Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2020

Open Access 01-12-2020 | Gaucher Disease | Research

Mice defective in interferon signaling help distinguish between primary and secondary pathological pathways in a mouse model of neuronal forms of Gaucher disease

Authors: Ayelet Vardi, Shifra Ben-Dor, Soo Min Cho, Ulrich Kalinke, Julia Spanier, Anthony H. Futerman

Published in: Journal of Neuroinflammation | Issue 1/2020

Login to get access

Abstract

Background

The type 1 interferon (IFN) response is part of the innate immune response and best known for its role in viral and bacterial infection. However, this pathway is also induced in sterile inflammation such as that which occurs in a number of neurodegenerative diseases, including neuronopathic Gaucher disease (nGD), a lysosomal storage disorder (LSD) caused by mutations in GBA.

Methods

Mice were injected with conduritol B-epoxide, an irreversible inhibitor of acid beta-glucosidase, the enzyme defective in nGD. MyTrMaSt null mice, where four adaptors of pathogen recognition receptors (PRRs) are deficient, were used to determine the role of the IFN pathway in nGD pathology. Activation of inflammatory and other pathways was analyzed by a variety of methods including RNAseq.

Results

Elevation in the expression of PRRs associated with the IFN response was observed in CBE-injected mice. Ablation of upstream pathways leading to IFN production had no therapeutic benefit on the lifespan of nGD mice but attenuated neuroinflammation. Primary and secondary pathological pathways (i.e., those associated or not with mouse survival) were distinguished, and a set of ~210 genes including those related to sphingolipid, cholesterol, and lipoprotein metabolism, along with a number of inflammatory pathways related to chemokines, TNF, TGF, complement, IL6, and damage-associated microglia were classified as primary pathological pathways, along with some lysosomal and neuronal genes.

Conclusions

Although IFN signaling is the top elevated pathway in nGD, we demonstrate that this pathway is not related to mouse viability and is consequently defined as a secondary pathology pathway. By elimination, we defined a number of critical pathways that are directly related to brain pathology in nGD, which in addition to its usefulness in understanding pathophysiological mechanisms, may also pave the way for the development of novel therapeutic paradigms by targeting such pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Futerman AH, Zimran A. Gaucher disease. Taylor and Francis Group, Boca Raton, FL: CRC Press; 2006. Futerman AH, Zimran A. Gaucher disease. Taylor and Francis Group, Boca Raton, FL: CRC Press; 2006.
2.
go back to reference Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Gaucher disease: progress and ongoing challenges. Mol Genet Metab Academic Press. 2017;120:8–21. Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Gaucher disease: progress and ongoing challenges. Mol Genet Metab Academic Press. 2017;120:8–21.
3.
go back to reference Vitner EB, Salomon R, Farfel-Becker T, Meshcheriakova A, Ali M, Klein AD, et al. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat Med. 2014;20:204–8.PubMed Vitner EB, Salomon R, Farfel-Becker T, Meshcheriakova A, Ali M, Klein AD, et al. RIPK3 as a potential therapeutic target for Gaucher’s disease. Nat Med. 2014;20:204–8.PubMed
4.
go back to reference Vitner EB, Farfel-Becker T, Ferreira NS, Leshkowitz D, Sharma P, Lang KS, et al. Induction of the type I interferon response in neurological forms of Gaucher disease. J Neuroinflammation BioMed Central. 2016;13:1–15. Vitner EB, Farfel-Becker T, Ferreira NS, Leshkowitz D, Sharma P, Lang KS, et al. Induction of the type I interferon response in neurological forms of Gaucher disease. J Neuroinflammation BioMed Central. 2016;13:1–15.
5.
go back to reference Enquist IB, Bianco Lo C, Ooka A, Nilsson E, Månsson J-E, Ehinger M, et al. Murine models of acute neuronopathic Gaucher disease. Proc Natl Acad Sci U S A National Acad Sciences. 2007;104:17483–8. Enquist IB, Bianco Lo C, Ooka A, Nilsson E, Månsson J-E, Ehinger M, et al. Murine models of acute neuronopathic Gaucher disease. Proc Natl Acad Sci U S A National Acad Sciences. 2007;104:17483–8.
6.
go back to reference Schaefer L. Complexity of Danger: The diverse nature of damage-associated molecular patterns. J Biol Chem American Society for Biochemistry and Molecular Biology. 2014;289:35237–45. Schaefer L. Complexity of Danger: The diverse nature of damage-associated molecular patterns. J Biol Chem American Society for Biochemistry and Molecular Biology. 2014;289:35237–45.
7.
go back to reference O'Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.PubMed O'Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.PubMed
8.
go back to reference McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol Nature Research. 2015;15:87–103. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol Nature Research. 2015;15:87–103.
9.
go back to reference Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature Nature Publishing Group. 2013;498:380–4. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature Nature Publishing Group. 2013;498:380–4.
10.
go back to reference Vardi A, Zigdon H, Meshcheriakova A, Klein AD, Yaacobi C, Eilam R, et al. Delineating pathological pathways in a chemically induced mouse model of Gaucher disease. J Pathol John Wiley & Sons, Ltd. 2016;239:496–509. Vardi A, Zigdon H, Meshcheriakova A, Klein AD, Yaacobi C, Eilam R, et al. Delineating pathological pathways in a chemically induced mouse model of Gaucher disease. J Pathol John Wiley & Sons, Ltd. 2016;239:496–509.
11.
go back to reference Kuo CL, Kallemeijn WW, Lelieveld LT, Mirzaian M, Zoutendijk I, Vardi A, et al. In vivo inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activity-based protein profiling. The FEBS Journal. John Wiley & Sons, Ltd (10.1111); 2019;286:584–600. Kuo CL, Kallemeijn WW, Lelieveld LT, Mirzaian M, Zoutendijk I, Vardi A, et al. In vivo inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activity-based protein profiling. The FEBS Journal. John Wiley & Sons, Ltd (10.1111); 2019;286:584–600.
12.
go back to reference Tegtmeyer P-K, Spanier J, Borst K, Becker J, Riedl A, Hirche C, et al. STING induces early IFN-β in the liver and constrains myeloid cell-mediated dissemination of murine cytomegalovirus. Nat. Commun. Nat Publ Group. 2019;10:1–12. Tegtmeyer P-K, Spanier J, Borst K, Becker J, Riedl A, Hirche C, et al. STING induces early IFN-β in the liver and constrains myeloid cell-mediated dissemination of murine cytomegalovirus. Nat. Commun. Nat Publ Group. 2019;10:1–12.
13.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2^(-ΔΔC(T)) method. Methods. 2001;25:402–8.PubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2^(-ΔΔC(T)) method. Methods. 2001;25:402–8.PubMed
14.
go back to reference Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-Seq for marker-free decomposition of tissues into cell types. Science. American Association for the Advancement of Science. 2014;343:776–9. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-Seq for marker-free decomposition of tissues into cell types. Science. American Association for the Advancement of Science. 2014;343:776–9.
15.
go back to reference Kohen R, Barlev J, Hornung G, Stelzer G, Feldmesser E, Kogan K, et al. UTAP: User-friendly transcriptome analysis pipeline. BMC Bioinformatics. BioMed Central. 2019;20:1–7. Kohen R, Barlev J, Hornung G, Stelzer G, Feldmesser E, Kogan K, et al. UTAP: User-friendly transcriptome analysis pipeline. BMC Bioinformatics. BioMed Central. 2019;20:1–7.
16.
go back to reference Hulsen T, Vlieg J, Alkema W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics BioMed Central. 2008;9:488. Hulsen T, Vlieg J, Alkema W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics BioMed Central. 2008;9:488.
17.
go back to reference Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun Nature Publishing Group. 2019;10:1–10. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun Nature Publishing Group. 2019;10:1–10.
18.
go back to reference Ben-Ari Fuchs S, Lieder I, Stelzer G, Mazor Y, Buzhor E, Kaplan S, et al. GeneAnalytics: an integrative gene set analysis tool for next generation sequencing, RNAseq and microarray data. OMICS. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2016;20:139–51. Ben-Ari Fuchs S, Lieder I, Stelzer G, Mazor Y, Buzhor E, Kaplan S, et al. GeneAnalytics: an integrative gene set analysis tool for next generation sequencing, RNAseq and microarray data. OMICS. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2016;20:139–51.
19.
go back to reference Blasius AL, Beutler B. Intracellular Toll-like receptors. Immunity Elsevier Inc. 2010;32:305–15. Blasius AL, Beutler B. Intracellular Toll-like receptors. Immunity Elsevier Inc. 2010;32:305–15.
20.
go back to reference Sabbah A, Te HC, Harnack R, Frohlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol Nature Publishing Group. 2009;10:1073–80. Sabbah A, Te HC, Harnack R, Frohlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol Nature Publishing Group. 2009;10:1073–80.
21.
go back to reference Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature Nature Publishing Group. 2008;455:674–8. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature Nature Publishing Group. 2008;455:674–8.
22.
go back to reference Vitner EB, Farfel-Becker T, Eilam R, Biton I, Futerman AH, Futerman A. Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain. 2012;135:1724–35.PubMed Vitner EB, Farfel-Becker T, Eilam R, Biton I, Futerman AH, Futerman A. Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher’s disease. Brain. 2012;135:1724–35.PubMed
23.
go back to reference Klein AD, Ferreira NS, Ben-Dor S, Duan J, Hardy J, Cox TM, et al. Identification of modifier genes in a mouse model of Gaucher disease. Cell Rep Cell Press. 2016;16:2546–53. Klein AD, Ferreira NS, Ben-Dor S, Duan J, Hardy J, Cox TM, et al. Identification of modifier genes in a mouse model of Gaucher disease. Cell Rep Cell Press. 2016;16:2546–53.
24.
go back to reference Franzén O, Gan LM, Björkegren J. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database. 2019. Franzén O, Gan LM, Björkegren J. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database. 2019.
25.
go back to reference La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell Cell Press. 2016;167:566–580.e19. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell Cell Press. 2016;167:566–580.e19.
26.
go back to reference Zigdon H, Meshcheriakova A, Becker TF, Volpert G, Sabanay H, Futerman AH. Altered lysosome distribution is an early neuropathological event in neurological forms of Gaucher disease. FEBS Lett John Wiley & Sons, Ltd. 2017;591:774–83. Zigdon H, Meshcheriakova A, Becker TF, Volpert G, Sabanay H, Futerman AH. Altered lysosome distribution is an early neuropathological event in neurological forms of Gaucher disease. FEBS Lett John Wiley & Sons, Ltd. 2017;591:774–83.
27.
go back to reference Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet Oxford University Press. 2011;20:1375–86. Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet Oxford University Press. 2011;20:1375–86.
28.
go back to reference Yaron A, Schuldiner O. Common and divergent mechanisms in developmental neuronal remodeling and dying back neurodegeneration. Current Biology Cell Press. 2016;26:R628–39. Yaron A, Schuldiner O. Common and divergent mechanisms in developmental neuronal remodeling and dying back neurodegeneration. Current Biology Cell Press. 2016;26:R628–39.
29.
go back to reference Han X, Zhu J, Zhang X, Song Q, Ding J, Lu M, et al. Plin4-dependent lipid droplets hamper neuronal mitophagy in the MPTP/p-induced mouse model of Parkinson’s disease. Front Neurosci Frontiers. 2018;12:1257. Han X, Zhu J, Zhang X, Song Q, Ding J, Lu M, et al. Plin4-dependent lipid droplets hamper neuronal mitophagy in the MPTP/p-induced mouse model of Parkinson’s disease. Front Neurosci Frontiers. 2018;12:1257.
30.
go back to reference Schlomann U, Rathke-Hartlieb S, Yamamoto S, Jockusch H, Bartsch JW. Tumor necrosis factor α induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron–glia interactions during neurodegeneration. J Neurosci Society for Neuroscience. 2000;20:7964–71. Schlomann U, Rathke-Hartlieb S, Yamamoto S, Jockusch H, Bartsch JW. Tumor necrosis factor α induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron–glia interactions during neurodegeneration. J Neurosci Society for Neuroscience. 2000;20:7964–71.
31.
go back to reference Yoon-Seong Kim THJ. Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol Ther Korean Society of Applied Pharmacology. 2012;20:133–43. Yoon-Seong Kim THJ. Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol Ther Korean Society of Applied Pharmacology. 2012;20:133–43.
32.
go back to reference Weinstock LD, Furness AM, Herron SS, Smith SS, Sankar SB, DeRosa SG, et al. Fingolimod phosphate inhibits astrocyte inflammatory activity in mucolipidosis IV. Hum Mol Genet. 2018;27:2725–38.PubMedPubMedCentral Weinstock LD, Furness AM, Herron SS, Smith SS, Sankar SB, DeRosa SG, et al. Fingolimod phosphate inhibits astrocyte inflammatory activity in mucolipidosis IV. Hum Mol Genet. 2018;27:2725–38.PubMedPubMedCentral
33.
go back to reference Cougnoux A, Drummond RA, Fellmeth M, Navid F, Collar AL, Iben J, et al. Unique molecular signature in mucolipidosis type IV microglia. J Neuroinflammation BioMed Central. 2019;16:1–12. Cougnoux A, Drummond RA, Fellmeth M, Navid F, Collar AL, Iben J, et al. Unique molecular signature in mucolipidosis type IV microglia. J Neuroinflammation BioMed Central. 2019;16:1–12.
34.
go back to reference McGlasson S, Jury A, Jackson A, Hunt D. Type I interferon dysregulation and neurological disease. Nat Rev Neurol Nature Publishing Group. 2015;11:515–23. McGlasson S, Jury A, Jackson A, Hunt D. Type I interferon dysregulation and neurological disease. Nat Rev Neurol Nature Publishing Group. 2015;11:515–23.
35.
go back to reference Wong SW, Kwon M-J, Choi AMK, Kim H-P, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem American Society for Biochemistry and Molecular Biology. 2009;284:27384–92. Wong SW, Kwon M-J, Choi AMK, Kim H-P, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem American Society for Biochemistry and Molecular Biology. 2009;284:27384–92.
36.
go back to reference Varela ARP, Gonçalves da Silva AMPS, Fedorov A, Futerman AH, Prieto M, Silva LC. Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochim Biophys Acta Elsevier. 2013;1828:1122–30. Varela ARP, Gonçalves da Silva AMPS, Fedorov A, Futerman AH, Prieto M, Silva LC. Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochim Biophys Acta Elsevier. 2013;1828:1122–30.
37.
go back to reference Vitner EB, Vardi A, Cox TM, Futerman AH. Emerging therapeutic targets for Gaucher disease. Expert Opin Ther Targets Informa UK, Ltd. 2014;19:321–34. Vitner EB, Vardi A, Cox TM, Futerman AH. Emerging therapeutic targets for Gaucher disease. Expert Opin Ther Targets Informa UK, Ltd. 2014;19:321–34.
38.
go back to reference Wang C-W. Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta Elsevier. 1861;2016:793–805. Wang C-W. Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta Elsevier. 1861;2016:793–805.
39.
go back to reference Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI, Nuber S, et al. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol Cell Cell Press. 2019;73:1001–8. Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI, Nuber S, et al. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol Cell Cell Press. 2019;73:1001–8.
40.
go back to reference Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain. bioRxiv. Cold Spring Harbor Laboratory. 2019;722827:454. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain. bioRxiv. Cold Spring Harbor Laboratory. 2019;722827:454.
41.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell Cell Press. 2017;169:1276–1290.e17. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell Cell Press. 2017;169:1276–1290.e17.
42.
go back to reference Li J-T, Zhang Y. TREM2 regulates innate immunity in Alzheimer’s disease. J Neuroinflammation BioMed Central. 2018;15:1–7. Li J-T, Zhang Y. TREM2 regulates innate immunity in Alzheimer’s disease. J Neuroinflammation BioMed Central. 2018;15:1–7.
43.
go back to reference Zhou S-L, Tan C-C, Hou X-H, Cao X-P, Tan L, Yu J-T. TREM2 variants and neurodegenerative diseases: a systematic review and meta-analysis. Zhu L-Q, editor J Alzheimers Dis IOS Press. 2019;68:1171–84. Zhou S-L, Tan C-C, Hou X-H, Cao X-P, Tan L, Yu J-T. TREM2 variants and neurodegenerative diseases: a systematic review and meta-analysis. Zhu L-Q, editor J Alzheimers Dis IOS Press. 2019;68:1171–84.
44.
go back to reference Ren M, Guo Y, Wei X, Yan S, Qin Y, Zhang X, et al. TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson's disease. Exp Neurol Academic Press. 2018;302:205–13. Ren M, Guo Y, Wei X, Yan S, Qin Y, Zhang X, et al. TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson's disease. Exp Neurol Academic Press. 2018;302:205–13.
45.
go back to reference Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends Mol Med Elsevier Current Trends. 2017;23:512–33. Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends Mol Med Elsevier Current Trends. 2017;23:512–33.
46.
go back to reference Cho SM, Vardi A, Platt N, Futerman AH. Absence of infiltrating peripheral myeloid cells in the brains of mouse models of lysosomal storage disorders. Kielian T, editor. J. Neurochem. John Wiley & Sons, Ltd (10.1111); 2019;148:625–38. Cho SM, Vardi A, Platt N, Futerman AH. Absence of infiltrating peripheral myeloid cells in the brains of mouse models of lysosomal storage disorders. Kielian T, editor. J. Neurochem. John Wiley & Sons, Ltd (10.1111); 2019;148:625–38.
47.
go back to reference Konishi H, Kiyama H. Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front Cell Neurosci Frontiers. 2018;e1002466:12. Konishi H, Kiyama H. Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front Cell Neurosci Frontiers. 2018;e1002466:12.
48.
go back to reference Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol Annual Reviews. 2014;32:433–59. Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol Annual Reviews. 2014;32:433–59.
49.
go back to reference Pandey MK, Grabowski GA, Köhl J. An unexpected player in Gaucher disease: the multiple roles of complement in disease development. Semin Immunol Academic Press. 2018;37:30–42. Pandey MK, Grabowski GA, Köhl J. An unexpected player in Gaucher disease: the multiple roles of complement in disease development. Semin Immunol Academic Press. 2018;37:30–42.
50.
go back to reference Pandey MK, Burrow TA, Rani R, Martin LJ, Witte D, Setchell KD, et al. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature Nature Publishing Group. 2017;543:108–12. Pandey MK, Burrow TA, Rani R, Martin LJ, Witte D, Setchell KD, et al. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature Nature Publishing Group. 2017;543:108–12.
51.
go back to reference Wang X-X, Tan M-S, Yu J-T, Tan L. Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. Biomed Res Int. Hindawi; 2014;2014:1–8. Wang X-X, Tan M-S, Yu J-T, Tan L. Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. Biomed Res Int. Hindawi; 2014;2014:1–8.
52.
go back to reference Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J. Neurochem. John Wiley & Sons. Ltd. 2006;96:1–13. Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J. Neurochem. John Wiley & Sons. Ltd. 2006;96:1–13.
53.
go back to reference Juárez-Rebollar D, Rios C, Nava-Ruíz C, Méndez-Armenta M. Metallothionein in brain disorders. Oxid Med Cell Longev Hindawi. 2017;2017:1–12. Juárez-Rebollar D, Rios C, Nava-Ruíz C, Méndez-Armenta M. Metallothionein in brain disorders. Oxid Med Cell Longev Hindawi. 2017;2017:1–12.
54.
go back to reference Costa R, Ferreira-da-Silva F, Saraiva MJ. (null) IC. Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor. PLoS One. 2008;3. Costa R, Ferreira-da-Silva F, Saraiva MJ. (null) IC. Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor. PLoS One. 2008;3.
55.
go back to reference Santos CRA, Martinho A, Quintela T, Gonçalves I. Neuroprotective and neuroregenerative properties of metallothioneins. IUBMB Life. John Wiley & Sons. Ltd. 2012;64:126–35. Santos CRA, Martinho A, Quintela T, Gonçalves I. Neuroprotective and neuroregenerative properties of metallothioneins. IUBMB Life. John Wiley & Sons. Ltd. 2012;64:126–35.
56.
go back to reference Miyazaki I, Asanuma M, Hozumi H, Miyoshi K, Sogawa N. Protective effects of metallothionein against dopamine quinone-induced dopaminergic neurotoxicity. FEBS Lett No longer published by Elsevier. 2007;581:5003–8. Miyazaki I, Asanuma M, Hozumi H, Miyoshi K, Sogawa N. Protective effects of metallothionein against dopamine quinone-induced dopaminergic neurotoxicity. FEBS Lett No longer published by Elsevier. 2007;581:5003–8.
Metadata
Title
Mice defective in interferon signaling help distinguish between primary and secondary pathological pathways in a mouse model of neuronal forms of Gaucher disease
Authors
Ayelet Vardi
Shifra Ben-Dor
Soo Min Cho
Ulrich Kalinke
Julia Spanier
Anthony H. Futerman
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2020
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-020-01934-x

Other articles of this Issue 1/2020

Journal of Neuroinflammation 1/2020 Go to the issue