Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Gastric Cancer | Original Article

A virtual biopsy study of microsatellite instability in gastric cancer based on deep learning radiomics

Authors: Zinian Jiang, Wentao Xie, Xiaoming Zhou, Wenjun Pan, Sheng Jiang, Xianxiang Zhang, Maoshen Zhang, Zhenqi Zhang, Yun Lu, Dongsheng Wang

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Objectives

This study aims to develop and validate a virtual biopsy model to predict microsatellite instability (MSI) status in preoperative gastric cancer (GC) patients based on clinical information and the radiomics of deep learning algorithms.

Methods

A total of 223 GC patients with MSI status detected by postoperative immunohistochemical staining (IHC) were retrospectively recruited and randomly assigned to the training (n = 167) and testing (n = 56) sets in a 3:1 ratio. In the training set, 982 high-throughput radiomic features were extracted from preoperative abdominal dynamic contrast-enhanced CT (CECT) and screened. According to the deep learning multilayer perceptron (MLP), 15 optimal features were optimized to establish the radiomic feature score (Rad-score), and LASSO regression was used to screen out clinically independent predictors. Based on logistic regression, the Rad-score and clinically independent predictors were integrated to build the clinical radiomics model and visualized as a nomogram and independently verified in the testing set. The performance and clinical applicability of hybrid model in identifying MSI status were evaluated by the area under the receiver operating characteristic (AUC) curve, calibration curve, and decision curve (DCA).

Results

The AUCs of the clinical image model in training set and testing set were 0.883 [95% CI: 0.822–0.945] and 0.802 [95% CI: 0.666–0.937], respectively. This hybrid model showed good consistency in the calibration curve and clinical applicability in the DCA curve, respectively.

Conclusions

Using preoperative imaging and clinical information, we developed a deep-learning-based radiomics model for the non-invasive evaluation of MSI in GC patients. This model maybe can potentially support clinical treatment decision making for GC patients.

Graphical abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Cao W, Chen HD, Yu YW, Li N, Chen WQ (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J 134(7):783–791PubMedPubMedCentralCrossRef Cao W, Chen HD, Yu YW, Li N, Chen WQ (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J 134(7):783–791PubMedPubMedCentralCrossRef
2.
go back to reference Arnold M, Abnet CC, Neale RE et al (2020) Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1):335–349PubMedCrossRef Arnold M, Abnet CC, Neale RE et al (2020) Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1):335–349PubMedCrossRef
3.
go back to reference Comprehensive molecular characterization of gastric adenocarcinoma (2014) Nature 513(7517):202–209CrossRef Comprehensive molecular characterization of gastric adenocarcinoma (2014) Nature 513(7517):202–209CrossRef
4.
6.
go back to reference Li K, Zhang A, Li X, Zhang H, Zhao L (2021) Advances in clinical immunotherapy for gastric cancer. Biochim et Biophysi Acta BBA Rev Cancer. 1876(2):188615CrossRef Li K, Zhang A, Li X, Zhang H, Zhao L (2021) Advances in clinical immunotherapy for gastric cancer. Biochim et Biophysi Acta BBA Rev Cancer. 1876(2):188615CrossRef
7.
go back to reference Chao J, Fuchs CS, Shitara K et al (2021) Assessment of pembrolizumab therapy for the treatment of microsatellite instability–high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol 7(6):895–902PubMedPubMedCentralCrossRef Chao J, Fuchs CS, Shitara K et al (2021) Assessment of pembrolizumab therapy for the treatment of microsatellite instability–high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol 7(6):895–902PubMedPubMedCentralCrossRef
8.
go back to reference Marabelle A, Le DT, Ascierto PA et al (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38(1):1–10PubMedCrossRef Marabelle A, Le DT, Ascierto PA et al (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38(1):1–10PubMedCrossRef
9.
go back to reference Zhao P, Li L, Jiang X, Li Q (2019) Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol 12(1):54PubMedPubMedCentralCrossRef Zhao P, Li L, Jiang X, Li Q (2019) Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol 12(1):54PubMedPubMedCentralCrossRef
10.
11.
go back to reference Zito Marino F, Amato M, Ronchi A (2022) Microsatellite status detection in gastrointestinal cancers: PCR/NGS Is mandatory in negative/patchy MMR immunohistochemistry. Cancers 14(9):2204PubMedPubMedCentralCrossRef Zito Marino F, Amato M, Ronchi A (2022) Microsatellite status detection in gastrointestinal cancers: PCR/NGS Is mandatory in negative/patchy MMR immunohistochemistry. Cancers 14(9):2204PubMedPubMedCentralCrossRef
12.
go back to reference Luchini C, Bibeau F, Ligtenberg MJ et al (2019) ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol 30(8):1232–1243PubMedCrossRef Luchini C, Bibeau F, Ligtenberg MJ et al (2019) ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol 30(8):1232–1243PubMedCrossRef
13.
go back to reference Lambert R (1999) Diagnosis of esophagogastric tumors: a trend toward virtual biopsy. Endoscopy 31(1):38–46PubMedCrossRef Lambert R (1999) Diagnosis of esophagogastric tumors: a trend toward virtual biopsy. Endoscopy 31(1):38–46PubMedCrossRef
14.
go back to reference Ajani JA, D’Amico TA, Bentrem DJ et al (2022) Gastric cancer, version 22022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 20(2):167–192CrossRef Ajani JA, D’Amico TA, Bentrem DJ et al (2022) Gastric cancer, version 22022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 20(2):167–192CrossRef
15.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures. They Are Data Radiol 278(2):563–577 Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures. They Are Data Radiol 278(2):563–577
16.
go back to reference Napel S, Mu W, Jardim-Perassi BV, Aerts HJ, Gillies RJ (2018) Quantitative imaging of cancer in the postgenomic era: radio (geno) mics, deep learning, and habitats. Cancer 124(24):4633–4649PubMedCrossRef Napel S, Mu W, Jardim-Perassi BV, Aerts HJ, Gillies RJ (2018) Quantitative imaging of cancer in the postgenomic era: radio (geno) mics, deep learning, and habitats. Cancer 124(24):4633–4649PubMedCrossRef
17.
go back to reference Murray JM, Wiegand B, Hadaschik B, Herrmann K, Kleesiek J (2022) Virtual biopsy: just an AI software or a medical procedure? J Nucl Med 63(4):511–513PubMedPubMedCentralCrossRef Murray JM, Wiegand B, Hadaschik B, Herrmann K, Kleesiek J (2022) Virtual biopsy: just an AI software or a medical procedure? J Nucl Med 63(4):511–513PubMedPubMedCentralCrossRef
18.
go back to reference Dong D, Fang MJ, Tang L et al (2020) Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study. Ann Oncol 31(7):912–920PubMedCrossRef Dong D, Fang MJ, Tang L et al (2020) Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study. Ann Oncol 31(7):912–920PubMedCrossRef
19.
go back to reference Cui Y, Zhang J, Li Z et al (2022) A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: a multicenter cohort study. EClinicalMedicine. 46:101348PubMedPubMedCentralCrossRef Cui Y, Zhang J, Li Z et al (2022) A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: a multicenter cohort study. EClinicalMedicine. 46:101348PubMedPubMedCentralCrossRef
20.
go back to reference Zhang J, Cui Y, Wei K et al (2022) Deep learning predicts resistance to neoadjuvant chemotherapy for locally advanced gastric cancer: a multicenter study. Gastric Cancer 25(6):1050–1059PubMedCrossRef Zhang J, Cui Y, Wei K et al (2022) Deep learning predicts resistance to neoadjuvant chemotherapy for locally advanced gastric cancer: a multicenter study. Gastric Cancer 25(6):1050–1059PubMedCrossRef
21.
go back to reference Van Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107PubMedPubMedCentralCrossRef Van Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107PubMedPubMedCentralCrossRef
23.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5(1):4006PubMedCrossRef Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5(1):4006PubMedCrossRef
25.
26.
go back to reference Buonsanti G, Calistri D, Padovan L et al (1997) Microsatellite instability in intestinal-and diffuse-type gastric carcinoma. J Pathol 182(2):167–173PubMedCrossRef Buonsanti G, Calistri D, Padovan L et al (1997) Microsatellite instability in intestinal-and diffuse-type gastric carcinoma. J Pathol 182(2):167–173PubMedCrossRef
27.
go back to reference Pietrantonio F, Miceli R, Raimondi A et al (2019) Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J Clin Oncol 37(35):3392–3400PubMedCrossRef Pietrantonio F, Miceli R, Raimondi A et al (2019) Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J Clin Oncol 37(35):3392–3400PubMedCrossRef
28.
go back to reference Smyth EC, Wotherspoon A, Peckitt C et al (2017) Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 3(9):1197–1203PubMedCrossRef Smyth EC, Wotherspoon A, Peckitt C et al (2017) Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 3(9):1197–1203PubMedCrossRef
29.
go back to reference Ratti M, Lampis A, Hahne JC, Passalacqua R, Valeri N (2018) Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 75:4151–4162PubMedPubMedCentralCrossRef Ratti M, Lampis A, Hahne JC, Passalacqua R, Valeri N (2018) Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 75:4151–4162PubMedPubMedCentralCrossRef
30.
go back to reference Polom K, Marano L, Marrelli D et al (2018) Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. J Br Surg 105(3):159–167CrossRef Polom K, Marano L, Marrelli D et al (2018) Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. J Br Surg 105(3):159–167CrossRef
31.
go back to reference Bevilacqua RA, Simpson AJ (2000) Methylation of the hMLH1 promoter but no hMLH1 mutations in sporadic gastric carcinomas with high-level microsatellite instability. Int J Cancer 87(2):200–203PubMedCrossRef Bevilacqua RA, Simpson AJ (2000) Methylation of the hMLH1 promoter but no hMLH1 mutations in sporadic gastric carcinomas with high-level microsatellite instability. Int J Cancer 87(2):200–203PubMedCrossRef
32.
go back to reference Fleisher AS, Esteller M, Wang S et al (1999) Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 59(5):1090–1095PubMed Fleisher AS, Esteller M, Wang S et al (1999) Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 59(5):1090–1095PubMed
33.
go back to reference Carvalho B, Pinto M, Cirnes L et al (2003) Concurrent hypermethylation of gene promoters is associated with a MSI-H phenotype and diploidy in gastric carcinomas. Eur J Cancer 39(9):1222–1227PubMedCrossRef Carvalho B, Pinto M, Cirnes L et al (2003) Concurrent hypermethylation of gene promoters is associated with a MSI-H phenotype and diploidy in gastric carcinomas. Eur J Cancer 39(9):1222–1227PubMedCrossRef
34.
go back to reference Nakajima T, Akiyama Y, Shiraishi J et al (2001) Age-related hypermethylation of the hMLH1 promoter in gastric cancers. Int J Cancer 94(2):208–211PubMedCrossRef Nakajima T, Akiyama Y, Shiraishi J et al (2001) Age-related hypermethylation of the hMLH1 promoter in gastric cancers. Int J Cancer 94(2):208–211PubMedCrossRef
35.
go back to reference Kim KJ, Lee TH, Cho NY, Yang HK, Kim WH, Kang GH (2013) Differential clinicopathologic features in microsatellite-unstable gastric cancers with and without MLH1 methylation. Hum Pathol 44(6):1055–1064PubMedCrossRef Kim KJ, Lee TH, Cho NY, Yang HK, Kim WH, Kang GH (2013) Differential clinicopathologic features in microsatellite-unstable gastric cancers with and without MLH1 methylation. Hum Pathol 44(6):1055–1064PubMedCrossRef
36.
go back to reference Yamamoto H, Perez-Piteira J, Yoshida T et al (1999) Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology 116(6):1348–1357PubMedCrossRef Yamamoto H, Perez-Piteira J, Yoshida T et al (1999) Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology 116(6):1348–1357PubMedCrossRef
37.
go back to reference Sugimoto R, Sugai T, Habano W et al (2016) Clinicopathological and molecular alterations in early gastric cancers with the microsatellite instability-high phenotype. Int J Cancer 138(7):1689–1697PubMedCrossRef Sugimoto R, Sugai T, Habano W et al (2016) Clinicopathological and molecular alterations in early gastric cancers with the microsatellite instability-high phenotype. Int J Cancer 138(7):1689–1697PubMedCrossRef
38.
go back to reference Liu P, Zhang XY, Shao Y, Zhang DF (2005) Microsatellite instability in gastric cancer and pre-cancerous lesions. World J Gastroenterol 11(31):4904–4907PubMedPubMedCentralCrossRef Liu P, Zhang XY, Shao Y, Zhang DF (2005) Microsatellite instability in gastric cancer and pre-cancerous lesions. World J Gastroenterol 11(31):4904–4907PubMedPubMedCentralCrossRef
39.
go back to reference Jahng J, Youn YH, Kim KH et al (2012) Endoscopic and clinicopathologic characteristics of early gastric cancer with high microsatellite instability. World J Gastroenterol 18(27):3571–3577PubMedPubMedCentralCrossRef Jahng J, Youn YH, Kim KH et al (2012) Endoscopic and clinicopathologic characteristics of early gastric cancer with high microsatellite instability. World J Gastroenterol 18(27):3571–3577PubMedPubMedCentralCrossRef
40.
go back to reference Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 9(5):1303–1322PubMedPubMedCentralCrossRef Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 9(5):1303–1322PubMedPubMedCentralCrossRef
41.
go back to reference Sah BR, Owczarczyk K, Siddique M, Cook GJ, Goh V (2019) Radiomics in esophageal and gastric cancer. Abdom Radiol 44:2048–2058CrossRef Sah BR, Owczarczyk K, Siddique M, Cook GJ, Goh V (2019) Radiomics in esophageal and gastric cancer. Abdom Radiol 44:2048–2058CrossRef
42.
go back to reference Mandolini M, Brunzini A, Facco G, Mazzoli A, Forcellese A, Gigante A (2022) Comparison of three 3D segmentation software tools for hip surgical planning. Sensors 22(14):5242PubMedPubMedCentralCrossRef Mandolini M, Brunzini A, Facco G, Mazzoli A, Forcellese A, Gigante A (2022) Comparison of three 3D segmentation software tools for hip surgical planning. Sensors 22(14):5242PubMedPubMedCentralCrossRef
43.
go back to reference Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):e102107PubMedPubMedCentralCrossRef Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):e102107PubMedPubMedCentralCrossRef
44.
go back to reference Li Y, Cheng Z, Gevaert O et al (2020) A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer. Chinese J Cancer Res 32(1):62–71CrossRef Li Y, Cheng Z, Gevaert O et al (2020) A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer. Chinese J Cancer Res 32(1):62–71CrossRef
45.
go back to reference Liang X, Wu Y, Liu Y, Yu D, Huang C, Li Z (2022) A multicenter study on the preoperative prediction of gastric cancer microsatellite instability status based on computed tomography radiomics. Abdom Radiol 47(6):2036–2045CrossRef Liang X, Wu Y, Liu Y, Yu D, Huang C, Li Z (2022) A multicenter study on the preoperative prediction of gastric cancer microsatellite instability status based on computed tomography radiomics. Abdom Radiol 47(6):2036–2045CrossRef
46.
go back to reference Avanzo M, Wei L, Stancanello J et al (2020) Machine and deep learning methods for radiomics. Med Phys 47(5):e185–e202PubMedCrossRef Avanzo M, Wei L, Stancanello J et al (2020) Machine and deep learning methods for radiomics. Med Phys 47(5):e185–e202PubMedCrossRef
48.
49.
go back to reference Azodi CB, Tang J, Shiu SH (2020) Opening the black box: interpretable machine learning for geneticists. Trends Genet 36(6):442–455PubMedCrossRef Azodi CB, Tang J, Shiu SH (2020) Opening the black box: interpretable machine learning for geneticists. Trends Genet 36(6):442–455PubMedCrossRef
50.
go back to reference The Lancet Respiratory M (2018) Opening the black box of machine learning. Lancet Respir Med 6(11):801. The Lancet Respiratory M (2018) Opening the black box of machine learning. Lancet Respir Med 6(11):801.
Metadata
Title
A virtual biopsy study of microsatellite instability in gastric cancer based on deep learning radiomics
Authors
Zinian Jiang
Wentao Xie
Xiaoming Zhou
Wenjun Pan
Sheng Jiang
Xianxiang Zhang
Maoshen Zhang
Zhenqi Zhang
Yun Lu
Dongsheng Wang
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01438-1

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue