Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012 | NON-THEMATIC REVIEW

Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment

Authors: Koichi Ito, Kimberley Stannard, Elwyn Gabutero, Amanda M. Clark, Shi-Yong Neo, Selda Onturk, Helen Blanchard, Stephen J. Ralph

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.
Literature
1.
go back to reference Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K., Feizi, T., et al. (1994). Galectins: a family of animal beta-galactoside-binding lectins. Cell, 76(4), 597–598.PubMed Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K., Feizi, T., et al. (1994). Galectins: a family of animal beta-galactoside-binding lectins. Cell, 76(4), 597–598.PubMed
2.
go back to reference Cooper, D. N. (2002). Galectinomics: finding themes in complexity. Biochimica et Biophysica Acta, 1572(2–3), 209–231.PubMed Cooper, D. N. (2002). Galectinomics: finding themes in complexity. Biochimica et Biophysica Acta, 1572(2–3), 209–231.PubMed
3.
go back to reference Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.PubMed Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.PubMed
4.
go back to reference Than, N. G., Romero, R., Erez, O., Weckle, A., Tarca, A. L., Hotra, J., et al. (2008). Emergence of hormonal and redox regulation of galectin-1 in placental mammals: implication in maternal-fetal immune tolerance. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15819–15824.PubMed Than, N. G., Romero, R., Erez, O., Weckle, A., Tarca, A. L., Hotra, J., et al. (2008). Emergence of hormonal and redox regulation of galectin-1 in placental mammals: implication in maternal-fetal immune tolerance. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15819–15824.PubMed
5.
go back to reference Bourne, Y., Bolgiano, B., Nesa, M. P., Penfold, P., Johnson, D., Feizi, T., et al. (1994). Crystallization and preliminary X-ray diffraction studies of the soluble 14 kDa beta-galactoside-binding lectin from bovine heart. Journal of Molecular Biology, 235(2), 787–789.PubMed Bourne, Y., Bolgiano, B., Nesa, M. P., Penfold, P., Johnson, D., Feizi, T., et al. (1994). Crystallization and preliminary X-ray diffraction studies of the soluble 14 kDa beta-galactoside-binding lectin from bovine heart. Journal of Molecular Biology, 235(2), 787–789.PubMed
6.
go back to reference Kadoya, T., & Horie, H. (2005). Structural and functional studies of galectin-1: a novel axonal regeneration-promoting activity for oxidized galectin-1. Current Drug Targets, 6(4), 375–383.PubMed Kadoya, T., & Horie, H. (2005). Structural and functional studies of galectin-1: a novel axonal regeneration-promoting activity for oxidized galectin-1. Current Drug Targets, 6(4), 375–383.PubMed
7.
go back to reference Scott, S. A., Bugarcic, A., & Blanchard, H. (2009). Characterisation of oxidized recombinant human galectin-1. Protein and Peptide Letters, 16(10), 1249–1255.PubMed Scott, S. A., Bugarcic, A., & Blanchard, H. (2009). Characterisation of oxidized recombinant human galectin-1. Protein and Peptide Letters, 16(10), 1249–1255.PubMed
8.
go back to reference Inagaki, Y., Sohma, Y., Horie, H., Nozawa, R., & Kadoya, T. (2000). Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. European Journal of Biochemistry, 267(10), 2955–2964.PubMed Inagaki, Y., Sohma, Y., Horie, H., Nozawa, R., & Kadoya, T. (2000). Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. European Journal of Biochemistry, 267(10), 2955–2964.PubMed
9.
go back to reference Horie, H., Kadoya, T., Hikawa, N., Sango, K., Inoue, H., Takeshita, K., et al. (2004). Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. The Journal of Neuroscience, 24(8), 1873–1880.PubMed Horie, H., Kadoya, T., Hikawa, N., Sango, K., Inoue, H., Takeshita, K., et al. (2004). Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. The Journal of Neuroscience, 24(8), 1873–1880.PubMed
10.
go back to reference Demydenko, D., & Berest, I. (2009). Expression of galectin-1 in malignant tumors. Experimental Oncology, 31(2), 74–79.PubMed Demydenko, D., & Berest, I. (2009). Expression of galectin-1 in malignant tumors. Experimental Oncology, 31(2), 74–79.PubMed
11.
go back to reference Thijssen, V. L., Poirier, F., Baum, L. G., & Griffioen, A. W. (2007). Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood, 110(8), 2819–2827.PubMed Thijssen, V. L., Poirier, F., Baum, L. G., & Griffioen, A. W. (2007). Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood, 110(8), 2819–2827.PubMed
12.
go back to reference Garin, M. I., Chu, C. C., Golshayan, D., Cernuda-Morollon, E., Wait, R., & Lechler, R. I. (2007). Galectin-1: a key effector of regulation mediated by CD4+ CD25+ T cells. Blood, 109(5), 2058–2065.PubMed Garin, M. I., Chu, C. C., Golshayan, D., Cernuda-Morollon, E., Wait, R., & Lechler, R. I. (2007). Galectin-1: a key effector of regulation mediated by CD4+ CD25+ T cells. Blood, 109(5), 2058–2065.PubMed
13.
go back to reference Camby, I., Le Mercier, M., Lefranc, F., & Kiss, R. (2006). Galectin-1: a small protein with major functions. Glycobiology, 16(11), 137R–157R.PubMed Camby, I., Le Mercier, M., Lefranc, F., & Kiss, R. (2006). Galectin-1: a small protein with major functions. Glycobiology, 16(11), 137R–157R.PubMed
14.
go back to reference Honjo, Y., Inohara, H., Akahani, S., Yoshii, T., Takenaka, Y., Yoshida, J., et al. (2000). Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clinical Cancer Research, 6(12), 4635–4640.PubMed Honjo, Y., Inohara, H., Akahani, S., Yoshii, T., Takenaka, Y., Yoshida, J., et al. (2000). Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clinical Cancer Research, 6(12), 4635–4640.PubMed
15.
go back to reference Cho, M., & Cummings, R. D. (1995). Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. Journal of Biological Chemistry, 270(10), 5207–5212.PubMed Cho, M., & Cummings, R. D. (1995). Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. Journal of Biological Chemistry, 270(10), 5207–5212.PubMed
16.
go back to reference Cho, M., & Cummings, R. D. (1995). Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. The Journal of Biological Chemistry, 270(10), 5198–5206.PubMed Cho, M., & Cummings, R. D. (1995). Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. The Journal of Biological Chemistry, 270(10), 5198–5206.PubMed
17.
go back to reference Inohara, H., Akahani, S., & Raz, A. (1998). Galectin-3 stimulates cell proliferation. Experimental Cell Research, 245(2), 294–302.PubMed Inohara, H., Akahani, S., & Raz, A. (1998). Galectin-3 stimulates cell proliferation. Experimental Cell Research, 245(2), 294–302.PubMed
18.
go back to reference Baptiste, T. A., James, A., Saria, M., & Ochieng, J. (2007). Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Experimental Cell Research, 313(4), 652–664.PubMed Baptiste, T. A., James, A., Saria, M., & Ochieng, J. (2007). Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Experimental Cell Research, 313(4), 652–664.PubMed
19.
go back to reference Satelli, A., Rao, P. S., Gupta, P. K., Lockman, P. R., Srivenugopal, K. S., & Rao, U. S. (2008). Varied expression and localization of multiple galectins in different cancer cell lines. Oncology Reports, 19(3), 587–594.PubMed Satelli, A., Rao, P. S., Gupta, P. K., Lockman, P. R., Srivenugopal, K. S., & Rao, U. S. (2008). Varied expression and localization of multiple galectins in different cancer cell lines. Oncology Reports, 19(3), 587–594.PubMed
20.
go back to reference Nickel, W. (2005). Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic, 6(8), 607–614.PubMed Nickel, W. (2005). Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic, 6(8), 607–614.PubMed
21.
go back to reference Watanabe, M., Takemasa, I., Kaneko, N., Yokoyama, Y., Matsuo, E., Iwasa, S., et al. (2011). Clinical significance of circulating galectins as colorectal cancer markers. Oncology Reports, 25(5), 1217–1226.PubMed Watanabe, M., Takemasa, I., Kaneko, N., Yokoyama, Y., Matsuo, E., Iwasa, S., et al. (2011). Clinical significance of circulating galectins as colorectal cancer markers. Oncology Reports, 25(5), 1217–1226.PubMed
22.
go back to reference Carlsson, M. C., Cederfur, C., Schaar, V., Balog, C. I., Lepur, A., Touret, F., et al. (2011). Galectin-1-binding glycoforms of haptoglobin with altered intracellular trafficking, and increase in metastatic breast cancer patients. PLoS One, 6(10), e26560.PubMed Carlsson, M. C., Cederfur, C., Schaar, V., Balog, C. I., Lepur, A., Touret, F., et al. (2011). Galectin-1-binding glycoforms of haptoglobin with altered intracellular trafficking, and increase in metastatic breast cancer patients. PLoS One, 6(10), e26560.PubMed
23.
go back to reference Saussez, S., Lorfevre, F., Lequeux, T., Laurent, G., Chantrain, G., Vertongen, F., et al. (2008). The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncology, 44(1), 86–93.PubMed Saussez, S., Lorfevre, F., Lequeux, T., Laurent, G., Chantrain, G., Vertongen, F., et al. (2008). The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncology, 44(1), 86–93.PubMed
24.
go back to reference Saussez, S., Glinoer, D., Chantrain, G., Pattou, F., Carnaille, B., Andre, S., et al. (2008). Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease. Thyroid, 18(7), 705–712.PubMed Saussez, S., Glinoer, D., Chantrain, G., Pattou, F., Carnaille, B., Andre, S., et al. (2008). Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease. Thyroid, 18(7), 705–712.PubMed
25.
go back to reference Barrow, H., Guo, X., Wandall, H. H., Pedersen, J. W., Fu, B., Zhao, Q., et al. (2011). Serum galectins -2, -4 and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clinical Cancer Research, 15;17(22):7035–7046 Barrow, H., Guo, X., Wandall, H. H., Pedersen, J. W., Fu, B., Zhao, Q., et al. (2011). Serum galectins -2, -4 and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clinical Cancer Research, 15;17(22):7035–7046
26.
go back to reference Pacienza, N., Pozner, R. G., Bianco, G. A., D'Atri, L. P., Croci, D. O., Negrotto, S., et al. (2008). The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. The FASEB Journal, 22(4), 1113–1123. Pacienza, N., Pozner, R. G., Bianco, G. A., D'Atri, L. P., Croci, D. O., Negrotto, S., et al. (2008). The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. The FASEB Journal, 22(4), 1113–1123.
27.
go back to reference Chiang, W. F., Liu, S. Y., Fang, L. Y., Lin, C. N., Wu, M. H., Chen, Y. C., et al. (2008). Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncology, 44(4), 325–334.PubMed Chiang, W. F., Liu, S. Y., Fang, L. Y., Lin, C. N., Wu, M. H., Chen, Y. C., et al. (2008). Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncology, 44(4), 325–334.PubMed
28.
go back to reference Kim, H. J., Jeon, H. K., Cho, Y. J., Park, Y. A., Choi, J. J., Do, I. G., et al. (2012). High galectin-1 expression correlates with poor prognosis and is involved in epithelial ovarian cancer proliferation and invasion. European Journal Cancer (in press) Kim, H. J., Jeon, H. K., Cho, Y. J., Park, Y. A., Choi, J. J., Do, I. G., et al. (2012). High galectin-1 expression correlates with poor prognosis and is involved in epithelial ovarian cancer proliferation and invasion. European Journal Cancer (in press)
29.
go back to reference Saussez, S., Cucu, D. R., Decaestecker, C., Chevalier, D., Kaltner, H., Andre, S., et al. (2006). Galectin 7 (p53-induced gene 1): a new prognostic predictor of recurrence and survival in stage IV hypopharyngeal cancer. Annals of Surgical Oncology, 13(7), 999–1009.PubMed Saussez, S., Cucu, D. R., Decaestecker, C., Chevalier, D., Kaltner, H., Andre, S., et al. (2006). Galectin 7 (p53-induced gene 1): a new prognostic predictor of recurrence and survival in stage IV hypopharyngeal cancer. Annals of Surgical Oncology, 13(7), 999–1009.PubMed
30.
go back to reference Perillo, N. L., Pace, K. E., Seilhamer, J. J., & Baum, L. G. (1995). Apoptosis of T cells mediated by galectin-1. Nature, 378(6558), 736–739.PubMed Perillo, N. L., Pace, K. E., Seilhamer, J. J., & Baum, L. G. (1995). Apoptosis of T cells mediated by galectin-1. Nature, 378(6558), 736–739.PubMed
31.
go back to reference Rubinstein, N., Ilarregui, J. M., Toscano, M. A., & Rabinovich, G. A. (2004). The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens, 64(1), 1–12.PubMed Rubinstein, N., Ilarregui, J. M., Toscano, M. A., & Rabinovich, G. A. (2004). The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens, 64(1), 1–12.PubMed
32.
go back to reference Grigorian, A., Torossian, S., & Demetriou, M. (2009). T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunology Reviews, 230(1), 232–246. Grigorian, A., Torossian, S., & Demetriou, M. (2009). T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunology Reviews, 230(1), 232–246.
33.
go back to reference Nguyen, J. T., Evans, D. P., Galvan, M., Pace, K. E., Leitenberg, D., Bui, T. N., et al. (2001). CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. The Journal of Immunology, 167(10), 5697–5707.PubMed Nguyen, J. T., Evans, D. P., Galvan, M., Pace, K. E., Leitenberg, D., Bui, T. N., et al. (2001). CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. The Journal of Immunology, 167(10), 5697–5707.PubMed
34.
go back to reference Pace, K. E., Hahn, H. P., Pang, M., Nguyen, J. T., & Baum, L. G. (2000). CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. The Journal of Immunology, 165(5), 2331–2334.PubMed Pace, K. E., Hahn, H. P., Pang, M., Nguyen, J. T., & Baum, L. G. (2000). CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. The Journal of Immunology, 165(5), 2331–2334.PubMed
35.
go back to reference Hernandez, J. D., Nguyen, J. T., He, J., Wang, W., Ardman, B., Green, J. M., et al. (2006). Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. The Journal of Immunology, 177(8), 5328–5336.PubMed Hernandez, J. D., Nguyen, J. T., He, J., Wang, W., Ardman, B., Green, J. M., et al. (2006). Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. The Journal of Immunology, 177(8), 5328–5336.PubMed
36.
go back to reference Lange, F., Brandt, B., Tiedge, M., Jonas, L., Jeschke, U., Pohland, R., et al. (2009). Galectin-1 induced activation of the mitochondrial apoptotic pathway: evidence for a connection between death-receptor and mitochondrial pathways in human Jurkat T lymphocytes. Histochemistry and Cell Biology, 132(2), 211–223.PubMed Lange, F., Brandt, B., Tiedge, M., Jonas, L., Jeschke, U., Pohland, R., et al. (2009). Galectin-1 induced activation of the mitochondrial apoptotic pathway: evidence for a connection between death-receptor and mitochondrial pathways in human Jurkat T lymphocytes. Histochemistry and Cell Biology, 132(2), 211–223.PubMed
37.
go back to reference Brandt, B., Abou-Eladab, E. F., Tiedge, M., & Walzel, H. (2010). Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death Diseases, 1, e23. Brandt, B., Abou-Eladab, E. F., Tiedge, M., & Walzel, H. (2010). Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death Diseases, 1, e23.
38.
go back to reference Vespa, G. N., Lewis, L. A., Kozak, K. R., Moran, M., Nguyen, J. T., Baum, L. G., et al. (1999). Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. The Journal of Immunology, 162(2), 799–806.PubMed Vespa, G. N., Lewis, L. A., Kozak, K. R., Moran, M., Nguyen, J. T., Baum, L. G., et al. (1999). Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. The Journal of Immunology, 162(2), 799–806.PubMed
39.
go back to reference Chung, C. D., Patel, V. P., Moran, M., Lewis, L. A., & Miceli, M. C. (2000). Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. The Journal of Immunology, 165(7), 3722–3729.PubMed Chung, C. D., Patel, V. P., Moran, M., Lewis, L. A., & Miceli, M. C. (2000). Galectin-1 induces partial TCR zeta-chain phosphorylation and antagonizes processive TCR signal transduction. The Journal of Immunology, 165(7), 3722–3729.PubMed
40.
go back to reference Matarrese, P., Tinari, A., Mormone, E., Bianco, G. A., Toscano, M. A., Ascione, B., et al. (2005). Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. The Journal of Biological Chemistry, 280(8), 6969–6985.PubMed Matarrese, P., Tinari, A., Mormone, E., Bianco, G. A., Toscano, M. A., Ascione, B., et al. (2005). Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. The Journal of Biological Chemistry, 280(8), 6969–6985.PubMed
41.
