back to reference Alpaugh, M., Galleguillos, D., Forero, J., Morales, L. C., Lackey, S. W., Kar, P., et al. (2017). Disease-modifying effects of ganglioside GM1 in Huntington’s disease models. EMBO Molecular Medicine, 9(11), 1537–1557.PubMedPubMedCentralCrossRef Alpaugh, M., Galleguillos, D., Forero, J., Morales, L. C., Lackey, S. W., Kar, P., et al. (2017). Disease-modifying effects of ganglioside GM1 in Huntington’s disease models. EMBO Molecular Medicine, 9(11), 1537–1557.PubMedPubMedCentralCrossRef
go back to reference Annunziata, I., Bouchè, V., Lombardi, A., Settembre, C., & Ballabio, A. (2007). Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Human Mutation, 28(9), 928–928.PubMedCrossRef Annunziata, I., Bouchè, V., Lombardi, A., Settembre, C., & Ballabio, A. (2007). Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Human Mutation, 28(9), 928–928.PubMedCrossRef
go back to reference Ashe, K. M., Budman, E., Bangari, D. S., Siegel, C. S., Nietupski, J. B., Wang, B., et al. (2015). Efficacy of enzyme and substrate reduction therapy with a novel antagonist of glucosylceramide synthase for Fabry disease. Molecular Medicine, 21(1), 389–399.PubMedPubMedCentralCrossRef Ashe, K. M., Budman, E., Bangari, D. S., Siegel, C. S., Nietupski, J. B., Wang, B., et al. (2015). Efficacy of enzyme and substrate reduction therapy with a novel antagonist of glucosylceramide synthase for Fabry disease. Molecular Medicine, 21(1), 389–399.PubMedPubMedCentralCrossRef
go back to reference Bandaru, V. V., McArthur, J. C., Sacktor, N., Cutler, R. G., Knapp, E. L., Mattson, M. P., & Haughey, N. J. (2007). Associative and predictive biomarkers of dementia in HIV-1–infected patients. Neurology, 68(18), 1481–1487.PubMedCrossRef Bandaru, V. V., McArthur, J. C., Sacktor, N., Cutler, R. G., Knapp, E. L., Mattson, M. P., & Haughey, N. J. (2007). Associative and predictive biomarkers of dementia in HIV-1–infected patients. Neurology, 68(18), 1481–1487.PubMedCrossRef
go back to reference Bandaru, V. V. R., Mielke, M. M., Sacktor, N., McArthur, J. C., Grant, I., Letendre, S., et al. (2013). A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects. Neurology, 81(17), 1492–1499.PubMedPubMedCentralCrossRef Bandaru, V. V. R., Mielke, M. M., Sacktor, N., McArthur, J. C., Grant, I., Letendre, S., et al. (2013). A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects. Neurology, 81(17), 1492–1499.PubMedPubMedCentralCrossRef
go back to reference Bang, J., Spina, S., & Miller, B. L. (2015). Frontotemporal dementia. The Lancet, 386(10004), 1672–1682.CrossRef Bang, J., Spina, S., & Miller, B. L. (2015). Frontotemporal dementia. The Lancet, 386(10004), 1672–1682.CrossRef
go back to reference Bansal, R., Winkler, S., & Bheddah, S. (1999). Negative regulation of oligodendrocyte differentiation by galactosphingolipids. Journal of Neuroscience, 19(18), 7913–7924.PubMedCrossRef Bansal, R., Winkler, S., & Bheddah, S. (1999). Negative regulation of oligodendrocyte differentiation by galactosphingolipids. Journal of Neuroscience, 19(18), 7913–7924.PubMedCrossRef
go back to reference Bär, J., Linke, T., Ferlinz, K., Neumann, U., Schuchman, E. H., & Sandhoff, K. (2001). Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Human Mutation, 17(3), 199–209.PubMedCrossRef Bär, J., Linke, T., Ferlinz, K., Neumann, U., Schuchman, E. H., & Sandhoff, K. (2001). Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Human Mutation, 17(3), 199–209.PubMedCrossRef
go back to reference Barth, B. M., Cabot, M. C., & Kester, M. (2011). Ceramide-based therapeutics for the treatment of cancer. Anti-Cancer Agents in Medicinal Chemistry, 11(9), 911–919.PubMedCrossRef Barth, B. M., Cabot, M. C., & Kester, M. (2011). Ceramide-based therapeutics for the treatment of cancer. Anti-Cancer Agents in Medicinal Chemistry, 11(9), 911–919.PubMedCrossRef
go back to reference Barth, B. M., Gustafson, S. J., Hankins, J. L., Kaiser, J. M., Haakenson, J. K., Kester, M., et al. (2012b). Ceramide kinase regulates TNFα-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cellular Signaling, 24(6), 1126–1133.CrossRef Barth, B. M., Gustafson, S. J., Hankins, J. L., Kaiser, J. M., Haakenson, J. K., Kester, M., et al. (2012b). Ceramide kinase regulates TNFα-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cellular Signaling, 24(6), 1126–1133.CrossRef
go back to reference Barth, B. M., Gustafson, S. J., & Kuhn, T. B. (2012a). Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-α. Journal of Neuroscience Research, 90(1), 229–242.PubMedCrossRef Barth, B. M., Gustafson, S. J., & Kuhn, T. B. (2012a). Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-α. Journal of Neuroscience Research, 90(1), 229–242.PubMedCrossRef
go back to reference Barth, B. M., Gustafson, S. J., Young, M. M., Fox, T. E., Shanmugavelandy, S. S., Kaiser, J. M., et al. (2010). Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance. Cancer Biology and Therapy, 10(11), 1126–1136.PubMedCrossRefPubMedCentral Barth, B. M., Gustafson, S. J., Young, M. M., Fox, T. E., Shanmugavelandy, S. S., Kaiser, J. M., et al. (2010). Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance. Cancer Biology and Therapy, 10(11), 1126–1136.PubMedCrossRefPubMedCentral
go back to reference Barth, B. M., Shanmugavelandy, S. S., Kaiser, J. M., McGovern, C., Altınoğlu, E. İ, Haakenson, J. K., et al. (2013). PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. ACS Nano, 7(3), 2132–2144.PubMedPubMedCentralCrossRef Barth, B. M., Shanmugavelandy, S. S., Kaiser, J. M., McGovern, C., Altınoğlu, E. İ, Haakenson, J. K., et al. (2013). PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. ACS Nano, 7(3), 2132–2144.PubMedPubMedCentralCrossRef
go back to reference Barth, B. M., Stewart-Smeets, S., & Kuhn, T. B. (2009). Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase. Molecular and Cellular Neuroscience, 41(2), 274–285.PubMedCrossRef Barth, B. M., Stewart-Smeets, S., & Kuhn, T. B. (2009). Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase. Molecular and Cellular Neuroscience, 41(2), 274–285.PubMedCrossRef
go back to reference Becker, K. A., Uerschels, A. K., Goins, L., Doolen, S., McQuerry, K. J., Bielawski, J., et al. (2020). Role of 1-Deoxysphingolipids in docetaxel neurotoxicity. Journal of Neurochemistry, 154(6), 662–672.PubMedCrossRefPubMedCentral Becker, K. A., Uerschels, A. K., Goins, L., Doolen, S., McQuerry, K. J., Bielawski, J., et al. (2020). Role of 1-Deoxysphingolipids in docetaxel neurotoxicity. Journal of Neurochemistry, 154(6), 662–672.PubMedCrossRefPubMedCentral
go back to reference Bedard, K., & Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiology Reviews, 87(1), 245–313.CrossRef Bedard, K., & Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiology Reviews, 87(1), 245–313.CrossRef
go back to reference Bejaoui, K., Uchida, Y., Yasuda, S., Ho, M., Nishijima, M., Brown, R. H., et al. (2002). Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. The Journal of Clinical Investigation, 110(9), 1301–1308.PubMedPubMedCentralCrossRef Bejaoui, K., Uchida, Y., Yasuda, S., Ho, M., Nishijima, M., Brown, R. H., et al. (2002). Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. The Journal of Clinical Investigation, 110(9), 1301–1308.PubMedPubMedCentralCrossRef
go back to reference Bembi, B., Marchetti, F., Guerci, V. I., Ciana, G., Addobbati, R., Grasso, D., et al. (2006). Substrate reduction therapy in the infantile form of Tay-Sachs disease. Neurology, 66(2), 278–280.PubMedCrossRef Bembi, B., Marchetti, F., Guerci, V. I., Ciana, G., Addobbati, R., Grasso, D., et al. (2006). Substrate reduction therapy in the infantile form of Tay-Sachs disease. Neurology, 66(2), 278–280.PubMedCrossRef
go back to reference Biancini, G. B., Vanzin, C. S., Rodrigues, D. B., Deon, M., Ribas, G. S., Barschak, A. G., et al. (2012). Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822(2), 226–232.CrossRef Biancini, G. B., Vanzin, C. S., Rodrigues, D. B., Deon, M., Ribas, G. S., Barschak, A. G., et al. (2012). Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822(2), 226–232.CrossRef
go back to reference Bickert, A., Ginkel, C., Kol, M., Vom Dorp, K., Jastrow, H., Degen, J., et al. (2015). Functional characterization of enzymes catalyzing ceramide phosphoethanolamine biosynthesis in mice. Journal of Lipid Research, 56(4), 821–835.PubMedPubMedCentralCrossRef Bickert, A., Ginkel, C., Kol, M., Vom Dorp, K., Jastrow, H., Degen, J., et al. (2015). Functional characterization of enzymes catalyzing ceramide phosphoethanolamine biosynthesis in mice. Journal of Lipid Research, 56(4), 821–835.PubMedPubMedCentralCrossRef
go back to reference Blaho, V. A., Galvani, S., Engelbrecht, E., Liu, C., Swendeman, S. L., Kono, M., et al. (2015). HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 523(7560), 342–346.PubMedPubMedCentralCrossRef Blaho, V. A., Galvani, S., Engelbrecht, E., Liu, C., Swendeman, S. L., Kono, M., et al. (2015). HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 523(7560), 342–346.PubMedPubMedCentralCrossRef
go back to reference Blomqvist, M., Borén, J., Zetterberg, H., Blennow, K., Månsson, J. E., & Ståhlman, M. (2017). High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS. Journal of Lipid Research, 58(7), 1482–1489.PubMedPubMedCentralCrossRef Blomqvist, M., Borén, J., Zetterberg, H., Blennow, K., Månsson, J. E., & Ståhlman, M. (2017). High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS. Journal of Lipid Research, 58(7), 1482–1489.PubMedPubMedCentralCrossRef
go back to reference Bode, H., Bourquin, F., Suriyanarayanan, S., Wei, Y., Alecu, I., Othman, A., et al. (2016). HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Human Molecular Genetics, 25(5), 853–865.PubMedCrossRef Bode, H., Bourquin, F., Suriyanarayanan, S., Wei, Y., Alecu, I., Othman, A., et al. (2016). HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Human Molecular Genetics, 25(5), 853–865.PubMedCrossRef
go back to reference Boudker, O., & Futerman, A. H. (1993). Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane. Journal of Biological Chemistry, 268(29), 22150–22155.CrossRefPubMed Boudker, O., & Futerman, A. H. (1993). Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane. Journal of Biological Chemistry, 268(29), 22150–22155.CrossRefPubMed
go back to reference Breiden, B., & Sandhoff, K. (2020). Mechanism of secondary ganglioside and lipid accumulation in Lysosomal disease. International Journal of Molecular Sciences, 21(7), 2566.PubMedCentralCrossRef Breiden, B., & Sandhoff, K. (2020). Mechanism of secondary ganglioside and lipid accumulation in Lysosomal disease. International Journal of Molecular Sciences, 21(7), 2566.PubMedCentralCrossRef
go back to reference Brekk, O. R., Korecka, J. A., Crapart, C. C., Huebecker, M., MacBain, Z. K., Rosenthal, S. A., et al. (2020). Upregulating β-hexosaminidase activity in rodents prevents α-synuclein lipid associations and protects dopaminergic neurons from α-synuclein-mediated neurotoxicity. Acta Neuropathologica Communications, 8(1), 127.PubMedPubMedCentralCrossRef Brekk, O. R., Korecka, J. A., Crapart, C. C., Huebecker, M., MacBain, Z. K., Rosenthal, S. A., et al. (2020). Upregulating β-hexosaminidase activity in rodents prevents α-synuclein lipid associations and protects dopaminergic neurons from α-synuclein-mediated neurotoxicity. Acta Neuropathologica Communications, 8(1), 127.PubMedPubMedCentralCrossRef
go back to reference Bright, F., Werry, E. L., Dobson-Stone, C., Piguet, O., Ittner, L. M., Halliday, G. M., et al. (2019). Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 15(9), 540–555.PubMedCrossRef Bright, F., Werry, E. L., Dobson-Stone, C., Piguet, O., Ittner, L. M., Halliday, G. M., et al. (2019). Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 15(9), 540–555.PubMedCrossRef
go back to reference Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., et al. (2002). The immune modulator FTY720 targets sphingosine 1-phosphate receptors. Journal of Biological Chemistry, 277(24), 21453–21457.CrossRefPubMed Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., et al. (2002). The immune modulator FTY720 targets sphingosine 1-phosphate receptors. Journal of Biological Chemistry, 277(24), 21453–21457.CrossRefPubMed
go back to reference Brück, W. (2005). The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. Journal of neurology, 252(5), v3–v9.PubMedCrossRef Brück, W. (2005). The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. Journal of neurology, 252(5), v3–v9.PubMedCrossRef
go back to reference Cabukusta, B., Nettebrock, N. T., Kol, M., Hilderink, A., Tafesse, F. G., & Holthuis, J. (2017). Ceramide phosphoethanolamine synthase SMSr is a target of caspase-6 during apoptotic cell death. Bioscience Reports, 37(4), 20170867.CrossRef Cabukusta, B., Nettebrock, N. T., Kol, M., Hilderink, A., Tafesse, F. G., & Holthuis, J. (2017). Ceramide phosphoethanolamine synthase SMSr is a target of caspase-6 during apoptotic cell death. Bioscience Reports, 37(4), 20170867.CrossRef
go back to reference Chen, H., Chan, A. Y., Stone, D. U., & Mandal, N. A. (2014). Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Survey of Ophthalmology, 59(1), 64–76.PubMedCrossRef Chen, H., Chan, A. Y., Stone, D. U., & Mandal, N. A. (2014). Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Survey of Ophthalmology, 59(1), 64–76.PubMedCrossRef
go back to reference Cheng, H., Wang, M., Li, J. L., Cairns, N. J., & Han, X. (2013). Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: An early event in disease pathogenesis. Journal of Neurochemistry, 127(6), 733–738.PubMedCrossRef Cheng, H., Wang, M., Li, J. L., Cairns, N. J., & Han, X. (2013). Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: An early event in disease pathogenesis. Journal of Neurochemistry, 127(6), 733–738.PubMedCrossRef
go back to reference Choi, S. H., Aid, S., Kim, H. W., Jackson, S. H., & Bosetti, F. (2012). Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. Journal of Neurochemistry, 120(2), 292–301.PubMedCrossRef Choi, S. H., Aid, S., Kim, H. W., Jackson, S. H., & Bosetti, F. (2012). Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. Journal of Neurochemistry, 120(2), 292–301.PubMedCrossRef
go back to reference Cologna, S. M., Cluzeau, C. V., Yanjanin, N. M., Blank, P. S., Dail, M. K., Siebel, S., et al. (2014). Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1. Journal of Inherited Metabolic Disease, 37(1), 83–92.PubMedCrossRef Cologna, S. M., Cluzeau, C. V., Yanjanin, N. M., Blank, P. S., Dail, M. K., Siebel, S., et al. (2014). Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1. Journal of Inherited Metabolic Disease, 37(1), 83–92.PubMedCrossRef
go back to reference Constantin, G., Laudanna, C., Baron, P., & Berton, G. (1994). Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Letters, 350(1), 66–70.PubMedCrossRef Constantin, G., Laudanna, C., Baron, P., & Berton, G. (1994). Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Letters, 350(1), 66–70.PubMedCrossRef
go back to reference Cristóvão, A. C., Guhathakurta, S., Bok, E., Je, G., Yoo, S. D., Choi, D. H., & Kim, Y. S. (2012). NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. Journal of Neuroscience, 32(42), 14465–14477.PubMedCrossRef Cristóvão, A. C., Guhathakurta, S., Bok, E., Je, G., Yoo, S. D., Choi, D. H., & Kim, Y. S. (2012). NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. Journal of Neuroscience, 32(42), 14465–14477.PubMedCrossRef
go back to reference Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D., & Mattson, M. P. (2002). Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress–induced death of motor neurons in amyotrophic lateral sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 52(4), 448–457.CrossRef Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D., & Mattson, M. P. (2002). Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress–induced death of motor neurons in amyotrophic lateral sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 52(4), 448–457.CrossRef
go back to reference Czubowicz, K., Jęśko, H., Wencel, P., Lukiw, W. J., & Strosznajder, R. P. (2019). The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Molecular Neurobiology, 56(8), 5436–5455.PubMedPubMedCentralCrossRef Czubowicz, K., Jęśko, H., Wencel, P., Lukiw, W. J., & Strosznajder, R. P. (2019). The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Molecular Neurobiology, 56(8), 5436–5455.PubMedPubMedCentralCrossRef
go back to reference D’Angelo, G., Capasso, S., Sticco, L., & Russo, D. (2013). Glycosphingolipids: Synthesis and functions. The FEBS Journal, 280(24), 6338–6353.PubMedCrossRef D’Angelo, G., Capasso, S., Sticco, L., & Russo, D. (2013). Glycosphingolipids: Synthesis and functions. The FEBS Journal, 280(24), 6338–6353.PubMedCrossRef
go back to reference De Wit, N. M., den Hoedt, S., Martinez-Martinez, P., Rozemuller, A. J., Mulder, M. T., & de Vries, H. E. (2019). Astrocytic ceramide as possible indicator of neuroinflammation. Journal of Neuroinflammation, 16(48), 1–11. De Wit, N. M., den Hoedt, S., Martinez-Martinez, P., Rozemuller, A. J., Mulder, M. T., & de Vries, H. E. (2019). Astrocytic ceramide as possible indicator of neuroinflammation. Journal of Neuroinflammation, 16(48), 1–11.
go back to reference Di Pardo, A., Amico, E., Basit, A., Armirotti, A., Joshi, P., Neely, M. D., & Pepe, G. (2017a). Defective sphingosine-1-phosphate metabolism is a druggable target in Huntington’s disease. Scientific Reports, 7(1), 1–14.CrossRef Di Pardo, A., Amico, E., Basit, A., Armirotti, A., Joshi, P., Neely, M. D., & Pepe, G. (2017a). Defective sphingosine-1-phosphate metabolism is a druggable target in Huntington’s disease. Scientific Reports, 7(1), 1–14.CrossRef
go back to reference Di Pardo, A., Basit, A., Armirotti, A., Amico, E., Castaldo, S., Pepe, G., et al. (2017b). De novo synthesis of sphingolipids is defective in experimental models of Huntington’s disease. Frontiers in Neuroscience, 11, 698.PubMedPubMedCentralCrossRef Di Pardo, A., Basit, A., Armirotti, A., Amico, E., Castaldo, S., Pepe, G., et al. (2017b). De novo synthesis of sphingolipids is defective in experimental models of Huntington’s disease. Frontiers in Neuroscience, 11, 698.PubMedPubMedCentralCrossRef
go back to reference Di Pardo, A., Castaldo, S., Amico, E., Pepe, G., Marracino, F., Capocci, L., et al. (2018). Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood–brain barrier integrity and exerts therapeutic effect in an animal model of Huntington’s disease. Human Molecular Genetics, 27(14), 2490–2501.PubMedCrossRef Di Pardo, A., Castaldo, S., Amico, E., Pepe, G., Marracino, F., Capocci, L., et al. (2018). Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood–brain barrier integrity and exerts therapeutic effect in an animal model of Huntington’s disease. Human Molecular Genetics, 27(14), 2490–2501.PubMedCrossRef
go back to reference Ding, G., Sonoda, H., Yu, H., Kajimoto, T., Goparaju, S. K., Jahangeer, S., et al. (2007). Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. Journal of Biological Chemistry, 282(37), 27493–27502.CrossRefPubMed Ding, G., Sonoda, H., Yu, H., Kajimoto, T., Goparaju, S. K., Jahangeer, S., et al. (2007). Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. Journal of Biological Chemistry, 282(37), 27493–27502.CrossRefPubMed
go back to reference Dinkins, M. B., Enasko, J., Hernandez, C., Wang, G., Kong, J., Helwa, I., et al. (2016). Neutral Sphingomyelinase-2 deficiency ameliorates Alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. Journal of Neuroscience, 36(33), 8653–8667.PubMedCrossRef Dinkins, M. B., Enasko, J., Hernandez, C., Wang, G., Kong, J., Helwa, I., et al. (2016). Neutral Sphingomyelinase-2 deficiency ameliorates Alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. Journal of Neuroscience, 36(33), 8653–8667.PubMedCrossRef
go back to reference Diop, F., Vial, T., Ferraris, P., Wichit, S., Bengue, M., Hamel, R., et al. (2018). Zika virus infection modulates the metabolomic profile of microglial cells. PLoS ONE, 13(10), e0206093.PubMedPubMedCentralCrossRef Diop, F., Vial, T., Ferraris, P., Wichit, S., Bengue, M., Hamel, R., et al. (2018). Zika virus infection modulates the metabolomic profile of microglial cells. PLoS ONE, 13(10), e0206093.PubMedPubMedCentralCrossRef
go back to reference Dodge, J. C., Clarke, J., Treleaven, C. M., Taksir, T. V., Griffiths, D. A., Yang, W., et al. (2009). Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann-Pick A disease. Experimental Neurology, 215(2), 349–357.PubMedCrossRef Dodge, J. C., Clarke, J., Treleaven, C. M., Taksir, T. V., Griffiths, D. A., Yang, W., et al. (2009). Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann-Pick A disease. Experimental Neurology, 215(2), 349–357.PubMedCrossRef
go back to reference Dodge, J. C., Treleaven, C. M., Pacheco, J., Cooper, S., Bao, C., Abraham, M., et al. (2015). Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences, 112(26), 8100–8105.CrossRef Dodge, J. C., Treleaven, C. M., Pacheco, J., Cooper, S., Bao, C., Abraham, M., et al. (2015). Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences, 112(26), 8100–8105.CrossRef
go back to reference Dohrn, M. F., Othman, A., Hirshman, S. K., Bode, H., Alecu, I., Fähndrich, E., et al. (2015). Elevation of plasma 1-deoxy-sphingolipids in type 2 diabetes mellitus: A susceptibility to neuropathy? European Journal of Neurology, 22(5), 806-e55.PubMedCrossRef Dohrn, M. F., Othman, A., Hirshman, S. K., Bode, H., Alecu, I., Fähndrich, E., et al. (2015). Elevation of plasma 1-deoxy-sphingolipids in type 2 diabetes mellitus: A susceptibility to neuropathy? European Journal of Neurology, 22(5), 806-e55.PubMedCrossRef
go back to reference Dominguez, G., Maddelein, M. L., Pucelle, M., Nicaise, Y., Maurage, C. A., Duyckaerts, C., et al. (2018). Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer’s disease brain. Acta Neuropathologica Communications, 6(1), 25.PubMedPubMedCentralCrossRef Dominguez, G., Maddelein, M. L., Pucelle, M., Nicaise, Y., Maurage, C. A., Duyckaerts, C., et al. (2018). Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer’s disease brain. Acta Neuropathologica Communications, 6(1), 25.PubMedPubMedCentralCrossRef
go back to reference Dworski, S., Lu, P., Khan, A., Maranda, B., Mitchell, J. J., Parini, R., et al. (2017). Acid ceramidase deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863(2), 386–394.CrossRef Dworski, S., Lu, P., Khan, A., Maranda, B., Mitchell, J. J., Parini, R., et al. (2017). Acid ceramidase deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863(2), 386–394.CrossRef
go back to reference Eichler, F., & Van Haren, K. (2007). Immune response in leukodystrophies. Pediatric Neurology, 37(4), 235–244.PubMedCrossRef Eichler, F., & Van Haren, K. (2007). Immune response in leukodystrophies. Pediatric Neurology, 37(4), 235–244.PubMedCrossRef
go back to reference Ernst, D., Murphy, S. M., Sathiyanadan, K., Wei, Y., Othman, A., Laurá, M., et al. (2015). Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity. Neuromolecular Medicine, 17(1), 47–57.PubMedPubMedCentralCrossRef Ernst, D., Murphy, S. M., Sathiyanadan, K., Wei, Y., Othman, A., Laurá, M., et al. (2015). Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity. Neuromolecular Medicine, 17(1), 47–57.PubMedPubMedCentralCrossRef
go back to reference Farfel-Becker, T., Vitner, E. B., Kelly, S. L., Bame, J. R., Duan, J., Shinder, V., et al. (2014). Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Human Molecular Genetics, 23(4), 843–854.PubMedCrossRef Farfel-Becker, T., Vitner, E. B., Kelly, S. L., Bame, J. R., Duan, J., Shinder, V., et al. (2014). Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Human Molecular Genetics, 23(4), 843–854.PubMedCrossRef
go back to reference Farrell, D. F., & McKhann, G. M. (1971). Characterization of cerebroside sulfotransferase from rat brain. Journal of Biological Chemistry, 246(15), 4694–4702.CrossRefPubMed Farrell, D. F., & McKhann, G. M. (1971). Characterization of cerebroside sulfotransferase from rat brain. Journal of Biological Chemistry, 246(15), 4694–4702.CrossRefPubMed
go back to reference Figuera-Losada, M., Stathis, M., Dorskind, J. M., Thomas, A. G., Bandaru, V. V. R., Yoo, S. W., et al. (2015). Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS ONE, 10(5), 1–18.CrossRef Figuera-Losada, M., Stathis, M., Dorskind, J. M., Thomas, A. G., Bandaru, V. V. R., Yoo, S. W., et al. (2015). Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS ONE, 10(5), 1–18.CrossRef
go back to reference Fox, T. E., Houck, K. L., O’Neill, S. M., Nagarajan, M., Stover, T. C., Pomianowski, P. T., et al. (2007). Ceramide recruits and activates protein kinase C ζ (PKCζ) within structured membrane microdomains. Journal of Biological Chemistry, 282(17), 12450–12457.CrossRefPubMed Fox, T. E., Houck, K. L., O’Neill, S. M., Nagarajan, M., Stover, T. C., Pomianowski, P. T., et al. (2007). Ceramide recruits and activates protein kinase C ζ (PKCζ) within structured membrane microdomains. Journal of Biological Chemistry, 282(17), 12450–12457.CrossRefPubMed
go back to reference Frey, R. S., Rahman, A., Kefer, J. C., Minshall, R. D., & Malik, A. B. (2002). PKCζ regulates TNF-α–induced activation of NADPH oxidase in endothelial cells. Circulation Research, 90(9), 1012–1019.PubMedCrossRef Frey, R. S., Rahman, A., Kefer, J. C., Minshall, R. D., & Malik, A. B. (2002). PKCζ regulates TNF-α–induced activation of NADPH oxidase in endothelial cells. Circulation Research, 90(9), 1012–1019.PubMedCrossRef
go back to reference Furukawa, K., Ohmi, Y., Ji, S., Zhang, P., Bhuiyan, R. H., Ohkawa, Y., et al. (2017). Glycolipids: Essential regulator of neuro-inflammation, metabolism and gliomagenesis. Biochimica et Biophysica Acta BBA, 1861(10), 2479–2484.CrossRef Furukawa, K., Ohmi, Y., Ji, S., Zhang, P., Bhuiyan, R. H., Ohkawa, Y., et al. (2017). Glycolipids: Essential regulator of neuro-inflammation, metabolism and gliomagenesis. Biochimica et Biophysica Acta BBA, 1861(10), 2479–2484.CrossRef
go back to reference Gault, C. R., Obeid, L. M., & Hannun, Y. A. (2010). An overview of sphingolipid metabolism: From synthesis to breakdown. Sphingolipids as signaling and regulatory molecules. New York, NY: Springer. Gault, C. R., Obeid, L. M., & Hannun, Y. A. (2010). An overview of sphingolipid metabolism: From synthesis to breakdown. Sphingolipids as signaling and regulatory molecules. New York, NY: Springer.
go back to reference Gill, J. S., & Windebank, A. J. (2000). Ceramide initiates NFκB-mediated caspase activation in neuronal apoptosis. Neurobiology of Disease, 7(4), 448–461.PubMedCrossRef Gill, J. S., & Windebank, A. J. (2000). Ceramide initiates NFκB-mediated caspase activation in neuronal apoptosis. Neurobiology of Disease, 7(4), 448–461.PubMedCrossRef
go back to reference Giri, S., Khan, M., Rattan, R., Singh, I., & Singh, A. K. (2006). Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. Journal of Lipid Research, 47(7), 1478–1492.PubMedCrossRef Giri, S., Khan, M., Rattan, R., Singh, I., & Singh, A. K. (2006). Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. Journal of Lipid Research, 47(7), 1478–1492.PubMedCrossRef
go back to reference Gómez-Muñoz, A. (2006). Ceramide 1-phosphate/ceramide, a switch between life and death. Biochimica Biophysica Acta, 1758(12), 2049–2056.CrossRef Gómez-Muñoz, A. (2006). Ceramide 1-phosphate/ceramide, a switch between life and death. Biochimica Biophysica Acta, 1758(12), 2049–2056.CrossRef
go back to reference Grimm, M. O., Grimm, H. S., Pätzold, A. J., Zinser, E. G., Halonen, R., Duering, M., et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature Cell Biology, 7(11), 1118–1123.PubMedCrossRef Grimm, M. O., Grimm, H. S., Pätzold, A. J., Zinser, E. G., Halonen, R., Duering, M., et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature Cell Biology, 7(11), 1118–1123.PubMedCrossRef
go back to reference Gustafson, S. J., Barth, B. M., McGill, C. M., Clausen, T. P., & Kuhn, T. B. (2007). Wild Alaskan blueberry extracts inhibit a magnesium-dependent sphingomyelinase activity in neurons exposed to TNFα. Current Topics in Nutraceutical Research, 5(4), 183–188. Gustafson, S. J., Barth, B. M., McGill, C. M., Clausen, T. P., & Kuhn, T. B. (2007). Wild Alaskan blueberry extracts inhibit a magnesium-dependent sphingomyelinase activity in neurons exposed to TNFα. Current Topics in Nutraceutical Research, 5(4), 183–188.
go back to reference Hagen, N., Van Veldhoven, P. P., Proia, R. L., Park, H., Merrill, A. H., & van Echten-Deckert, G. (2009). Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient neurons. Journal of Biological Chemistry, 284(17), 11346–11353.CrossRefPubMedPubMedCentral Hagen, N., Van Veldhoven, P. P., Proia, R. L., Park, H., Merrill, A. H., & van Echten-Deckert, G. (2009). Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient neurons. Journal of Biological Chemistry, 284(17), 11346–11353.CrossRefPubMedPubMedCentral
go back to reference Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1 phosphate. Science, 325(5945), 1254–1257.PubMedPubMedCentralCrossRef Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1 phosphate. Science, 325(5945), 1254–1257.PubMedPubMedCentralCrossRef
go back to reference Hannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 19(3), 175–191.PubMedCrossRef Hannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews Molecular Cell Biology, 19(3), 175–191.PubMedCrossRef
go back to reference Henriques, A., Croixmarie, V., Bouscary, A., Mosbach, A., Keime, C., Boursier-Neyret, C., et al. (2018). Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience, 10, 433.PubMedPubMedCentralCrossRef Henriques, A., Croixmarie, V., Bouscary, A., Mosbach, A., Keime, C., Boursier-Neyret, C., et al. (2018). Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience, 10, 433.PubMedPubMedCentralCrossRef
go back to reference Herr, D. R., Reolo, M. J., Peh, Y. X., Wang, W., Lee, C. W., Rivera, R., et al. (2016). Sphingosine-1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: Implications for otoprotective therapy. Scientific Reports, 6, 24541.PubMedPubMedCentralCrossRef Herr, D. R., Reolo, M. J., Peh, Y. X., Wang, W., Lee, C. W., Rivera, R., et al. (2016). Sphingosine-1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: Implications for otoprotective therapy. Scientific Reports, 6, 24541.PubMedPubMedCentralCrossRef
go back to reference Hirabayashi, Y., Igarashi, Y., & Merrill, A. J. (2006). Sphingolipid biology. New York, NY: Springer Science & Business Media.CrossRef Hirabayashi, Y., Igarashi, Y., & Merrill, A. J. (2006). Sphingolipid biology. New York, NY: Springer Science & Business Media.CrossRef
go back to reference Hou, L., Sun, F., Huang, R., Sun, W., Zhang, D., & Wang, Q. (2019). Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biology, 22, 101134.PubMedPubMedCentralCrossRef Hou, L., Sun, F., Huang, R., Sun, W., Zhang, D., & Wang, Q. (2019). Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biology, 22, 101134.PubMedPubMedCentralCrossRef
go back to reference Huang, Y., Li, Y., Zhang, H., Zhao, R., Jing, R., Xu, Y., et al. (2018). Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discovery, 4(19), 1–16. Huang, Y., Li, Y., Zhang, H., Zhao, R., Jing, R., Xu, Y., et al. (2018). Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discovery, 4(19), 1–16.
go back to reference Ilyas, A. A., Chen, Z. W., & Cook, S. D. (2003). Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. Journal of Neuroimmunology, 139(1–2), 76–80.PubMedCrossRef Ilyas, A. A., Chen, Z. W., & Cook, S. D. (2003). Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. Journal of Neuroimmunology, 139(1–2), 76–80.PubMedCrossRef
go back to reference Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C. W., Saiki, S., Rose, C., et al. (2008). Huntington’s disease: From pathology and genetics to potential therapies. Biochemical Journal, 412(2), 191–209.CrossRefPubMed Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C. W., Saiki, S., Rose, C., et al. (2008). Huntington’s disease: From pathology and genetics to potential therapies. Biochemical Journal, 412(2), 191–209.CrossRefPubMed
go back to reference Jackman, N., Ishii, A., & Bansal, R. (2009). Oligodendrocyte development and myelin biogenesis: Parsing out the roles of glycosphingolipids. Physiology, 24(5), 290–297.PubMedCrossRef Jackman, N., Ishii, A., & Bansal, R. (2009). Oligodendrocyte development and myelin biogenesis: Parsing out the roles of glycosphingolipids. Physiology, 24(5), 290–297.PubMedCrossRef
go back to reference Jana, A., & Pahan, K. (2004). Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. Journal of Neuroscience, 24(43), 9531–9540.PubMedCrossRef Jana, A., & Pahan, K. (2004). Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. Journal of Neuroscience, 24(43), 9531–9540.PubMedCrossRef
go back to reference Jana, M., Palencia, C. A., & Pahan, K. (2008). Fibrillar amyloid-β peptides activate microglia via TLR2: Implications for Alzheimer’s disease. The Journal of Immunology, 181(10), 7254–7262.PubMedCrossRef Jana, M., Palencia, C. A., & Pahan, K. (2008). Fibrillar amyloid-β peptides activate microglia via TLR2: Implications for Alzheimer’s disease. The Journal of Immunology, 181(10), 7254–7262.PubMedCrossRef
go back to reference Jazvinšćak Jembrek, M., Hof, P. R., & Šimić, G. (2015). Ceramides in Alzheimer’s disease: Key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxidative Medicine and Cellular Longevity, 2015, 1–17.CrossRef Jazvinšćak Jembrek, M., Hof, P. R., & Šimić, G. (2015). Ceramides in Alzheimer’s disease: Key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxidative Medicine and Cellular Longevity, 2015, 1–17.CrossRef
go back to reference Jennemann, R., Sandhoff, R., Wang, S., Kiss, E., Gretz, N., Zuliani, C., et al. (2005). Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proceedings of the National Academy of Sciences, 102(35), 12459–12464.CrossRef Jennemann, R., Sandhoff, R., Wang, S., Kiss, E., Gretz, N., Zuliani, C., et al. (2005). Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proceedings of the National Academy of Sciences, 102(35), 12459–12464.CrossRef
go back to reference Jeon, S. B., Yoon, H. J., Park, S. H., Kim, I. H., & Park, E. J. (2008). Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. The Journal of Immunology, 181(11), 8077–8087.PubMedCrossRef Jeon, S. B., Yoon, H. J., Park, S. H., Kim, I. H., & Park, E. J. (2008). Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. The Journal of Immunology, 181(11), 8077–8087.PubMedCrossRef
go back to reference Jeong, Y. H., Kim, Y., Song, H., Chung, Y. S., Park, S. B., & Kim, H. S. (2014). Anti-inflammatory effects of α-galactosylceramide analogs in activated microglia: Involvement of the p38 MAPK signaling pathway. PLoS ONE, 9(2), e87030.PubMedPubMedCentralCrossRef Jeong, Y. H., Kim, Y., Song, H., Chung, Y. S., Park, S. B., & Kim, H. S. (2014). Anti-inflammatory effects of α-galactosylceramide analogs in activated microglia: Involvement of the p38 MAPK signaling pathway. PLoS ONE, 9(2), e87030.PubMedPubMedCentralCrossRef
go back to reference Jęśko, H., Wencel, P. L., Wójtowicz, S., Strosznajder, J., Lukiw, W. J., & Strosznajder, R. P. (2020). Fingolimod affects transcription of genes encoding enzymes of ceramide metabolism in animal model of Alzheimer’s disease. Molecular Neurobiology, 57(6), 2799.PubMedPubMedCentralCrossRef Jęśko, H., Wencel, P. L., Wójtowicz, S., Strosznajder, J., Lukiw, W. J., & Strosznajder, R. P. (2020). Fingolimod affects transcription of genes encoding enzymes of ceramide metabolism in animal model of Alzheimer’s disease. Molecular Neurobiology, 57(6), 2799.PubMedPubMedCentralCrossRef
go back to reference Jin, S., Zhou, F., Katirai, F., & Li, P. L. (2011). Lipid raft redox signaling: Molecular mechanisms in health and disease. Antioxidants & Redox Signaling, 15(4), 1043–1083.CrossRef Jin, S., Zhou, F., Katirai, F., & Li, P. L. (2011). Lipid raft redox signaling: Molecular mechanisms in health and disease. Antioxidants & Redox Signaling, 15(4), 1043–1083.CrossRef
go back to reference Johnson, K. R., Johnson, K. Y., Becker, K. P., Bielawski, J., Mao, C., & Obeid, L. M. (2003). Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra-and extracellular sphingosine-1-phosphate levels and cell viability. Journal of Biological Chemistry, 278(36), 34541–34547.CrossRefPubMed Johnson, K. R., Johnson, K. Y., Becker, K. P., Bielawski, J., Mao, C., & Obeid, L. M. (2003). Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra-and extracellular sphingosine-1-phosphate levels and cell viability. Journal of Biological Chemistry, 278(36), 34541–34547.CrossRefPubMed
go back to reference Jung, J. S., Shin, K. O., Lee, Y. M., Shin, J. A., Park, E. M., Jeong, J., et al. (2013). Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1831(6), 1016–1026. Jung, J. S., Shin, K. O., Lee, Y. M., Shin, J. A., Park, E. M., Jeong, J., et al. (2013). Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1831(6), 1016–1026.
go back to reference Karaca, I., Tamboli, I. Y., Glebov, K., Richter, J., Fell, L. H., Grimm, M. O., et al. (2014). Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. Journal of Biological Chemistry, 289(24), 16761–16772.CrossRefPubMedPubMedCentral Karaca, I., Tamboli, I. Y., Glebov, K., Richter, J., Fell, L. H., Grimm, M. O., et al. (2014). Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. Journal of Biological Chemistry, 289(24), 16761–16772.CrossRefPubMedPubMedCentral
go back to reference Kataoka, H., Sugahara, K., Shimano, K., Teshima, K., Koyama, M., Fukunari, A., & Chiba, K. (2005). FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cellular & Molecular Immunology, 2(6), 439–448. Kataoka, H., Sugahara, K., Shimano, K., Teshima, K., Koyama, M., Fukunari, A., & Chiba, K. (2005). FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cellular & Molecular Immunology, 2(6), 439–448.
go back to reference Kikumoto, Y., Kai, Y., Morinaga, H., Iga-Murahashi, M., Matsuyama, M., Sasaki, T., et al. (2010). Fabry disease exhibiting recurrent stroke and persistent inflammation. Internal Medicine, 49(20), 2247–2252.PubMedCrossRef Kikumoto, Y., Kai, Y., Morinaga, H., Iga-Murahashi, M., Matsuyama, M., Sasaki, T., et al. (2010). Fabry disease exhibiting recurrent stroke and persistent inflammation. Internal Medicine, 49(20), 2247–2252.PubMedCrossRef
go back to reference Kim, O. S., Park, E. J., Joe, E. H., & Jou, I. (2002). JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. Journal of Biological Chemistry, 277(43), 40594–40601.CrossRefPubMed Kim, O. S., Park, E. J., Joe, E. H., & Jou, I. (2002). JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. Journal of Biological Chemistry, 277(43), 40594–40601.CrossRefPubMed
go back to reference Kim, S., & Sieburth, D. (2018). Sphingosine kinase activates the mitochondrial unfolded protein response and is targeted to mitochondria by stress. Cell Reports, 24(11), 2932-2945.e4.PubMedCrossRef Kim, S., & Sieburth, D. (2018). Sphingosine kinase activates the mitochondrial unfolded protein response and is targeted to mitochondria by stress. Cell Reports, 24(11), 2932-2945.e4.PubMedCrossRef
go back to reference Kitatani, K., Idkowiak-Baldys, J., & Hannun, Y. A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signaling, 20(6), 1010–1018.CrossRef Kitatani, K., Idkowiak-Baldys, J., & Hannun, Y. A. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signaling, 20(6), 1010–1018.CrossRef
go back to reference Kleinschnitz, C., Grund, H., Wingler, K., Armitage, M. E., Jones, E., Mittal, M., et al. (2010). Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology, 8(9), e1000479.PubMedPubMedCentralCrossRef Kleinschnitz, C., Grund, H., Wingler, K., Armitage, M. E., Jones, E., Mittal, M., et al. (2010). Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology, 8(9), e1000479.PubMedPubMedCentralCrossRef
go back to reference Kolter, T., Proia, R. L., & Sandhoff, K. (2002). Combinatorial ganglioside biosynthesis. Journal of Biological Chemistry, 277(29), 25859–25862.CrossRefPubMed Kolter, T., Proia, R. L., & Sandhoff, K. (2002). Combinatorial ganglioside biosynthesis. Journal of Biological Chemistry, 277(29), 25859–25862.CrossRefPubMed
go back to reference Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., et al. (2015). Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB Journal, 29(11), 4461–4472.PubMedPubMedCentralCrossRef Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., et al. (2015). Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB Journal, 29(11), 4461–4472.PubMedPubMedCentralCrossRef
go back to reference Kuhle, J., Lindberg, R. L. P., Regeniter, A., Mehling, M., Steck, A. J., Kappos, L., & Czaplinski, A. (2009). Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. European Journal of Neurology, 16(6), 771–774.PubMedCrossRef Kuhle, J., Lindberg, R. L. P., Regeniter, A., Mehling, M., Steck, A. J., Kappos, L., & Czaplinski, A. (2009). Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. European Journal of Neurology, 16(6), 771–774.PubMedCrossRef
go back to reference Kułakowska, A., Żendzian-Piotrowska, M., Baranowski, M., Konończuk, T., Drozdowski, W., Górski, J., & Bucki, R. (2010). Intrathecal increase of sphingosine 1-phosphate at early stage multiple sclerosis. Neuroscience Letters, 477(3), 149–152.PubMedCrossRef Kułakowska, A., Żendzian-Piotrowska, M., Baranowski, M., Konończuk, T., Drozdowski, W., Górski, J., & Bucki, R. (2010). Intrathecal increase of sphingosine 1-phosphate at early stage multiple sclerosis. Neuroscience Letters, 477(3), 149–152.PubMedCrossRef
go back to reference Lamour, N. F., Wijesinghe, D. S., Mietla, J. A., Ward, K. E., Stahelin, R. V., & Chalfant, C. E. (2011). Ceramide kinase regulates the production of tumor necrosis factor α (TNFα) via inhibition of TNFα-converting enzyme. Journal of Biological Chemistry, 286(50), 42808–42817.CrossRefPubMedPubMedCentral Lamour, N. F., Wijesinghe, D. S., Mietla, J. A., Ward, K. E., Stahelin, R. V., & Chalfant, C. E. (2011). Ceramide kinase regulates the production of tumor necrosis factor α (TNFα) via inhibition of TNFα-converting enzyme. Journal of Biological Chemistry, 286(50), 42808–42817.CrossRefPubMedPubMedCentral
go back to reference Lee, K. D., Chow, W. N., Sato-Bigbee, C., Graf, M. R., Graham, R. S., Colello, R. J., et al. (2009). FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. Journal of Neurotrauma, 26(12), 2335–2344.PubMedPubMedCentralCrossRef Lee, K. D., Chow, W. N., Sato-Bigbee, C., Graf, M. R., Graham, R. S., Colello, R. J., et al. (2009). FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. Journal of Neurotrauma, 26(12), 2335–2344.PubMedPubMedCentralCrossRef
go back to reference Lee, W. C., Tsoi, Y. K., Troendle, F. J., DeLucia, M. W., Ahmed, Z., Dicky, C. A., et al. (2007). Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. The FASEB Journal, 21(10), 2520–2527.PubMedCrossRef Lee, W. C., Tsoi, Y. K., Troendle, F. J., DeLucia, M. W., Ahmed, Z., Dicky, C. A., et al. (2007). Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. The FASEB Journal, 21(10), 2520–2527.PubMedCrossRef
go back to reference Lei, M., Teo, J. D., Song, H., McEwen, H. P., Lee, J. Y., Couttas, T. A., et al. (2019). Sphingosine kinase 2 potentiates amyloid deposition but protects against hippocampal volume loss and demyelination in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 39(48), 9645–9659.PubMedCrossRef Lei, M., Teo, J. D., Song, H., McEwen, H. P., Lee, J. Y., Couttas, T. A., et al. (2019). Sphingosine kinase 2 potentiates amyloid deposition but protects against hippocampal volume loss and demyelination in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 39(48), 9645–9659.PubMedCrossRef
go back to reference Leto, T. L., Morand, S., Hurt, D., & Ueyama, T. (2009). Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxidants & Redox Signaling, 11(10), 2607–2619.CrossRef Leto, T. L., Morand, S., Hurt, D., & Ueyama, T. (2009). Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxidants & Redox Signaling, 11(10), 2607–2619.CrossRef
go back to reference Levade, T., Moser, H. W., Fensom, A. H., Harzer, K., Moser, A. B., & Salvayre, R. (1995). Neurodegenerative course in ceramidase deficiency (Farber disease) correlates with the residual lysosomal ceramide turnover in cultured living patient cells. Journal of the Neurological Sciences, 134(1–2), 108–114.PubMedCrossRef Levade, T., Moser, H. W., Fensom, A. H., Harzer, K., Moser, A. B., & Salvayre, R. (1995). Neurodegenerative course in ceramidase deficiency (Farber disease) correlates with the residual lysosomal ceramide turnover in cultured living patient cells. Journal of the Neurological Sciences, 134(1–2), 108–114.PubMedCrossRef
go back to reference Li, X., Jin, S. J., Su, J., Li, X. X., & Xu, M. (2018). Acid sphingomyelinase down-regulation alleviates vascular endothelial insulin resistance in diabetic rats. Basic & Clinical Pharmacology & Toxicology, 123(6), 645–659.CrossRef Li, X., Jin, S. J., Su, J., Li, X. X., & Xu, M. (2018). Acid sphingomyelinase down-regulation alleviates vascular endothelial insulin resistance in diabetic rats. Basic & Clinical Pharmacology & Toxicology, 123(6), 645–659.CrossRef
go back to reference Li, Z., Hailemariam, T. K., Zhou, H., Li, Y., Duckworth, D. C., Peake, D. A., et al. (2007). Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1771(9), 1186–1194. Li, Z., Hailemariam, T. K., Zhou, H., Li, Y., Duckworth, D. C., Peake, D. A., et al. (2007). Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1771(9), 1186–1194.
go back to reference Lloyd-Evans, E., Morgan, A. J., He, X., Smith, D. A., Elliot-Smith, E., Sillence, D. J., et al. (2008). Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Medicine, 14(11), 1247.PubMedCrossRef Lloyd-Evans, E., Morgan, A. J., He, X., Smith, D. A., Elliot-Smith, E., Sillence, D. J., et al. (2008). Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Medicine, 14(11), 1247.PubMedCrossRef
go back to reference Lone, M. A., Santos, S., Alecu, I., Silva, L. C., & Hornemann, T. (2019). 1-Deoxysphingolipids. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1864(4), 512–521. Lone, M. A., Santos, S., Alecu, I., Silva, L. C., & Hornemann, T. (2019). 1-Deoxysphingolipids. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1864(4), 512–521.
go back to reference Lugrin, J., Ciarlo, E., Santos, A., Grandmaison, G., Dos Santos, I., Le Roy, D., & Roger, T. (2013). The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833(6), 1498–1510.CrossRef Lugrin, J., Ciarlo, E., Santos, A., Grandmaison, G., Dos Santos, I., Le Roy, D., & Roger, T. (2013). The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833(6), 1498–1510.CrossRef
go back to reference Maceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology, 22(1), 50–60.PubMedCrossRef Maceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology, 22(1), 50–60.PubMedCrossRef
go back to reference Maceyka, M., Sankala, H., Hait, N. C., Le Stunff, H., Liu, H., Toman, R., et al. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. Journal of Biological Chemistry, 280(44), 37118–37129.CrossRefPubMed Maceyka, M., Sankala, H., Hait, N. C., Le Stunff, H., Liu, H., Toman, R., et al. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. Journal of Biological Chemistry, 280(44), 37118–37129.CrossRefPubMed
go back to reference Maglione, V., Marchi, P., Di Pardo, A., Lingrell, S., Horkey, M., Tidmarsh, E., & Sipione, S. (2010). Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. Journal of Neuroscience, 30(11), 4072–4080.PubMedCrossRef Maglione, V., Marchi, P., Di Pardo, A., Lingrell, S., Horkey, M., Tidmarsh, E., & Sipione, S. (2010). Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. Journal of Neuroscience, 30(11), 4072–4080.PubMedCrossRef
go back to reference Marshall, J., Sun, Y., Bangari, D. S., Budman, E., Park, H., Nietupski, J. B., et al. (2016). CNS-accessible inhibitor of glucosylceramide synthase for substrate reduction therapy of neuronopathic Gaucher disease. Molecular Therapy, 24(6), 1019–1029.PubMedPubMedCentralCrossRef Marshall, J., Sun, Y., Bangari, D. S., Budman, E., Park, H., Nietupski, J. B., et al. (2016). CNS-accessible inhibitor of glucosylceramide synthase for substrate reduction therapy of neuronopathic Gaucher disease. Molecular Therapy, 24(6), 1019–1029.PubMedPubMedCentralCrossRef
go back to reference Marshall, M. S., Jakubauskas, B., Bogue, W., Stoskute, M., Hauck, Z., Rue, E., et al. (2018). Analysis of age-related changes in psychosine metabolism in the human brain. PLoS ONE, 13(2), e0193438.PubMedPubMedCentralCrossRef Marshall, M. S., Jakubauskas, B., Bogue, W., Stoskute, M., Hauck, Z., Rue, E., et al. (2018). Analysis of age-related changes in psychosine metabolism in the human brain. PLoS ONE, 13(2), e0193438.PubMedPubMedCentralCrossRef
go back to reference McCampbell, A., Truong, D., Broom, D. C., Allchorne, A., Gable, K., Cutler, R. G., et al. (2005). Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers as age-dependent neuropathy. Human Molecular Genetics, 14(22), 3507–3521.PubMedCrossRef McCampbell, A., Truong, D., Broom, D. C., Allchorne, A., Gable, K., Cutler, R. G., et al. (2005). Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers as age-dependent neuropathy. Human Molecular Genetics, 14(22), 3507–3521.PubMedCrossRef
go back to reference Miguez, A., Garcia-Diaz Barriga, G., Brito, V., Straccia, M., Giralt, A., Ginés, S., et al. (2015). Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Human Molecular Genetics, 24(17), 4958–4970.PubMedCrossRef Miguez, A., Garcia-Diaz Barriga, G., Brito, V., Straccia, M., Giralt, A., Ginés, S., et al. (2015). Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Human Molecular Genetics, 24(17), 4958–4970.PubMedCrossRef
go back to reference Mitrofanova, A., Mallela, S. K., Ducasa, G. M., Yoo, T. H., Rosenfeld-Gur, E., Zelnik, I. D., et al. (2019). SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nature Communications, 10(1), 2692.PubMedPubMedCentralCrossRef Mitrofanova, A., Mallela, S. K., Ducasa, G. M., Yoo, T. H., Rosenfeld-Gur, E., Zelnik, I. D., et al. (2019). SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nature Communications, 10(1), 2692.PubMedPubMedCentralCrossRef
go back to reference Mitsutake, S., Date, T., Yokota, H., Sugiura, M., Kohama, T., & Igarashi, Y. (2012). Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Letters, 586(9), 1300–1305.PubMedCrossRef Mitsutake, S., Date, T., Yokota, H., Sugiura, M., Kohama, T., & Igarashi, Y. (2012). Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Letters, 586(9), 1300–1305.PubMedCrossRef
go back to reference Myerowitz, R. (1997). Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Human Mutation, 9(3), 195–208.PubMedCrossRef Myerowitz, R. (1997). Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Human Mutation, 9(3), 195–208.PubMedCrossRef
go back to reference Neubauer, H. A., Tea, M. N., Zebol, J. R., Gliddon, B. L., Stefanidis, C., Moretti, P. A. B., et al. (2019). Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 38(8), 1151–1165.PubMedCrossRef Neubauer, H. A., Tea, M. N., Zebol, J. R., Gliddon, B. L., Stefanidis, C., Moretti, P. A. B., et al. (2019). Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 38(8), 1151–1165.PubMedCrossRef
go back to reference Neumann, J., Bras, J., Deas, E., O’Sullivan, S. S., Parkkinen, L., Lachmann, R. H., et al. (2009). Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain, 132(7), 1783–1794.PubMedPubMedCentralCrossRef Neumann, J., Bras, J., Deas, E., O’Sullivan, S. S., Parkkinen, L., Lachmann, R. H., et al. (2009). Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain, 132(7), 1783–1794.PubMedPubMedCentralCrossRef
go back to reference Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., et al. (2017). FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. The FASEB Journal, 31(4), 1719–1730.PubMedPubMedCentralCrossRef Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., et al. (2017). FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. The FASEB Journal, 31(4), 1719–1730.PubMedPubMedCentralCrossRef
go back to reference Newton, J., Milstien, S., & Spiegel, S. (2018). Niemann-Pick type C disease: The atypical sphingolipidosis. Advances in Biological Regulation, 70, 82–88.PubMedPubMedCentralCrossRef Newton, J., Milstien, S., & Spiegel, S. (2018). Niemann-Pick type C disease: The atypical sphingolipidosis. Advances in Biological Regulation, 70, 82–88.PubMedPubMedCentralCrossRef
go back to reference Norman, E., Cutler, R. G., Flannery, R., Wang, Y., & Mattson, M. P. (2010). Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. Journal of Neurochemistry, 114(2), 430–439.PubMedPubMedCentralCrossRef Norman, E., Cutler, R. G., Flannery, R., Wang, Y., & Mattson, M. P. (2010). Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. Journal of Neurochemistry, 114(2), 430–439.PubMedPubMedCentralCrossRef
go back to reference Othman, A., Bianchi, R., Alecu, I., Wei, Y., Porretta-Serapiglia, C., Lombardi, R., et al. (2015). Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes, 64(3), 1035–1045.PubMedCrossRef Othman, A., Bianchi, R., Alecu, I., Wei, Y., Porretta-Serapiglia, C., Lombardi, R., et al. (2015). Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes, 64(3), 1035–1045.PubMedCrossRef
go back to reference Paciotti, S., Albi, E., Parnetti, L., & Beccari, T. (2020). Lysosomal ceramide metabolism disorders: Implications in Parkinson’s disease. Journal of Clinical Medicine, 9(2), 594.PubMedCentralCrossRef Paciotti, S., Albi, E., Parnetti, L., & Beccari, T. (2020). Lysosomal ceramide metabolism disorders: Implications in Parkinson’s disease. Journal of Clinical Medicine, 9(2), 594.PubMedCentralCrossRef
go back to reference Pasqui, A. L., Di Renzo, M., Auteri, A., Federico, G., & Puccetti, L. (2007). Increased TNF-α production by peripheral blood mononuclear cells in patients with Krabbe’s disease: Effect of psychosine. European Journal of Clinical Investigation, 37(9), 742–745.PubMedCrossRef Pasqui, A. L., Di Renzo, M., Auteri, A., Federico, G., & Puccetti, L. (2007). Increased TNF-α production by peripheral blood mononuclear cells in patients with Krabbe’s disease: Effect of psychosine. European Journal of Clinical Investigation, 37(9), 742–745.PubMedCrossRef
go back to reference Penno, A., Reilly, M. M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., et al. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. Journal of Biological Chemistry, 285(15), 11178–11187.CrossRefPubMedPubMedCentral Penno, A., Reilly, M. M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., et al. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. Journal of Biological Chemistry, 285(15), 11178–11187.CrossRefPubMedPubMedCentral
go back to reference Persidsky, Y., Buttini, M., Limoges, J., Bock, P., & Gendelman, H. E. (1997). An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. Journal of Neurovirology, 3(6), 401–416.PubMedCrossRef Persidsky, Y., Buttini, M., Limoges, J., Bock, P., & Gendelman, H. E. (1997). An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. Journal of Neurovirology, 3(6), 401–416.PubMedCrossRef
go back to reference Pettus, B. J., Bielawska, A., Subramanian, P., Wijesinghe, D. S., Maceyka, M., Leslie, C. C., et al. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. Journal of Biological Chemistry, 279(12), 11320–11326.CrossRefPubMed Pettus, B. J., Bielawska, A., Subramanian, P., Wijesinghe, D. S., Maceyka, M., Leslie, C. C., et al. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. Journal of Biological Chemistry, 279(12), 11320–11326.CrossRefPubMed
go back to reference Porubsky, S., Jennemann, R., Lehmann, L., & Gröne, H. J. (2014). Depletion of globosides and isoglobosides fully reverts the morphologic phenotype of Fabry disease. Cell and Tissue Research, 358(1), 217–227.PubMedPubMedCentralCrossRef Porubsky, S., Jennemann, R., Lehmann, L., & Gröne, H. J. (2014). Depletion of globosides and isoglobosides fully reverts the morphologic phenotype of Fabry disease. Cell and Tissue Research, 358(1), 217–227.PubMedPubMedCentralCrossRef
go back to reference Potenza, R. L., De Simone, R., Armida, M., Mazziotti, V., Pèzzola, A., Popoli, P., & Minghetti, L. (2016). Fingolimod: A disease-modifier drug in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics, 13(4), 918–927.PubMedPubMedCentralCrossRef Potenza, R. L., De Simone, R., Armida, M., Mazziotti, V., Pèzzola, A., Popoli, P., & Minghetti, L. (2016). Fingolimod: A disease-modifier drug in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics, 13(4), 918–927.PubMedPubMedCentralCrossRef
go back to reference Robak, L. A., Jansen, I. E., Van Rooij, J., Uitterlinden, A. G., Kraaij, R., Jankovic, J., et al. (2017). Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain, 140(12), 3191–3203.PubMedPubMedCentralCrossRef Robak, L. A., Jansen, I. E., Van Rooij, J., Uitterlinden, A. G., Kraaij, R., Jankovic, J., et al. (2017). Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain, 140(12), 3191–3203.PubMedPubMedCentralCrossRef
go back to reference Rombach, S. M., Smid, B. E., Bouwman, M. G., Linthorst, G. E., Dijkgraaf, M. G., & Hollak, C. E. (2013). Long term enzyme replacement therapy for Fabry disease: Effectiveness on kidney, heart and brain. Orphanet Journal of Rare Diseases, 8(1), 47.PubMedPubMedCentralCrossRef Rombach, S. M., Smid, B. E., Bouwman, M. G., Linthorst, G. E., Dijkgraaf, M. G., & Hollak, C. E. (2013). Long term enzyme replacement therapy for Fabry disease: Effectiveness on kidney, heart and brain. Orphanet Journal of Rare Diseases, 8(1), 47.PubMedPubMedCentralCrossRef
go back to reference Rothhammer, V., Kenison, J. E., Tjon, E., Takenaka, M. C., de Lima, K. A., Borucki, D. M., et al. (2017). Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proceedings of the National Academy of Sciences, 114(8), 2012–2017.CrossRef Rothhammer, V., Kenison, J. E., Tjon, E., Takenaka, M. C., de Lima, K. A., Borucki, D. M., et al. (2017). Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proceedings of the National Academy of Sciences, 114(8), 2012–2017.CrossRef
go back to reference Schiffmann, R., FitzGibbon, E. J., Harris, C., DeVile, C., Davies, E. H., Abel, L., et al. (2008). Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 64(5), 514–522.CrossRef Schiffmann, R., FitzGibbon, E. J., Harris, C., DeVile, C., Davies, E. H., Abel, L., et al. (2008). Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 64(5), 514–522.CrossRef
go back to reference Schlotawa, L., Adang, L. A., Radhakrishnan, K., & Ahrens-Nicklas, R. C. (2020). Multiple sulfatase deficiency: A disease comprising mucopolysaccharidosis, sphingolipidosis, and more caused by a defect in posttranslational modification. International Journal of Molecular Sciences, 21(10), 3448.PubMedCentralCrossRef Schlotawa, L., Adang, L. A., Radhakrishnan, K., & Ahrens-Nicklas, R. C. (2020). Multiple sulfatase deficiency: A disease comprising mucopolysaccharidosis, sphingolipidosis, and more caused by a defect in posttranslational modification. International Journal of Molecular Sciences, 21(10), 3448.PubMedCentralCrossRef
go back to reference Schuchman, E. H., & Desnick, R. J. (2017). Types A and B Niemann-pick disease. Molecular Genetics and Metabolism, 120(1–2), 27–33.PubMedCrossRef Schuchman, E. H., & Desnick, R. J. (2017). Types A and B Niemann-pick disease. Molecular Genetics and Metabolism, 120(1–2), 27–33.PubMedCrossRef
go back to reference Sechi, A., Deroma, L., Dardis, A., Ciana, G., Bertin, N., Concolino, D., et al. (2014). Long term effects of enzyme replacement therapy in an Italian cohort of type 3 Gaucher patients. Molecular Genetics and Metabolism, 113(3), 213–218.PubMedCrossRef Sechi, A., Deroma, L., Dardis, A., Ciana, G., Bertin, N., Concolino, D., et al. (2014). Long term effects of enzyme replacement therapy in an Italian cohort of type 3 Gaucher patients. Molecular Genetics and Metabolism, 113(3), 213–218.PubMedCrossRef
go back to reference Senkal, C. E., Salama, M. F., Snider, A. J., Allopenna, J. J., Rana, N. A., Koller, A., et al. (2017). Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metabolism, 25(3), 686–697.PubMedPubMedCentralCrossRef Senkal, C. E., Salama, M. F., Snider, A. J., Allopenna, J. J., Rana, N. A., Koller, A., et al. (2017). Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metabolism, 25(3), 686–697.PubMedPubMedCentralCrossRef
go back to reference Settembre, C., Annunziata, I., Spampanato, C., Zarcone, D., Cobellis, G., Nusco, E., et al. (2007). Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proceedings of the National Academy of Sciences, 104(11), 4506–4511.CrossRef Settembre, C., Annunziata, I., Spampanato, C., Zarcone, D., Cobellis, G., Nusco, E., et al. (2007). Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proceedings of the National Academy of Sciences, 104(11), 4506–4511.CrossRef
go back to reference Seyfried, T. N., Choi, H., Chevalier, A., Hogan, D., Akgoc, Z., & Schneider, J. S. (2018). Sex-related abnormalities in substantia nigra lipids in Parkinson’s disease. ASN Neuro, 10, 1–10.CrossRef Seyfried, T. N., Choi, H., Chevalier, A., Hogan, D., Akgoc, Z., & Schneider, J. S. (2018). Sex-related abnormalities in substantia nigra lipids in Parkinson’s disease. ASN Neuro, 10, 1–10.CrossRef
go back to reference Seyrantepe, V., Demir, S. A., Timur, Z. K., Von Gerichten, J., Marsching, C., Erdemli, E., et al. (2018). Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease. Experimental Neurology, 299, 26–41.PubMedCrossRef Seyrantepe, V., Demir, S. A., Timur, Z. K., Von Gerichten, J., Marsching, C., Erdemli, E., et al. (2018). Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease. Experimental Neurology, 299, 26–41.PubMedCrossRef
go back to reference Shanbhogue, P., & Hannun, Y. A. (2020). Exploring the therapeutic landscape of sphingomyelinases. Handbook of Experimental Pharmacology, 259, 19–47.PubMedCrossRef Shanbhogue, P., & Hannun, Y. A. (2020). Exploring the therapeutic landscape of sphingomyelinases. Handbook of Experimental Pharmacology, 259, 19–47.PubMedCrossRef
go back to reference Shinghal, R., Scheller, R. H., & Bajjalieh, S. M. (1993). Ceramide-1-phosphate phosphatase activity in brain. Journal of Neurochemistry, 61(6), 2279–2285.PubMedCrossRef Shinghal, R., Scheller, R. H., & Bajjalieh, S. M. (1993). Ceramide-1-phosphate phosphatase activity in brain. Journal of Neurochemistry, 61(6), 2279–2285.PubMedCrossRef
go back to reference Shukitt-Hale, B., Thangthaeng, N., Miller, M. G., Poulose, S. M., Carey, A. N., & Fisher, D. R. (2019). Blueberries improve neuroinflammation and cognition differentially depending on individual cognitive baseline status. The Journals of Gerontology: Series A, 74(7), 977–983. Shukitt-Hale, B., Thangthaeng, N., Miller, M. G., Poulose, S. M., Carey, A. N., & Fisher, D. R. (2019). Blueberries improve neuroinflammation and cognition differentially depending on individual cognitive baseline status. The Journals of Gerontology: Series A, 74(7), 977–983.
go back to reference Siow, D. L., Anderson, C. D., Berdyshev, E. V., Skobeleva, A., Natarajan, V., Pitson, S. M., et al. (2011). Sphingosine kinase localization in the control of sphingolipid metabolism. Advances in Enzyme Regulation, 51(1), 229–244.PubMedCrossRef Siow, D. L., Anderson, C. D., Berdyshev, E. V., Skobeleva, A., Natarajan, V., Pitson, S. M., et al. (2011). Sphingosine kinase localization in the control of sphingolipid metabolism. Advances in Enzyme Regulation, 51(1), 229–244.PubMedCrossRef
go back to reference Siow, D. L., Anderson, C. D., Berdyshev, E. V., Skobeleva, A., Pitson, S. M., & Wattenberg, B. W. (2010). Intracellular localization of sphingosine kinase 1 alters access to substrate pools but does not affect the degradative fate of sphingosine-1-phosphate. Journal of Lipid Research, 51(9), 2546–2559.PubMedPubMedCentralCrossRef Siow, D. L., Anderson, C. D., Berdyshev, E. V., Skobeleva, A., Pitson, S. M., & Wattenberg, B. W. (2010). Intracellular localization of sphingosine kinase 1 alters access to substrate pools but does not affect the degradative fate of sphingosine-1-phosphate. Journal of Lipid Research, 51(9), 2546–2559.PubMedPubMedCentralCrossRef
go back to reference Sivasubramanian, M., Kanagaraj, N., Dheen, S. T., & Tay, S. S. W. (2015). Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson’s disease and in MPP+-treated MN9D cells in vitro. Neuroscience, 290, 636–648.PubMedCrossRef Sivasubramanian, M., Kanagaraj, N., Dheen, S. T., & Tay, S. S. W. (2015). Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson’s disease and in MPP+-treated MN9D cells in vitro. Neuroscience, 290, 636–648.PubMedCrossRef
go back to reference Smith, D., Wallom, K. L., Williams, I. M., Jeyakumar, M., & Platt, F. M. (2009). Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiology of Disease, 36(2), 242–251.PubMedCrossRef Smith, D., Wallom, K. L., Williams, I. M., Jeyakumar, M., & Platt, F. M. (2009). Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiology of Disease, 36(2), 242–251.PubMedCrossRef
go back to reference Suriyanarayanan, S., Auranen, M., Toppila, J., Paetau, A., Shcherbii, M., Palin, E., et al. (2016). The Variant p.(Arg183Trp) in SPTLC2 causes late-onset hereditary sensory neuropathy. Neuromolecular Medicine, 18(1), 81–90.PubMedCrossRef Suriyanarayanan, S., Auranen, M., Toppila, J., Paetau, A., Shcherbii, M., Palin, E., et al. (2016). The Variant p.(Arg183Trp) in SPTLC2 causes late-onset hereditary sensory neuropathy. Neuromolecular Medicine, 18(1), 81–90.PubMedCrossRef
go back to reference Tafesse, F. G., Vacaru, A. M., Bosma, E. F., Hermansson, M., Jain, A., Hilderink, A., et al. (2014). Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. Journal of Cell Science, 127(2), 445–454.PubMed Tafesse, F. G., Vacaru, A. M., Bosma, E. F., Hermansson, M., Jain, A., Hilderink, A., et al. (2014). Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. Journal of Cell Science, 127(2), 445–454.PubMed
go back to reference Takajo, D., Matsumoto, H., Noguchi, T., Nishimura, N., & Nonoyama, S. (2020). New variant mutation of glucosylceramidase beta (GBA) and early enzyme replacement therapy for neuronopathic gaucher disease: A case report and literature review. Iranian Journal of Pediatrics. https://doi.org/10.5812/ijp.98996.CrossRef Takajo, D., Matsumoto, H., Noguchi, T., Nishimura, N., & Nonoyama, S. (2020). New variant mutation of glucosylceramidase beta (GBA) and early enzyme replacement therapy for neuronopathic gaucher disease: A case report and literature review. Iranian Journal of Pediatrics. https://​doi.​org/​10.​5812/​ijp.​98996.CrossRef
go back to reference Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. Journal of Neuroscience, 31(18), 6850–6857.PubMedCrossRef Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. Journal of Neuroscience, 31(18), 6850–6857.PubMedCrossRef
go back to reference Tappino, B., Biancheri, R., Mort, M., Regis, S., Corsolini, F., Rossi, A., et al. (2010). Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Human Mutation, 31(12), E1894–E1914.PubMedPubMedCentralCrossRef Tappino, B., Biancheri, R., Mort, M., Regis, S., Corsolini, F., Rossi, A., et al. (2010). Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Human Mutation, 31(12), E1894–E1914.PubMedPubMedCentralCrossRef
go back to reference Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244–1247.PubMedCrossRef Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244–1247.PubMedCrossRef
go back to reference Tsai, H. C., & Han, M. H. (2016). Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs, 76(11), 1067–1079.PubMedCrossRef Tsai, H. C., & Han, M. H. (2016). Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs, 76(11), 1067–1079.PubMedCrossRef
go back to reference Uemura, S., Go, S., Shishido, F., & Inokuchi, J. I. (2014). Expression machinery of GM4: The excess amounts of GM3/GM4S synthase (ST3GAL5) are necessary for GM4 synthesis in mammalian cells. Glycoconjugate Journal, 31(2), 101–108.PubMedCrossRef Uemura, S., Go, S., Shishido, F., & Inokuchi, J. I. (2014). Expression machinery of GM4: The excess amounts of GM3/GM4S synthase (ST3GAL5) are necessary for GM4 synthesis in mammalian cells. Glycoconjugate Journal, 31(2), 101–108.PubMedCrossRef
go back to reference Vacaru, A. M., Tafesse, F. G., Ternes, P., Kondylis, V., Hermansson, M., Brouwers, J. F., et al. (2009). Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. Journal of Cell Biology, 185(6), 1013–1027.CrossRefPubMedPubMedCentral Vacaru, A. M., Tafesse, F. G., Ternes, P., Kondylis, V., Hermansson, M., Brouwers, J. F., et al. (2009). Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. Journal of Cell Biology, 185(6), 1013–1027.CrossRefPubMedPubMedCentral
go back to reference Van Doorn, R., Van Horssen, J., Verzijl, D., Witte, M., Ronken, E., Van Het Hof, B., et al. (2010). Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia, 58(12), 1465–1476.PubMedCrossRef Van Doorn, R., Van Horssen, J., Verzijl, D., Witte, M., Ronken, E., Van Het Hof, B., et al. (2010). Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia, 58(12), 1465–1476.PubMedCrossRef
go back to reference Venkatesan, A., & Benavides, D. R. (2015). Autoimmune encephalitis and its relation to infection. Current Neurology and Neuroscience Reports, 15(3), 1–11.CrossRef Venkatesan, A., & Benavides, D. R. (2015). Autoimmune encephalitis and its relation to infection. Current Neurology and Neuroscience Reports, 15(3), 1–11.CrossRef
go back to reference Villani, M., Subathra, M., Im, Y. B., Choi, Y., Signorelli, P., Del Poeta, M., & Luberto, C. (2008). Sphingomyelin synthases regulate production of diacylglycerol at the Golgi. Biochemical Journal, 414(1), 31–41.CrossRefPubMed Villani, M., Subathra, M., Im, Y. B., Choi, Y., Signorelli, P., Del Poeta, M., & Luberto, C. (2008). Sphingomyelin synthases regulate production of diacylglycerol at the Golgi. Biochemical Journal, 414(1), 31–41.CrossRefPubMed
go back to reference Vitner, E. B., Farfel-Becker, T., Eilam, R., Biton, I., & Futerman, A. H. (2012). Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain, 135(6), 1724–1735.PubMedCrossRef Vitner, E. B., Farfel-Becker, T., Eilam, R., Biton, I., & Futerman, A. H. (2012). Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain, 135(6), 1724–1735.PubMedCrossRef
go back to reference Wang, J., Liu, J., Zhou, R., Ding, X., Zhang, Q., Zhang, C., et al. (2018). Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochemical and Biophysical Research Communications, 497(2), 619–625.PubMedCrossRef Wang, J., Liu, J., Zhou, R., Ding, X., Zhang, Q., Zhang, C., et al. (2018). Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochemical and Biophysical Research Communications, 497(2), 619–625.PubMedCrossRef
go back to reference Wang, Q., Qian, L., Chen, S. H., Chu, C. H., Wilson, B., Oyarzabal, E., et al. (2015). Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models. Brain, 138(5), 1247–1262.PubMedPubMedCentralCrossRef Wang, Q., Qian, L., Chen, S. H., Chu, C. H., Wilson, B., Oyarzabal, E., et al. (2015). Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models. Brain, 138(5), 1247–1262.PubMedPubMedCentralCrossRef
go back to reference Wang, W., Shanmugam, M. K., Xiang, P., Yam, T. Y. A., Kumar, V., Chew, W. S., et al. (2020a). Sphingosine-1-phosphate receptor 2 induces otoprotective responses to cisplatin treatment. Cancers, 12(1), 211.PubMedCentralCrossRef Wang, W., Shanmugam, M. K., Xiang, P., Yam, T. Y. A., Kumar, V., Chew, W. S., et al. (2020a). Sphingosine-1-phosphate receptor 2 induces otoprotective responses to cisplatin treatment. Cancers, 12(1), 211.PubMedCentralCrossRef
go back to reference Weiner, H. L. (2004). Multiple sclerosis is an inflammatory T-cell–mediated autoimmune disease. Archives of Neurology, 61(10), 1613–1615.PubMedCrossRef Weiner, H. L. (2004). Multiple sclerosis is an inflammatory T-cell–mediated autoimmune disease. Archives of Neurology, 61(10), 1613–1615.PubMedCrossRef
go back to reference White, A. J., Wijeyekoon, R. S., Scott, K. M., Gunawardana, N. P., Hayat, S., Solim, I. H., et al. (2018). The peripheral inflammatory response to alpha-synuclein and endotoxin in Parkinson’s disease. Frontiers in Neurology, 9, 946.PubMedPubMedCentralCrossRef White, A. J., Wijeyekoon, R. S., Scott, K. M., Gunawardana, N. P., Hayat, S., Solim, I. H., et al. (2018). The peripheral inflammatory response to alpha-synuclein and endotoxin in Parkinson’s disease. Frontiers in Neurology, 9, 946.PubMedPubMedCentralCrossRef
go back to reference Wilson, E. R., Kugathasan, U., Abramov, A. Y., Clark, A. J., Bennett, D. L. H., Reilly, M. M., et al. (2018). Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiology of Disease, 117, 1–14.PubMedPubMedCentralCrossRef Wilson, E. R., Kugathasan, U., Abramov, A. Y., Clark, A. J., Bennett, D. L. H., Reilly, M. M., et al. (2018). Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiology of Disease, 117, 1–14.PubMedPubMedCentralCrossRef
go back to reference Wong, Y. C., & Krainc, D. (2016). Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease. Movement Disorders, 31(11), 1610–1618.PubMedPubMedCentralCrossRef Wong, Y. C., & Krainc, D. (2016). Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease. Movement Disorders, 31(11), 1610–1618.PubMedPubMedCentralCrossRef
go back to reference Wu, D. C., Ré, D. B., Nagai, M., Ischiropoulos, H., & Przedborski, S. (2006). The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proceedings of the National Academy of Sciences, 103(32), 12132–12137.CrossRef Wu, D. C., Ré, D. B., Nagai, M., Ischiropoulos, H., & Przedborski, S. (2006). The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proceedings of the National Academy of Sciences, 103(32), 12132–12137.CrossRef
go back to reference Wu, G., Yan, B., Wang, X., Feng, X., Zhang, A., Xu, X., & Dong, H. (2008). Decreased activities of lysosomal acid alpha-D-galactosidase A in the leukocytes of sporadic Parkinson’s disease. Journal of the Neurological Sciences, 271(1–2), 168–173.PubMedCrossRef Wu, G., Yan, B., Wang, X., Feng, X., Zhang, A., Xu, X., & Dong, H. (2008). Decreased activities of lysosomal acid alpha-D-galactosidase A in the leukocytes of sporadic Parkinson’s disease. Journal of the Neurological Sciences, 271(1–2), 168–173.PubMedCrossRef
go back to reference Wu, Y. P., Mizukami, H., Matsuda, J., Saito, Y., Proia, R. L., & Suzuki, K. (2005). Apoptosis accompanied by up-regulation of TNF-α death pathway genes in the brain of Niemann-Pick type C disease. Molecular Genetics and Metabolism, 84(1), 9–17.PubMedCrossRef Wu, Y. P., Mizukami, H., Matsuda, J., Saito, Y., Proia, R. L., & Suzuki, K. (2005). Apoptosis accompanied by up-regulation of TNF-α death pathway genes in the brain of Niemann-Pick type C disease. Molecular Genetics and Metabolism, 84(1), 9–17.PubMedCrossRef
go back to reference Young, M. M., Takahashi, Y., Fox, T. E., Yun, J. K., Kester, M., & Wang, H. G. (2016). Sphingosine kinase 1 cooperates with autophagy to maintain endocytic membrane trafficking. Cell Reports, 17(6), 1532–1545.PubMedCrossRef Young, M. M., Takahashi, Y., Fox, T. E., Yun, J. K., Kester, M., & Wang, H. G. (2016). Sphingosine kinase 1 cooperates with autophagy to maintain endocytic membrane trafficking. Cell Reports, 17(6), 1532–1545.PubMedCrossRef
go back to reference Zhou, W., Woodson, M., Sherman, M. B., Neelakanta, G., & Sultana, H. (2019). Exosomes mediate Zika virus transmission through SMPD3 neutral sphingomyelinase in cortical neurons. Emerging Microbes & Infections, 8(1), 307–326.CrossRef Zhou, W., Woodson, M., Sherman, M. B., Neelakanta, G., & Sultana, H. (2019). Exosomes mediate Zika virus transmission through SMPD3 neutral sphingomyelinase in cortical neurons. Emerging Microbes & Infections, 8(1), 307–326.CrossRef
go back to reference Zunke, F., Moise, A. C., Belur, N. R., Gelyana, E., Stojkovska, I., Dzaferbegovic, H., et al. (2018). Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron, 97(1), 92–107.PubMedCrossRef Zunke, F., Moise, A. C., Belur, N. R., Gelyana, E., Stojkovska, I., Dzaferbegovic, H., et al. (2018). Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron, 97(1), 92–107.PubMedCrossRef
Metadata
Title
Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2
Authors
Emma J. Arsenault
Colin M. McGill
Brian M. Barth
Publication date
01-03-2021
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2021
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-021-08646-2

Other articles of this Issue 1/2021

NeuroMolecular Medicine 1/2021 Go to the issue