go back to reference Sturm, A., Lensch, M., Andre, S., Kaltner, H., Wiedenmann, B., Rosewicz, S., et al. (2004). Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. The Journal of Immunology, 173(6), 3825–3837.PubMed Sturm, A., Lensch, M., Andre, S., Kaltner, H., Wiedenmann, B., Rosewicz, S., et al. (2004). Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. The Journal of Immunology, 173(6), 3825–3837.PubMed
42.
go back to reference Hahn, H. P., Pang, M., He, J., Hernandez, J. D., Yang, R. Y., Li, L. Y., et al. (2004). Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death and Differentiation, 11(12), 1277–1286.PubMed Hahn, H. P., Pang, M., He, J., Hernandez, J. D., Yang, R. Y., Li, L. Y., et al. (2004). Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death and Differentiation, 11(12), 1277–1286.PubMed
43.
go back to reference Yang, R. Y., Hsu, D. K., & Liu, F. T. (1996). Expression of galectin-3 modulates T-cell growth and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6737–6742.PubMed Yang, R. Y., Hsu, D. K., & Liu, F. T. (1996). Expression of galectin-3 modulates T-cell growth and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6737–6742.PubMed
44.
go back to reference Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R., Hogan, V., Inohara, H., et al. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63(23), 8302–8311.PubMed Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R., Hogan, V., Inohara, H., et al. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63(23), 8302–8311.PubMed
45.
go back to reference Amano, M., Galvan, M., He, J., & Baum, L. G. (2003). The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. The Journal of Biological Chemistry, 278(9), 7469–7475.PubMed Amano, M., Galvan, M., He, J., & Baum, L. G. (2003). The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. The Journal of Biological Chemistry, 278(9), 7469–7475.PubMed
46.
go back to reference Lau, K. S., Partridge, E. A., Grigorian, A., Silvescu, C. I., Reinhold, V. N., Demetriou, M., et al. (2007). Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 129(1), 123–134.PubMed Lau, K. S., Partridge, E. A., Grigorian, A., Silvescu, C. I., Reinhold, V. N., Demetriou, M., et al. (2007). Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 129(1), 123–134.PubMed
47.
go back to reference Juszczynski, P., Ouyang, J., Monti, S., Rodig, S. J., Takeyama, K., Abramson, J., et al. (2007). The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13134–13139.PubMed Juszczynski, P., Ouyang, J., Monti, S., Rodig, S. J., Takeyama, K., Abramson, J., et al. (2007). The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13134–13139.PubMed
48.
go back to reference Toscano, M. A., Bianco, G. A., Ilarregui, J. M., Croci, D. O., Correale, J., Hernandez, J. D., et al. (2007). Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nature Immunology, 8(8), 825–834.PubMed Toscano, M. A., Bianco, G. A., Ilarregui, J. M., Croci, D. O., Correale, J., Hernandez, J. D., et al. (2007). Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nature Immunology, 8(8), 825–834.PubMed
49.
go back to reference Toscano, M. A., Commodaro, A. G., Ilarregui, J. M., Bianco, G. A., Liberman, A., Serra, H. M., et al. (2006). Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. The Journal of Immunology, 176(10), 6323–6332.PubMed Toscano, M. A., Commodaro, A. G., Ilarregui, J. M., Bianco, G. A., Liberman, A., Serra, H. M., et al. (2006). Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. The Journal of Immunology, 176(10), 6323–6332.PubMed
50.
go back to reference Harrington, L. E., Galvan, M., Baum, L. G., Altman, J. D., & Ahmed, R. (2000). Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. The Journal of Experimental Medicine, 191(7), 1241–1246.PubMed Harrington, L. E., Galvan, M., Baum, L. G., Altman, J. D., & Ahmed, R. (2000). Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. The Journal of Experimental Medicine, 191(7), 1241–1246.PubMed
51.
go back to reference Galvan, M., Tsuboi, S., Fukuda, M., & Baum, L. G. (2000). Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. The Journal of Biological Chemistry, 275(22), 16730–16737.PubMed Galvan, M., Tsuboi, S., Fukuda, M., & Baum, L. G. (2000). Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. The Journal of Biological Chemistry, 275(22), 16730–16737.PubMed
52.
go back to reference Ito, K., Scott, S. A., Cutler, S., Dong, L. F., Neuzil, J., Blanchard, H., et al. (2011). Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. [Research Support, Non-U.S. Gov't]. Angiogenesis, 14(3), 293–307.PubMed Ito, K., Scott, S. A., Cutler, S., Dong, L. F., Neuzil, J., Blanchard, H., et al. (2011). Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress. [Research Support, Non-U.S. Gov't]. Angiogenesis, 14(3), 293–307.PubMed
53.
go back to reference Banh, A., Zhang, J., Cao, H., Bouley, D. M., Kwok, S., Kong, C., et al. (2011). Tumor Galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Research, 71(13), 4423–4431.PubMed Banh, A., Zhang, J., Cao, H., Bouley, D. M., Kwok, S., Kong, C., et al. (2011). Tumor Galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Research, 71(13), 4423–4431.PubMed
54.
go back to reference Hamzah, J., Jugold, M., Kiessling, F., Rigby, P., Manzur, M., Marti, H. H., et al. (2008). Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 453(7193), 410–414.PubMed Hamzah, J., Jugold, M., Kiessling, F., Rigby, P., Manzur, M., Marti, H. H., et al. (2008). Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 453(7193), 410–414.PubMed
55.
go back to reference Goel, S., Duda, D. G., Xu, L., Munn, L. L., Boucher, Y., Fukumura, D., et al. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews, 91(3), 1071–1121.PubMed Goel, S., Duda, D. G., Xu, L., Munn, L. L., Boucher, Y., Fukumura, D., et al. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews, 91(3), 1071–1121.PubMed
56.
go back to reference Shrimali, R. K., Yu, Z., Theoret, M. R., Chinnasamy, D., Restifo, N. P., & Rosenberg, S. A. (2010). Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Research, 70(15), 6171–6180.PubMed Shrimali, R. K., Yu, Z., Theoret, M. R., Chinnasamy, D., Restifo, N. P., & Rosenberg, S. A. (2010). Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Research, 70(15), 6171–6180.PubMed
57.
go back to reference Griffioen, A. W., & Molema, G. (2000). Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacological Reviews, 52(2), 237–268.PubMed Griffioen, A. W., & Molema, G. (2000). Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacological Reviews, 52(2), 237–268.PubMed
58.
go back to reference Tozer, G. M., Kanthou, C., & Baguley, B. C. (2005). Disrupting tumour blood vessels. Nature Reviews Cancer, 5(6), 423–435.PubMed Tozer, G. M., Kanthou, C., & Baguley, B. C. (2005). Disrupting tumour blood vessels. Nature Reviews Cancer, 5(6), 423–435.PubMed
59.
go back to reference Castermans, K., & Griffioen, A. W. (2007). Tumor blood vessels, a difficult hurdle for infiltrating leukocytes. Biochimica et Biophysica Acta, 1776(2), 160–174.PubMed Castermans, K., & Griffioen, A. W. (2007). Tumor blood vessels, a difficult hurdle for infiltrating leukocytes. Biochimica et Biophysica Acta, 1776(2), 160–174.PubMed
60.
go back to reference Thijssen, V. L., Hulsmans, S., & Griffioen, A. W. (2008). The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. The American Journal of Pathology, 172(2), 545–553.PubMed Thijssen, V. L., Hulsmans, S., & Griffioen, A. W. (2008). The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. The American Journal of Pathology, 172(2), 545–553.PubMed
61.
go back to reference Thijssen, V. L., Barkan, B., Shoji, H., Aries, I. M., Mathieu, V., Deltour, L., et al. (2010). Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Research, 70(15), 6216–6224.PubMed Thijssen, V. L., Barkan, B., Shoji, H., Aries, I. M., Mathieu, V., Deltour, L., et al. (2010). Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Research, 70(15), 6216–6224.PubMed
62.
go back to reference Le Mercier, M., Fortin, S., Mathieu, V., Roland, I., Spiegl-Kreinecker, S., Haibe-Kains, B., et al. (2009). Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia, 11(5), 485–496.PubMed Le Mercier, M., Fortin, S., Mathieu, V., Roland, I., Spiegl-Kreinecker, S., Haibe-Kains, B., et al. (2009). Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia, 11(5), 485–496.PubMed
63.
go back to reference van den Brule, F., Califice, S., Garnier, F., Fernandez, P. L., Berchuck, A., & Castronovo, V. (2003). Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Laboratory Investigation, 83(3), 377–386.PubMed van den Brule, F., Califice, S., Garnier, F., Fernandez, P. L., Berchuck, A., & Castronovo, V. (2003). Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Laboratory Investigation, 83(3), 377–386.PubMed
64.
go back to reference Kawano, T., Takasaki, S., Tao, T. W., & Kobata, A. (1993). Altered glycosylation of beta 1 integrins associated with reduced adhesiveness to fibronectin and laminin. International Journal of Cancer, 53(1), 91–96. Kawano, T., Takasaki, S., Tao, T. W., & Kobata, A. (1993). Altered glycosylation of beta 1 integrins associated with reduced adhesiveness to fibronectin and laminin. International Journal of Cancer, 53(1), 91–96.
65.
go back to reference Shintani, Y., Takashima, S., Asano, Y., Kato, H., Liao, Y., Yamazaki, S., et al. (2006). Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. The EMBO Journal, 25(13), 3045–3055.PubMed Shintani, Y., Takashima, S., Asano, Y., Kato, H., Liao, Y., Yamazaki, S., et al. (2006). Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. The EMBO Journal, 25(13), 3045–3055.PubMed
66.
go back to reference Pellet-Many, C., Frankel, P., Evans, I. M., Herzog, B., Junemann-Ramirez, M., & Zachary, I. C. (2011). Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. The Biochemical Journal, 435(3), 609–618.PubMed Pellet-Many, C., Frankel, P., Evans, I. M., Herzog, B., Junemann-Ramirez, M., & Zachary, I. C. (2011). Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. The Biochemical Journal, 435(3), 609–618.PubMed
67.
go back to reference Hsieh, S. H., Ying, N. W., Wu, M. H., Chiang, W. F., Hsu, C. L., Wong, T. Y., et al. (2008). Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene, 27(26), 3746–3753.PubMed Hsieh, S. H., Ying, N. W., Wu, M. H., Chiang, W. F., Hsu, C. L., Wong, T. Y., et al. (2008). Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene, 27(26), 3746–3753.PubMed
68.
go back to reference Sugahara, K. N., Teesalu, T., Karmali, P. P., Kotamraju, V. R., Agemy, L., Greenwald, D. R., et al. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 328(5981), 1031–1035.PubMed Sugahara, K. N., Teesalu, T., Karmali, P. P., Kotamraju, V. R., Agemy, L., Greenwald, D. R., et al. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 328(5981), 1031–1035.PubMed
69.
go back to reference Semenza, G. L. (2007). Hypoxia and cancer. Cancer and Metastasis Reviews, 26(2), 223–224.PubMed Semenza, G. L. (2007). Hypoxia and cancer. Cancer and Metastasis Reviews, 26(2), 223–224.PubMed
70.
go back to reference Brown, N. S., & Bicknell, R. (2001). Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Research, 3(5), 323–327.PubMed Brown, N. S., & Bicknell, R. (2001). Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Research, 3(5), 323–327.PubMed
71.
go back to reference Matsumoto, S., Yasui, H., Mitchell, J. B., & Krishna, M. C. (2010). Imaging cycling tumor hypoxia. Cancer Research, 70(24), 10019–10023.PubMed Matsumoto, S., Yasui, H., Mitchell, J. B., & Krishna, M. C. (2010). Imaging cycling tumor hypoxia. Cancer Research, 70(24), 10019–10023.PubMed
72.
go back to reference Martinive, P., Defresne, F., Bouzin, C., Saliez, J., Lair, F., Grégoire, V., et al. (2006). Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Research, 66(24), 11736–11744.PubMed Martinive, P., Defresne, F., Bouzin, C., Saliez, J., Lair, F., Grégoire, V., et al. (2006). Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Research, 66(24), 11736–11744.PubMed
73.
go back to reference Dewhirst, M. W., Cao, Y., & Moeller, B. (2008). Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature Reviews Cancer, 8(6), 425–437.PubMed Dewhirst, M. W., Cao, Y., & Moeller, B. (2008). Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature Reviews Cancer, 8(6), 425–437.PubMed
74.
go back to reference Vaupel, P. (2008). Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. The Oncologist, 13(Suppl 3), 21–26.PubMed Vaupel, P. (2008). Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. The Oncologist, 13(Suppl 3), 21–26.PubMed
75.
go back to reference Palazon, A., Aragones Lopez, J., Morales-Kastresana, A., Ortiz Del Landazuri, M., & Melero, I. J. (2012). Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res, 18, 1207–1213.PubMed Palazon, A., Aragones Lopez, J., Morales-Kastresana, A., Ortiz Del Landazuri, M., & Melero, I. J. (2012). Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res, 18, 1207–1213.PubMed
76.
go back to reference Lukashev, D., Klebanov, B., Kojima, H., Grinberg, A., Ohta, A., Berenfeld, L., et al. (2006). Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. The Journal of Immunology, 177(8), 4962–4965.PubMed Lukashev, D., Klebanov, B., Kojima, H., Grinberg, A., Ohta, A., Berenfeld, L., et al. (2006). Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. The Journal of Immunology, 177(8), 4962–4965.PubMed
77.
go back to reference Noman, M. Z., Buart, S., Van Pelt, J., Richon, C., Hasmim, M., Leleu, N., et al. (2009). The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. The Journal of Immunology, 182(6), 3510–3521.PubMed Noman, M. Z., Buart, S., Van Pelt, J., Richon, C., Hasmim, M., Leleu, N., et al. (2009). The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. The Journal of Immunology, 182(6), 3510–3521.PubMed
78.
go back to reference Eltzschig, H. K., Thompson, L. F., Karhausen, J., Cotta, R. J., Ibla, J. C., Robson, S. C., et al. (2004). Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood, 104(13), 3986–3992.PubMed Eltzschig, H. K., Thompson, L. F., Karhausen, J., Cotta, R. J., Ibla, J. C., Robson, S. C., et al. (2004). Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood, 104(13), 3986–3992.PubMed
79.
go back to reference Ohta, A., Gorelik, E., Prasad, S. J., Ronchese, F., Lukashev, D., Wong, M. K., et al. (2006). A2A adenosine receptor protects tumors from antitumor T cells. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13132–13137.PubMed Ohta, A., Gorelik, E., Prasad, S. J., Ronchese, F., Lukashev, D., Wong, M. K., et al. (2006). A2A adenosine receptor protects tumors from antitumor T cells. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13132–13137.PubMed
80.
go back to reference Facciabene, A., Peng, X., Hagemann, I. S., Balint, K., Barchetti, A., Wang, L. P., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230.PubMed Facciabene, A., Peng, X., Hagemann, I. S., Balint, K., Barchetti, A., Wang, L. P., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230.PubMed
81.
go back to reference Zhao, X. Y., Chen, T. T., Xia, L., Guo, M., Xu, Y., Yue, F., et al. (2010). Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis, 31(8), 1367–1375.PubMed Zhao, X. Y., Chen, T. T., Xia, L., Guo, M., Xu, Y., Yue, F., et al. (2010). Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis, 31(8), 1367–1375.PubMed
82.
go back to reference Le, Q. T., Shi, G., Cao, H., Nelson, D. W., Wang, Y., Chen, E. Y., et al. (2005). Galectin-1: a link between tumor hypoxia and tumor immune privilege. Journal of Clinical Oncology, 23(35), 8932–8941.PubMed Le, Q. T., Shi, G., Cao, H., Nelson, D. W., Wang, Y., Chen, E. Y., et al. (2005). Galectin-1: a link between tumor hypoxia and tumor immune privilege. Journal of Clinical Oncology, 23(35), 8932–8941.PubMed
83.
go back to reference Olbryt, M., Habryka, A., Tyszkiewicz, T., Rusin, A., Cichon, T., Jarzab, M., et al. (2011). Melanoma-associated genes, MXI1, FN1, and NME1, are hypoxia responsive in murine and human melanoma cells. Melanoma Research, 21(5), 417–425.PubMed Olbryt, M., Habryka, A., Tyszkiewicz, T., Rusin, A., Cichon, T., Jarzab, M., et al. (2011). Melanoma-associated genes, MXI1, FN1, and NME1, are hypoxia responsive in murine and human melanoma cells. Melanoma Research, 21(5), 417–425.PubMed
84.
go back to reference Gamrekelashvili, J., Kruger, C., von Wasielewski, R., Hoffmann, M., Huster, K. M., Busch, D. H., et al. (2007). Necrotic tumor cell death in vivo impairs tumor-specific immune responses. The Journal of Immunology, 178(3), 1573–1580.PubMed Gamrekelashvili, J., Kruger, C., von Wasielewski, R., Hoffmann, M., Huster, K. M., Busch, D. H., et al. (2007). Necrotic tumor cell death in vivo impairs tumor-specific immune responses. The Journal of Immunology, 178(3), 1573–1580.PubMed
85.
go back to reference Iiizumi, M., Mohinta, S., Bandyopadhyay, S., & Watabe, K. (2007). Tumor-endothelial cell interactions: therapeutic potential. Microvascular Research, 74(2–3), 114–120.PubMed Iiizumi, M., Mohinta, S., Bandyopadhyay, S., & Watabe, K. (2007). Tumor-endothelial cell interactions: therapeutic potential. Microvascular Research, 74(2–3), 114–120.PubMed
86.
go back to reference Miles, F. L., Pruitt, F. L., van Golen, K. L., & Cooper, C. R. (2008). Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & Experimental Metastasis, 25(4), 305–324. Miles, F. L., Pruitt, F. L., van Golen, K. L., & Cooper, C. R. (2008). Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & Experimental Metastasis, 25(4), 305–324.
87.
go back to reference van den Brule, F. A., Buicu, C., Baldet, M., Sobel, M. E., Cooper, D. N., Marschal, P., et al. (1995). Galectin-1 modulates human melanoma cell adhesion to laminin. Biochemical and Biophysical Research Communications, 209(2), 760–767.PubMed van den Brule, F. A., Buicu, C., Baldet, M., Sobel, M. E., Cooper, D. N., Marschal, P., et al. (1995). Galectin-1 modulates human melanoma cell adhesion to laminin. Biochemical and Biophysical Research Communications, 209(2), 760–767.PubMed
88.
go back to reference Perillo, N. L., Marcus, M. E., & Baum, L. G. (1998). Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. Journal Molecular Medica (Berliner), 76(6), 402–412. Perillo, N. L., Marcus, M. E., & Baum, L. G. (1998). Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. Journal Molecular Medica (Berliner), 76(6), 402–412.
89.
go back to reference Ito, K., & Ralph, S. J. (2012). Inhibiting galectin-1 reduces murine lung metastasis with increased CD4(+) and CD8 (+) T cells and reduced cancer cell adherence. Clinical and Experimental Metastasis. doi:10.1007/s10585-012-9471-7. Ito, K., & Ralph, S. J. (2012). Inhibiting galectin-1 reduces murine lung metastasis with increased CD4(+) and CD8 (+) T cells and reduced cancer cell adherence. Clinical and Experimental Metastasis. doi:10.​1007/​s10585-012-9471-7.
90.
go back to reference Elola, M. T., Wolfenstein-Todel, C., Troncoso, M. F., Vasta, G. R., & Rabinovich, G. A. (2007). Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cellular and Molecular Life Sciences, 64(13), 1679–1700.PubMed Elola, M. T., Wolfenstein-Todel, C., Troncoso, M. F., Vasta, G. R., & Rabinovich, G. A. (2007). Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cellular and Molecular Life Sciences, 64(13), 1679–1700.PubMed
91.
go back to reference Ito, K., & Ralph, S. J. (2012). Inhibiting galectin-1 reduces murine lung metastasis with increased CD4+ and CD8+ T cells and reduced cancer cell adherence. Clinical and Experimental Metastasis. Ito, K., & Ralph, S. J. (2012). Inhibiting galectin-1 reduces murine lung metastasis with increased CD4+ and CD8+ T cells and reduced cancer cell adherence. Clinical and Experimental Metastasis.
92.
go back to reference Kuo, P. L., Huang, M. S., Cheng, D. E., Hung, J. Y., Yang, C. J., & Chou, S. H. (2012). Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor associated dendritic cells by expressing HB-EGF. Journal of Biological Chemistry, 23;287(13):9753–9764. Kuo, P. L., Huang, M. S., Cheng, D. E., Hung, J. Y., Yang, C. J., & Chou, S. H. (2012). Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor associated dendritic cells by expressing HB-EGF. Journal of Biological Chemistry, 23;287(13):9753–9764.
93.
go back to reference Huang, E. Y., Chen, Y. F., Chen, Y. M., Lin, I. H., Wang, C. C., Su, W. H., et al. (2012). A novel radioresistant mechanism of galectin-1 mediated by H-Ras-dependent pathways in cervical cancer cells. Cell Death Disease, 3, e251.PubMed Huang, E. Y., Chen, Y. F., Chen, Y. M., Lin, I. H., Wang, C. C., Su, W. H., et al. (2012). A novel radioresistant mechanism of galectin-1 mediated by H-Ras-dependent pathways in cervical cancer cells. Cell Death Disease, 3, e251.PubMed
94.
go back to reference Cho, H. J., Jeong, H. G., Lee, J. S., Woo, E. R., Hyun, J. W., Chung, M. H., et al. (2002). Oncogenic H-Ras enhances DNA repair through the Ras/phosphatidylinositol 3-kinase/Rac1 pathway in NIH3T3 cells. Evidence for association with reactive oxygen species. The Journal of Biological Chemistry, 277(22), 19358–19366.PubMed Cho, H. J., Jeong, H. G., Lee, J. S., Woo, E. R., Hyun, J. W., Chung, M. H., et al. (2002). Oncogenic H-Ras enhances DNA repair through the Ras/phosphatidylinositol 3-kinase/Rac1 pathway in NIH3T3 cells. Evidence for association with reactive oxygen species. The Journal of Biological Chemistry, 277(22), 19358–19366.PubMed
95.
go back to reference Hancock, J. F. (2003). Ras proteins: different signals from different locations. Nature Reviews Molecular Cell Biology, 4(5), 373–384.PubMed Hancock, J. F. (2003). Ras proteins: different signals from different locations. Nature Reviews Molecular Cell Biology, 4(5), 373–384.PubMed
96.
go back to reference Rotblat, B., Niv, H., Andre, S., Kaltner, H., Gabius, H. J., & Kloog, Y. (2004). Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Research, 64(9), 3112–3118.PubMed Rotblat, B., Niv, H., Andre, S., Kaltner, H., Gabius, H. J., & Kloog, Y. (2004). Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Research, 64(9), 3112–3118.PubMed
97.
go back to reference Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E., & Kloog, Y. (2001). Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene, 20(51), 7486–7493.PubMed Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E., & Kloog, Y. (2001). Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene, 20(51), 7486–7493.PubMed
98.
go back to reference Cumpstey, I., Sundin, A., Leffler, H., & Nilsson, U. J. (2005). C2-symmetrical thiodigalactoside bis-benzamido derivatives as high-affinity inhibitors of galectin-3: efficient lectin inhibition through double arginine-arene interactions. Angewandte Chemie (International Ed. in English), 44(32), 5110–5112. Cumpstey, I., Sundin, A., Leffler, H., & Nilsson, U. J. (2005). C2-symmetrical thiodigalactoside bis-benzamido derivatives as high-affinity inhibitors of galectin-3: efficient lectin inhibition through double arginine-arene interactions. Angewandte Chemie (International Ed. in English), 44(32), 5110–5112.
99.
go back to reference Cumpstey, I., Salomonsson, E., Sundin, A., Leffler, H., & Nilsson, U. J. (2007). Studies of arginine-arene interactions through synthesis and evaluation of a series of galectin-binding aromatic lactose esters. Chembiochem, 8(12), 1389–1398.PubMed Cumpstey, I., Salomonsson, E., Sundin, A., Leffler, H., & Nilsson, U. J. (2007). Studies of arginine-arene interactions through synthesis and evaluation of a series of galectin-binding aromatic lactose esters. Chembiochem, 8(12), 1389–1398.PubMed
100.
go back to reference Collins, P. M., Oberg, C. T., Leffler, H., Nilsson, U. J., & Blanchard, H. (2012). Taloside inhibitors of Galectin-1 and Galectin-3. Chemical Biology Drug Design, 79, 339–346.PubMed Collins, P. M., Oberg, C. T., Leffler, H., Nilsson, U. J., & Blanchard, H. (2012). Taloside inhibitors of Galectin-1 and Galectin-3. Chemical Biology Drug Design, 79, 339–346.PubMed
101.
go back to reference Brandwijk, R. J., Dings, R. P., van der Linden, E., Mayo, K. H., Thijssen, V. L., & Griffioen, A. W. (2006). Anti-angiogenesis and anti-tumor activity of recombinant anginex. Biochemical and Biophysical Research Communications, 349(3), 1073–1078.PubMed Brandwijk, R. J., Dings, R. P., van der Linden, E., Mayo, K. H., Thijssen, V. L., & Griffioen, A. W. (2006). Anti-angiogenesis and anti-tumor activity of recombinant anginex. Biochemical and Biophysical Research Communications, 349(3), 1073–1078.PubMed
102.
go back to reference Brandwijk, R. J., Mulder, W. J., Nicolay, K., Mayo, K. H., Thijssen, V. L., & Griffioen, A. W. (2007). Anginex-conjugated liposomes for targeting of angiogenic endothelial cells. Bioconjugate Chemistry, 18(3), 785–790.PubMed Brandwijk, R. J., Mulder, W. J., Nicolay, K., Mayo, K. H., Thijssen, V. L., & Griffioen, A. W. (2007). Anginex-conjugated liposomes for targeting of angiogenic endothelial cells. Bioconjugate Chemistry, 18(3), 785–790.PubMed
103.
go back to reference Griffioen, A. W., van der Schaft, D. W., Barendsz-Janson, A. F., Cox, A., Struijker Boudier, H. A., Hillen, H. F., et al. (2001). Anginex, a designed peptide that inhibits angiogenesis. The Biochemical Journal, 354(Pt 2), 233–242.PubMed Griffioen, A. W., van der Schaft, D. W., Barendsz-Janson, A. F., Cox, A., Struijker Boudier, H. A., Hillen, H. F., et al. (2001). Anginex, a designed peptide that inhibits angiogenesis. The Biochemical Journal, 354(Pt 2), 233–242.PubMed
104.
go back to reference Dings, R. P., van der Schaft, D. W., Hargittai, B., Haseman, J., Griffioen, A. W., & Mayo, K. H. (2003). Anti-tumor activity of the novel angiogenesis inhibitor anginex. Cancer Letters, 194(1), 55–66.PubMed Dings, R. P., van der Schaft, D. W., Hargittai, B., Haseman, J., Griffioen, A. W., & Mayo, K. H. (2003). Anti-tumor activity of the novel angiogenesis inhibitor anginex. Cancer Letters, 194(1), 55–66.PubMed
105.
go back to reference Salomonsson, E., Thijssen, V. L., Griffioen, A. W., Nilsson, U. J., & Leffler, H. (2011). The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins. The Journal of Biological Chemistry, 286(16), 13801–13804.PubMed Salomonsson, E., Thijssen, V. L., Griffioen, A. W., Nilsson, U. J., & Leffler, H. (2011). The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins. The Journal of Biological Chemistry, 286(16), 13801–13804.PubMed
106.
go back to reference Pienta, K. J., Naik, H., Akhtar, A., Yamazaki, K., Replogle, T. S., Lehr, J., et al. (1995). Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. Journal of the National Cancer Institute, 87(5), 348–353.PubMed Pienta, K. J., Naik, H., Akhtar, A., Yamazaki, K., Replogle, T. S., Lehr, J., et al. (1995). Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. Journal of the National Cancer Institute, 87(5), 348–353.PubMed
107.
go back to reference Wang, Y., Nangia-Makker, P., Balan, V., Hogan, V., & Raz, A. (2010). Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment. Cell Death Dis, 1, e101.PubMed Wang, Y., Nangia-Makker, P., Balan, V., Hogan, V., & Raz, A. (2010). Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment. Cell Death Dis, 1, e101.PubMed
108.
go back to reference Liu, H. Y., Huang, Z. L., Yang, G. H., Lu, W. Q., & Yu, N. R. (2008). Inhibitory effect of modified citrus pectin on liver metastases in a mouse colon cancer model. World Journal of Gastroenterology, 14(48), 7386–7391.PubMed Liu, H. Y., Huang, Z. L., Yang, G. H., Lu, W. Q., & Yu, N. R. (2008). Inhibitory effect of modified citrus pectin on liver metastases in a mouse colon cancer model. World Journal of Gastroenterology, 14(48), 7386–7391.PubMed
109.
go back to reference Miller, M. C., Klyosov, A., & Mayo, K. H. (2011). Structural Features for alpha-galactomannan binding to galectin-1. Glycobiology Miller, M. C., Klyosov, A., & Mayo, K. H. (2011). Structural Features for alpha-galactomannan binding to galectin-1. Glycobiology
110.
go back to reference Cedeno-Laurent, F., Opperman, M. J., Barthel, S. R., Hays, D., Schatton, T., Zhan, Q., et al. (2012). Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity. Journal Investment Dermatology, 132, 410–420. Cedeno-Laurent, F., Opperman, M. J., Barthel, S. R., Hays, D., Schatton, T., Zhan, Q., et al. (2012). Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity. Journal Investment Dermatology, 132, 410–420.
111.
go back to reference Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., et al. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochimica et Biophysica Acta, 1572(2–3), 232–254.PubMed Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., et al. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochimica et Biophysica Acta, 1572(2–3), 232–254.PubMed
112.
go back to reference Pace, K. E., Lee, C., Stewart, P. L., & Baum, L. G. (1999). Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. The Journal of Immunology, 163(7), 3801–3811.PubMed Pace, K. E., Lee, C., Stewart, P. L., & Baum, L. G. (1999). Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. The Journal of Immunology, 163(7), 3801–3811.PubMed
113.
go back to reference Lau, K. S., & Dennis, J. W. (2008). N-Glycans in cancer progression. Glycobiology, 18(10), 750–760.PubMed Lau, K. S., & Dennis, J. W. (2008). N-Glycans in cancer progression. Glycobiology, 18(10), 750–760.PubMed
114.
go back to reference Lange, T., Ullrich, S., Müller, I., Nentwich, M. F., Stübke, K., Feldhaus, S., et al. (2012). Human prostate cancer in a clinically relevant xenograft mouse model: identification of β(1,6)-branched oligosaccharides as a marker of tumor progression. Clinical Cancer Research, 18(5), 1–10. Lange, T., Ullrich, S., Müller, I., Nentwich, M. F., Stübke, K., Feldhaus, S., et al. (2012). Human prostate cancer in a clinically relevant xenograft mouse model: identification of β(1,6)-branched oligosaccharides as a marker of tumor progression. Clinical Cancer Research, 18(5), 1–10.
115.
go back to reference Wong, C. S., Sceneay, J. E., House, C. M., Halse, H. M., Liu, M. C., George, J., et al. (2012). Vascular normalization by loss of Siah2-/- results in increased chemotherapeutic efficacy. Cancer Research, 72, 1694–1704.PubMed Wong, C. S., Sceneay, J. E., House, C. M., Halse, H. M., Liu, M. C., George, J., et al. (2012). Vascular normalization by loss of Siah2-/- results in increased chemotherapeutic efficacy. Cancer Research, 72, 1694–1704.PubMed
116.
go back to reference Amano, M., Suzuki, M., Andoh, S., Monzen, H., Terai, K., Williams, B., et al. (2007). Antiangiogenesis therapy using a novel angiogenesis inhibitor, anginex, following radiation causes tumor growth delay. International Journal of Clinical Oncology, 12(1), 42–47.PubMed Amano, M., Suzuki, M., Andoh, S., Monzen, H., Terai, K., Williams, B., et al. (2007). Antiangiogenesis therapy using a novel angiogenesis inhibitor, anginex, following radiation causes tumor growth delay. International Journal of Clinical Oncology, 12(1), 42–47.PubMed
117.
go back to reference Dings, R. P., Yokoyama, Y., Ramakrishnan, S., Griffioen, A. W., & Mayo, K. H. (2003). The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Research, 63(2), 382–385.PubMed Dings, R. P., Yokoyama, Y., Ramakrishnan, S., Griffioen, A. W., & Mayo, K. H. (2003). The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Research, 63(2), 382–385.PubMed
118.
go back to reference Dings, R. P., Van Laar, E. S., Loren, M., Webber, J., Zhang, Y., Waters, S. J., et al. (2010). Inhibiting tumor growth by targeting tumor vasculature with galectin-1 antagonist anginex conjugated to the cytotoxic acylfulvene, 6-hydroxylpropylacylfulvene. Bioconjugate Chemistry, 21(1), 20–27.PubMed Dings, R. P., Van Laar, E. S., Loren, M., Webber, J., Zhang, Y., Waters, S. J., et al. (2010). Inhibiting tumor growth by targeting tumor vasculature with galectin-1 antagonist anginex conjugated to the cytotoxic acylfulvene, 6-hydroxylpropylacylfulvene. Bioconjugate Chemistry, 21(1), 20–27.PubMed
119.
go back to reference He, J., & Baum, L. G. (2006). Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Laboratory Investigation, 86(6), 578–590.PubMed He, J., & Baum, L. G. (2006). Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Laboratory Investigation, 86(6), 578–590.PubMed
120.
go back to reference Stannard, K. A., Collins, P. M., Ito, K., Sullivan, E. M., Scott, S. A., Gabutero, E., et al. (2010). Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Letters, 299(2), 95–110.PubMed Stannard, K. A., Collins, P. M., Ito, K., Sullivan, E. M., Scott, S. A., Gabutero, E., et al. (2010). Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Letters, 299(2), 95–110.PubMed
121.
go back to reference Lahm, H., Andre, S., Hoeflich, A., Fischer, J. R., Sordat, B., Kaltner, H., et al. (2001). Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. Journal of Cancer Research and Clinical Oncology, 127(6), 375–386.PubMed Lahm, H., Andre, S., Hoeflich, A., Fischer, J. R., Sordat, B., Kaltner, H., et al. (2001). Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. Journal of Cancer Research and Clinical Oncology, 127(6), 375–386.PubMed
122.
go back to reference Kageshita, T., Kashio, Y., Yamauchi, A., Seki, M., Abedin, M. J., Nishi, N., et al. (2002). Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance. International Journal of Cancer, 99(6), 809–816. Kageshita, T., Kashio, Y., Yamauchi, A., Seki, M., Abedin, M. J., Nishi, N., et al. (2002). Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance. International Journal of Cancer, 99(6), 809–816.
123.
go back to reference Mathieu, V., Le Mercier, M., De Neve, N., Sauvage, S., Gras, T., Roland, I., et al. (2007). Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. The Journal of Investigative Dermatology, 127(10), 2399–2410.PubMed Mathieu, V., Le Mercier, M., De Neve, N., Sauvage, S., Gras, T., Roland, I., et al. (2007). Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. The Journal of Investigative Dermatology, 127(10), 2399–2410.PubMed
124.
go back to reference Le Mercier, M., Lefranc, F., Mijatovic, T., Debeir, O., Haibe-Kains, B., Bontempi, G., et al. (2008). Evidence of galectin-1 involvement in glioma chemoresistance. Toxicology and Applied Pharmacology, 229(2), 172–183.PubMed Le Mercier, M., Lefranc, F., Mijatovic, T., Debeir, O., Haibe-Kains, B., Bontempi, G., et al. (2008). Evidence of galectin-1 involvement in glioma chemoresistance. Toxicology and Applied Pharmacology, 229(2), 172–183.PubMed
125.
go back to reference Alves, P. M., Godoy, G. P., Gomes, D. Q., Medeiros, A. M., de Souza, L. B., da Silveira, E. J., et al. (2011). Significance of galectins-1, -3, -4 and -7 in the progression of squamous cell carcinoma of the tongue. Pathology Research and Practice, 207(4), 236–240. Alves, P. M., Godoy, G. P., Gomes, D. Q., Medeiros, A. M., de Souza, L. B., da Silveira, E. J., et al. (2011). Significance of galectins-1, -3, -4 and -7 in the progression of squamous cell carcinoma of the tongue. Pathology Research and Practice, 207(4), 236–240.
126.
go back to reference Rubinstein, N., Alvarez, M., Zwirner, N. W., Toscano, M. A., Ilarregui, J. M., Bravo, A., et al. (2004). Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell, 5(3), 241–251.PubMed Rubinstein, N., Alvarez, M., Zwirner, N. W., Toscano, M. A., Ilarregui, J. M., Bravo, A., et al. (2004). Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell, 5(3), 241–251.PubMed
127.
go back to reference Cooper, D., Norling, L. V., & Perretti, M. (2008). Novel insights into the inhibitory effects of galectin-1 on neutrophil recruitment under flow. Journal of Leukocyte Biology, 83(6), 1459–1466.PubMed Cooper, D., Norling, L. V., & Perretti, M. (2008). Novel insights into the inhibitory effects of galectin-1 on neutrophil recruitment under flow. Journal of Leukocyte Biology, 83(6), 1459–1466.PubMed
128.
go back to reference Iurisci, I., Tinari, N., Natoli, C., Angelucci, D., Cianchetti, E., & Iacobelli, S. (2000). Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clinical Cancer Research, 6(4), 1389–1393.PubMed Iurisci, I., Tinari, N., Natoli, C., Angelucci, D., Cianchetti, E., & Iacobelli, S. (2000). Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clinical Cancer Research, 6(4), 1389–1393.PubMed
129.
go back to reference Paret, C., Hildebrand, D., Weitz, J., Kopp-Schneider, A., Kuhn, A., Beer, A., et al. (2007). C4.4A as a candidate marker in the diagnosis of colorectal cancer. British Journal of Cancer, 97(8), 1156. Paret, C., Hildebrand, D., Weitz, J., Kopp-Schneider, A., Kuhn, A., Beer, A., et al. (2007). C4.4A as a candidate marker in the diagnosis of colorectal cancer. British Journal of Cancer, 97(8), 1156.
130.
go back to reference Righi, A., Jin, L., Zhang, S., Stilling, G., Scheithauer, B. W., Kovacs, K., et al. (2010). Identification and consequences of galectin-3 expression in pituitary tumors. Molecular and Cellular Endocrinology, 326(1–2), 8–14.PubMed Righi, A., Jin, L., Zhang, S., Stilling, G., Scheithauer, B. W., Kovacs, K., et al. (2010). Identification and consequences of galectin-3 expression in pituitary tumors. Molecular and Cellular Endocrinology, 326(1–2), 8–14.PubMed
131.
go back to reference Nagy, N., Legendre, H., Engels, O., Andre, S., Kaltner, H., Wasano, K., et al. (2003). Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting. Cancer, 97(8), 1849–1858.PubMed Nagy, N., Legendre, H., Engels, O., Andre, S., Kaltner, H., Wasano, K., et al. (2003). Refined prognostic evaluation in colon carcinoma using immunohistochemical galectin fingerprinting. Cancer, 97(8), 1849–1858.PubMed
132.
go back to reference Kobayashi, T., Shimura, T., Yajima, T., Kubo, N., Araki, K., Tsutsumi, S., et al. (2011). Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. International Journal of Cancer, 129(12), 2775–2786. Kobayashi, T., Shimura, T., Yajima, T., Kubo, N., Araki, K., Tsutsumi, S., et al. (2011). Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. International Journal of Cancer, 129(12), 2775–2786.
133.
go back to reference Ahmed, H., Cappello, F., Rodolico, V., & Vasta, G. R. (2009). Evidence of heavy methylation in the galectin 3 promoter in early stages of prostate adenocarcinoma: development and validation of a methylated marker for early diagnosis of prostate cancer. Translational Oncology, 2(3), 146–156.PubMed Ahmed, H., Cappello, F., Rodolico, V., & Vasta, G. R. (2009). Evidence of heavy methylation in the galectin 3 promoter in early stages of prostate adenocarcinoma: development and validation of a methylated marker for early diagnosis of prostate cancer. Translational Oncology, 2(3), 146–156.PubMed
134.
go back to reference van den Brule, F. A., Waltregny, D., Liu, F. T., & Castronovo, V. (2000). Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression. International Journal of Cancer, 89(4), 361–367. van den Brule, F. A., Waltregny, D., Liu, F. T., & Castronovo, V. (2000). Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression. International Journal of Cancer, 89(4), 361–367.
135.
go back to reference Peng, W., Wang, H. Y., Miyahara, Y., Peng, G., & Wang, R. F. (2008). Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Research, 68(17), 7228–7236.PubMed Peng, W., Wang, H. Y., Miyahara, Y., Peng, G., & Wang, R. F. (2008). Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Research, 68(17), 7228–7236.PubMed
136.
go back to reference Endo, K., Kohnoe, S., Tsujita, E., Watanabe, A., Nakashima, H., Baba, H., et al. (2005). Galectin-3 expression is a potent prognostic marker in colorectal cancer. Anticancer Research, 25(4), 3117–3121.PubMed Endo, K., Kohnoe, S., Tsujita, E., Watanabe, A., Nakashima, H., Baba, H., et al. (2005). Galectin-3 expression is a potent prognostic marker in colorectal cancer. Anticancer Research, 25(4), 3117–3121.PubMed
137.
go back to reference Kobayashi, T., Shimura, T., Yajima, T., Kubo, N., Araki, K., Wada, W., et al. (2011). Transient silencing of galectin-3 expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreatic carcinoma cells. Clinical & Experimental Metastasis, 28(4), 367–376. Kobayashi, T., Shimura, T., Yajima, T., Kubo, N., Araki, K., Wada, W., et al. (2011). Transient silencing of galectin-3 expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreatic carcinoma cells. Clinical & Experimental Metastasis, 28(4), 367–376.
138.
go back to reference Cheong, T. C., Shin, J. Y., & Chun, K. H. (2010). Silencing of galectin-3 changes the gene expression and augments the sensitivity of gastric cancer cells to chemotherapeutic agents. Cancer Science, 101(1), 94–102.PubMed Cheong, T. C., Shin, J. Y., & Chun, K. H. (2010). Silencing of galectin-3 changes the gene expression and augments the sensitivity of gastric cancer cells to chemotherapeutic agents. Cancer Science, 101(1), 94–102.PubMed
139.
go back to reference Merseburger, A. S., Kramer, M. W., Hennenlotter, J., Simon, P., Knapp, J., Hartmann, J. T., et al. (2008). Involvement of decreased galectin-3 expression in the pathogenesis and progression of prostate cancer. The Prostate, 68(1), 72–77.PubMed Merseburger, A. S., Kramer, M. W., Hennenlotter, J., Simon, P., Knapp, J., Hartmann, J. T., et al. (2008). Involvement of decreased galectin-3 expression in the pathogenesis and progression of prostate cancer. The Prostate, 68(1), 72–77.PubMed
140.
go back to reference Pacis, R. A., Pilat, M. J., Pienta, K. J., Wojno, K., Raz, A., Hogan, V., et al. (2000). Decreased galectin-3 expression in prostate cancer. The Prostate, 44(2), 118–123.PubMed Pacis, R. A., Pilat, M. J., Pienta, K. J., Wojno, K., Raz, A., Hogan, V., et al. (2000). Decreased galectin-3 expression in prostate cancer. The Prostate, 44(2), 118–123.PubMed
141.
go back to reference Wang, Y. G., Kim, S. J., Baek, J. H., Lee, H. W., Jeong, S. Y., & Chun, K. H. (2012). Galectin-3 increases the motility of mouse melanoma cells by regulating MMP-1 expression. Experimental & Molecular Medicine (in press) Wang, Y. G., Kim, S. J., Baek, J. H., Lee, H. W., Jeong, S. Y., & Chun, K. H. (2012). Galectin-3 increases the motility of mouse melanoma cells by regulating MMP-1 expression. Experimental & Molecular Medicine (in press)
142.
go back to reference Heinzelmann-Schwarz, V. A., Gardiner-Garden, M., Henshall, S. M., Scurry, J. P., Scolyer, R. A., Smith, A. N., et al. (2006). A distinct molecular profile associated with mucinous epithelial ovarian cancer. British Journal of Cancer, 94(6), 904–913.PubMed Heinzelmann-Schwarz, V. A., Gardiner-Garden, M., Henshall, S. M., Scurry, J. P., Scolyer, R. A., Smith, A. N., et al. (2006). A distinct molecular profile associated with mucinous epithelial ovarian cancer. British Journal of Cancer, 94(6), 904–913.PubMed
143.
go back to reference Heinzelmann-Schwarz, V. A., Scolyer, R. A., Scurry, J. P., Smith, A. N., Gardiner-Garden, M., Biankin, A. V., et al. (2007). Low meprin alpha expression differentiates primary ovarian mucinous carcinoma from gastrointestinal cancers that commonly metastasise to the ovaries. Journal of Clinical Pathology, 60(6), 622–626.PubMed Heinzelmann-Schwarz, V. A., Scolyer, R. A., Scurry, J. P., Smith, A. N., Gardiner-Garden, M., Biankin, A. V., et al. (2007). Low meprin alpha expression differentiates primary ovarian mucinous carcinoma from gastrointestinal cancers that commonly metastasise to the ovaries. Journal of Clinical Pathology, 60(6), 622–626.PubMed
144.
go back to reference Demers, M., Biron-Pain, K., Hebert, J., Lamarre, A., Magnaldo, T., & St-Pierre, Y. (2007). Galectin-7 in lymphoma: elevated expression in human lymphoid malignancies and decreased lymphoma dissemination by antisense strategies in experimental model. Cancer Research, 67(6), 2824–2829.PubMed Demers, M., Biron-Pain, K., Hebert, J., Lamarre, A., Magnaldo, T., & St-Pierre, Y. (2007). Galectin-7 in lymphoma: elevated expression in human lymphoid malignancies and decreased lymphoma dissemination by antisense strategies in experimental model. Cancer Research, 67(6), 2824–2829.PubMed
145.
go back to reference Moisan, S., Demers, M., Mercier, J., Magnaldo, T., Potworowski, E. F., & St-Pierre, Y. (2003). Upregulation of galectin-7 in murine lymphoma cells is associated with progression toward an aggressive phenotype. Leukemia, 17(4), 751–759.PubMed Moisan, S., Demers, M., Mercier, J., Magnaldo, T., Potworowski, E. F., & St-Pierre, Y. (2003). Upregulation of galectin-7 in murine lymphoma cells is associated with progression toward an aggressive phenotype. Leukemia, 17(4), 751–759.PubMed
146.
go back to reference Liang, X. Q., Cao, E. H., Zhang, Y., & Qin, J. F. (2003). P53-induced gene 11 (PIG11) involved in arsenic trioxide-induced apoptosis in human gastric cancer MGC-803 cells. Oncology Reports, 10(5), 1265–1269.PubMed Liang, X. Q., Cao, E. H., Zhang, Y., & Qin, J. F. (2003). P53-induced gene 11 (PIG11) involved in arsenic trioxide-induced apoptosis in human gastric cancer MGC-803 cells. Oncology Reports, 10(5), 1265–1269.PubMed
147.
go back to reference Nagy, N., Bronckart, Y., Camby, I., Legendre, H., Lahm, H., Kaltner, H., et al. (2002). Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor. Gut, 50(3), 392–401.PubMed Nagy, N., Bronckart, Y., Camby, I., Legendre, H., Lahm, H., Kaltner, H., et al. (2002). Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor. Gut, 50(3), 392–401.PubMed
148.
go back to reference Klibi, J., Niki, T., Riedel, A., Pioche-Durieu, C., Souquere, S., Rubinstein, E., et al. (2009). Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood, 113(9), 1957–1966.PubMed Klibi, J., Niki, T., Riedel, A., Pioche-Durieu, C., Souquere, S., Rubinstein, E., et al. (2009). Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood, 113(9), 1957–1966.PubMed
149.
go back to reference Yamauchi, A., Kontani, K., Kihara, M., Nishi, N., Yokomise, H., & Hirashima, M. (2006). Galectin-9, a novel prognostic factor with antimetastatic potential in breast cancer. The Breast Journal, 12(5 Suppl 2), S196–S200.PubMed Yamauchi, A., Kontani, K., Kihara, M., Nishi, N., Yokomise, H., & Hirashima, M. (2006). Galectin-9, a novel prognostic factor with antimetastatic potential in breast cancer. The Breast Journal, 12(5 Suppl 2), S196–S200.PubMed
150.
go back to reference Irie, A., Yamauchi, A., Kontani, K., Kihara, M., Liu, D., Shirato, Y., et al. (2005). Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer. Clinical Cancer Research, 11(8), 2962–2968.PubMed Irie, A., Yamauchi, A., Kontani, K., Kihara, M., Liu, D., Shirato, Y., et al. (2005). Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer. Clinical Cancer Research, 11(8), 2962–2968.PubMed
151.
go back to reference Yang, R. Y., Hsu, D. K., Yu, L., Ni, J., & Liu, F. T. (2001). Cell cycle regulation by galectin-12, a new member of the galectin superfamily. The Journal of Biological Chemistry, 276(23), 20252–20260.PubMed Yang, R. Y., Hsu, D. K., Yu, L., Ni, J., & Liu, F. T. (2001). Cell cycle regulation by galectin-12, a new member of the galectin superfamily. The Journal of Biological Chemistry, 276(23), 20252–20260.PubMed
152.
go back to reference Barthel, S. R., Antonopoulos, A., Cedeno-Laurent, F., Schaffer, L., Hernandez, G., Patil, S. A., et al. (2011). Peracetylated 4-fluoro-glucosamine reduces the content and repertoire of N- and O-glycans without direct incorporation. The Journal of Biological Chemistry, 286(24), 21717–21731.PubMed Barthel, S. R., Antonopoulos, A., Cedeno-Laurent, F., Schaffer, L., Hernandez, G., Patil, S. A., et al. (2011). Peracetylated 4-fluoro-glucosamine reduces the content and repertoire of N- and O-glycans without direct incorporation. The Journal of Biological Chemistry, 286(24), 21717–21731.PubMed
Metadata
Title
Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment
Authors
Koichi Ito
Kimberley Stannard
Elwyn Gabutero
Amanda M. Clark
Shi-Yong Neo
Selda Onturk
Helen Blanchard
Stephen J. Ralph
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9388-2

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine