Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012 | NON-THEMATIC REVIEW

EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis

Authors: Francesco Crea, Lorenzo Fornaro, Guido Bocci, Lei Sun, William L. Farrar, Alfredo Falcone, Romano Danesi

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Tumor angiogenesis and metastatic spreading are two highly interconnected phenomena, which contribute to cancer-associated deaths. Thus, the identification of novel strategies to target angiogenesis and metastatic spreading is crucial. Polycomb genes are a set of epigenetic effectors, structured in multimeric repressive complexes. EZH2 is the catalytic subunit of Polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27, thereby silencing several tumor-suppressor genes. EZH2 is essential for cancer stem cell self-renewal. Interestingly, cancer stem cells are thought to be the seeds of metastatic spreading and are able to differentiate into tumor-associated endothelial cells. Pre-clinical studies showed that EZH2 is able to silence several anti-metastatic genes ( e.g., E-cadherin and tissue inhibitors of metalloproteinases), thereby favoring cell invasion and anchorage-independent growth. In addition, EZH2 seems to play a crucial role in the regulation of tumor angiogenesis. High EZH2 expression predicts poor prognosis, high grade, and high stage in several cancer types. Recently, a small molecule inhibitor of PRC2 (DZNeP) demonstrated promising anti-tumor activity, both in vitro and in vivo. Interestingly, DZNeP was able to inhibit cancer cell invasion and tumor angiogenesis in prostate and brain cancers, respectively. At tumor-inhibiting doses, DZNeP is not harmful for non-transformed cells. In the present manuscript, we review current evidence supporting a role of EZH2 in metastatic spreading and tumor angiogenesis. Using Oncomine datasets, we show that DZNeP targets are specifically silenced in some metastatic cancers, and some of them may inhibit angiogenesis. Based on this evidence, we propose the development of EZH2 inhibitors as anti-angiogenic and anti-metastatic therapy.
Literature
1.
go back to reference Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. National Review Cancer, 11:512-522. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. National Review Cancer, 11:512-522.
2.
go back to reference Fornier M (2010) Ixabepilone plus capecitabine for breast cancer patients with an early metastatic relapse after adjuvant chemotherapy: two clinical trials. Clinical Breast Cancer, 10:352-358. Fornier M (2010) Ixabepilone plus capecitabine for breast cancer patients with an early metastatic relapse after adjuvant chemotherapy: two clinical trials. Clinical Breast Cancer, 10:352-358.
3.
go back to reference Soria JC, Massard C, Le Chevalier T (2010) Should progression-free survival be the primary measure of efficacy for advanced NSCLC therapy? Annales Oncologica, 21:2324-2332. Soria JC, Massard C, Le Chevalier T (2010) Should progression-free survival be the primary measure of efficacy for advanced NSCLC therapy? Annales Oncologica, 21:2324-2332.
4.
5.
go back to reference Su, J. L., Yang, P. C., Shih, J. Y., Yang, C. Y., Wei, L. H., Hsieh, C. Y., et al. (2006). The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 9, 209–223.PubMedCrossRef Su, J. L., Yang, P. C., Shih, J. Y., Yang, C. Y., Wei, L. H., Hsieh, C. Y., et al. (2006). The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 9, 209–223.PubMedCrossRef
6.
go back to reference Hurwitz, H. I., Fehrenbacher, L., Hainsworth, J. D., Heim, W., Berlin, J., Holmgren, E., et al. (2005). Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. Journal of Clinical Oncology, 23, 3502–3508.PubMedCrossRef Hurwitz, H. I., Fehrenbacher, L., Hainsworth, J. D., Heim, W., Berlin, J., Holmgren, E., et al. (2005). Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. Journal of Clinical Oncology, 23, 3502–3508.PubMedCrossRef
7.
go back to reference Lee, F. Y., Covello, K. L., Castaneda, S., Hawken, D. R., Kan, D., Lewin, A., et al. (2008). Synergistic antitumor activity of ixabepilone (BMS-247550) plus bevacizumab in multiple in vivo tumor models. Clinical Cancer Research, 14, 8123–8131.PubMedCrossRef Lee, F. Y., Covello, K. L., Castaneda, S., Hawken, D. R., Kan, D., Lewin, A., et al. (2008). Synergistic antitumor activity of ixabepilone (BMS-247550) plus bevacizumab in multiple in vivo tumor models. Clinical Cancer Research, 14, 8123–8131.PubMedCrossRef
8.
go back to reference Rousseau B, Chibaudel B, Bachet JB, Larsen AK, Tournigand C, Louvet C, Andre T, de Gramont A (2010) Stage II and stage III colon cancer: treatment advances and future directions. Cancer Journal, 16:202-209. Rousseau B, Chibaudel B, Bachet JB, Larsen AK, Tournigand C, Louvet C, Andre T, de Gramont A (2010) Stage II and stage III colon cancer: treatment advances and future directions. Cancer Journal, 16:202-209.
9.
go back to reference Valachis A, Polyzos NP, Patsopoulos NA, Georgoulias V, Mavroudis D, Mauri D (2010) Bevacizumab in metastatic breast cancer: a meta-analysis of randomized controlled trials. Breast Cancer Research Treatment, 122:1-7. Valachis A, Polyzos NP, Patsopoulos NA, Georgoulias V, Mavroudis D, Mauri D (2010) Bevacizumab in metastatic breast cancer: a meta-analysis of randomized controlled trials. Breast Cancer Research Treatment, 122:1-7.
10.
go back to reference Bear HD, Tang G, Rastogi P, Geyer CE, Jr., Robidoux A, Atkins JN, Baez-Diaz L, Brufsky AM, Mehta RS, Fehrenbacher L, et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. The New England Journal of Medicine, 366:310-320. Bear HD, Tang G, Rastogi P, Geyer CE, Jr., Robidoux A, Atkins JN, Baez-Diaz L, Brufsky AM, Mehta RS, Fehrenbacher L, et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. The New England Journal of Medicine, 366:310-320.
11.
go back to reference von Minckwitz G, Eidtmann H, Rezai M, Fasching PA, Tesch H, Eggemann H, Schrader I, Kittel K, Hanusch C, Kreienberg R, et al. (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. New England Journal of Medicine, 366:299-309. von Minckwitz G, Eidtmann H, Rezai M, Fasching PA, Tesch H, Eggemann H, Schrader I, Kittel K, Hanusch C, Kreienberg R, et al. (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. New England Journal of Medicine, 366:299-309.
12.
go back to reference Mulder K, Koski S, Scarfe A, Chu Q, King K, Spratlin J (2010) Antiangiogenic agents in advanced gastrointestinal malignancies: past, present and a novel future. Oncotarget, 1:515-529. Mulder K, Koski S, Scarfe A, Chu Q, King K, Spratlin J (2010) Antiangiogenic agents in advanced gastrointestinal malignancies: past, present and a novel future. Oncotarget, 1:515-529.
13.
go back to reference Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clinical Cancer Research, 16:5928-5935. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clinical Cancer Research, 16:5928-5935.
14.
go back to reference Mathews, L. A., Crea, F., & Farrar, W. L. (2009). Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation, 78, 1–17.PubMedCrossRef Mathews, L. A., Crea, F., & Farrar, W. L. (2009). Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation, 78, 1–17.PubMedCrossRef
15.
go back to reference Tan, J., Yang, X., Zhuang, L., Jiang, X., Chen, W., Lee, P. L., et al. (2007). Pharmacologic disruption of Polycomb -repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes & Development, 21, 1050–1063.CrossRef Tan, J., Yang, X., Zhuang, L., Jiang, X., Chen, W., Lee, P. L., et al. (2007). Pharmacologic disruption of Polycomb -repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes & Development, 21, 1050–1063.CrossRef
16.
17.
go back to reference Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.PubMedCrossRef Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.PubMedCrossRef
18.
go back to reference Lombaerts, M., van Wezel, T., Philippo, K., Dierssen, J. W., Zimmerman, R. M., Oosting, J., et al. (2006). E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. British Journal of Cancer, 94, 661–671.PubMed Lombaerts, M., van Wezel, T., Philippo, K., Dierssen, J. W., Zimmerman, R. M., Oosting, J., et al. (2006). E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. British Journal of Cancer, 94, 661–671.PubMed
19.
go back to reference Iochmann, S., Blechet, C., Chabot, V., Saulnier, A., Amini, A., Gaud, G., et al. (2009). Transient RNA silencing of tissue factor pathway inhibitor-2 modulates lung cancer cell invasion. Clinical & Experimental Metastasis, 26, 457–467.CrossRef Iochmann, S., Blechet, C., Chabot, V., Saulnier, A., Amini, A., Gaud, G., et al. (2009). Transient RNA silencing of tissue factor pathway inhibitor-2 modulates lung cancer cell invasion. Clinical & Experimental Metastasis, 26, 457–467.CrossRef
20.
go back to reference Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S, Pavelic K (2011) Metastasis: new perspectives on an old problem. Molecular Cancer, 10:22. Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S, Pavelic K (2011) Metastasis: new perspectives on an old problem. Molecular Cancer, 10:22.
21.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef
22.
go back to reference Hurt, E. M., & Farrar, W. L. (2008). Cancer stem cells: the seeds of metastasis? Molecular Interventions, 8, 140–142.PubMedCrossRef Hurt, E. M., & Farrar, W. L. (2008). Cancer stem cells: the seeds of metastasis? Molecular Interventions, 8, 140–142.PubMedCrossRef
24.
go back to reference Thullberg, M., & Stromblad, S. (2008). Anchorage-independent cytokinesis as part of oncogenic transformation? Cell Cycle, 7, 984–988.PubMedCrossRef Thullberg, M., & Stromblad, S. (2008). Anchorage-independent cytokinesis as part of oncogenic transformation? Cell Cycle, 7, 984–988.PubMedCrossRef
25.
go back to reference Berezovska, O. P., Glinskii, A. B., Yang, Z., Li, X. M., Hoffman, R. M., & Glinsky, G. V. (2006). Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle, 5, 1886–1901.PubMedCrossRef Berezovska, O. P., Glinskii, A. B., Yang, Z., Li, X. M., Hoffman, R. M., & Glinsky, G. V. (2006). Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle, 5, 1886–1901.PubMedCrossRef
26.
go back to reference Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. National Medicine, 17:1359-1370. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. National Medicine, 17:1359-1370.
27.
go back to reference Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol, 11:1172-1183. Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol, 11:1172-1183.
28.
go back to reference Ellis, L. M., & Hicklin, D. J. (2008). Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clinical Cancer Research, 14, 6371–6375.PubMedCrossRef Ellis, L. M., & Hicklin, D. J. (2008). Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clinical Cancer Research, 14, 6371–6375.PubMedCrossRef
29.
go back to reference Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8, 592–603.PubMedCrossRef Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8, 592–603.PubMedCrossRef
30.
go back to reference Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP (2012) The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol, 13:e83-89. Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP (2012) The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol, 13:e83-89.
31.
go back to reference Biddle A, Mackenzie IC (2012) Cancer stem cells and EMT in carcinoma. Cancer Metastasis Review (in press) Biddle A, Mackenzie IC (2012) Cancer stem cells and EMT in carcinoma. Cancer Metastasis Review (in press)
32.
go back to reference Siddique HR, Saleem M (2012) Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells, 30:372-378. Siddique HR, Saleem M (2012) Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells, 30:372-378.
33.
go back to reference Ribatti D (2012) Cancer stem cells and tumor angiogenesis. Cancer Letters (in press) Ribatti D (2012) Cancer stem cells and tumor angiogenesis. Cancer Letters (in press)
34.
go back to reference Folkins, C., Man, S., Xu, P., Shaked, Y., Hicklin, D. J., & Kerbel, R. S. (2007). Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Research, 67, 3560–3564.PubMedCrossRef Folkins, C., Man, S., Xu, P., Shaked, Y., Hicklin, D. J., & Kerbel, R. S. (2007). Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Research, 67, 3560–3564.PubMedCrossRef
35.
go back to reference Daenen, L. G., Shaked, Y., Man, S., Xu, P., Voest, E. E., Hoffman, R. M., et al. (2009). Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Molecular Cancer Therapeutics, 8, 2872–2881.PubMedCrossRef Daenen, L. G., Shaked, Y., Man, S., Xu, P., Voest, E. E., Hoffman, R. M., et al. (2009). Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Molecular Cancer Therapeutics, 8, 2872–2881.PubMedCrossRef
36.
go back to reference Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., Williams, E. D., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMedCrossRef Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., Williams, E. D., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMedCrossRef
37.
go back to reference Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15, 232–239.PubMedCrossRef Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15, 232–239.PubMedCrossRef
38.
go back to reference Karanikolas BD, Figueiredo ML, Wu L( 2010) Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate, 70:675-688. Karanikolas BD, Figueiredo ML, Wu L( 2010) Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate, 70:675-688.
39.
go back to reference Du J, Li L, Ou Z, Kong C, Zhang Y, Dong Z, Zhu S, Jiang H, Shao Z, Huang B, Lu J (2012) FOXC1, a target of Polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Research Treatment, 131:65-73. Du J, Li L, Ou Z, Kong C, Zhang Y, Dong Z, Zhu S, Jiang H, Shao Z, Huang B, Lu J (2012) FOXC1, a target of Polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Research Treatment, 131:65-73.
40.
go back to reference Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, et al (2011) The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut, 61:278-289. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, et al (2011) The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut, 61:278-289.
41.
go back to reference Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM, et al. (2010) miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget, 1:710-720. Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM, et al. (2010) miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget, 1:710-720.
42.
go back to reference Tong ZT, Cai MY, Wang XG, Kong LL, Mai SJ, Liu YH, Zhang HB, Liao YJ, Zheng F, Zhu W, et al. (2011) EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene, 31:583-594. Tong ZT, Cai MY, Wang XG, Kong LL, Mai SJ, Liu YH, Zhang HB, Liao YJ, Zheng F, Zhu W, et al. (2011) EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene, 31:583-594.
43.
go back to reference Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, Guney I, Strochlic DE, Macconaill LE, Beroukhim R, et al. (2010) An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. National Medicine, 16:286-294. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, Guney I, Strochlic DE, Macconaill LE, Beroukhim R, et al. (2010) An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. National Medicine, 16:286-294.
44.
go back to reference Leung-Kuen Au S, Chak-Lui Wong C, Man-Fong Lee J, Ngo-Yin Fan D, Hoching Tsang F, Oi-Lin Ng I, Wong CM (2012) Enhancer of zeste homolog 2 (EZH2) epigenetically silences multiple tumor suppressor miRNAs to promote liver cancer metastasis. Hepatology. Leung-Kuen Au S, Chak-Lui Wong C, Man-Fong Lee J, Ngo-Yin Fan D, Hoching Tsang F, Oi-Lin Ng I, Wong CM (2012) Enhancer of zeste homolog 2 (EZH2) epigenetically silences multiple tumor suppressor miRNAs to promote liver cancer metastasis. Hepatology.
45.
go back to reference Crea F, Paolicchi E, Marquez VE, Danesi R (2012) Polycomb genes and cancer: Time for clinical application? Critical Review Oncology Hematology (in press) Crea F, Paolicchi E, Marquez VE, Danesi R (2012) Polycomb genes and cancer: Time for clinical application? Critical Review Oncology Hematology (in press)
46.
go back to reference Wang CG, Ye YJ, Yuan J, Liu FF, Zhang H, Wang S (2010) EZH2 and STAT6 expression profiles are correlated with colorectal cancer stage and prognosis. World Journal Gastroenterology, 16:2421-2427. Wang CG, Ye YJ, Yuan J, Liu FF, Zhang H, Wang S (2010) EZH2 and STAT6 expression profiles are correlated with colorectal cancer stage and prognosis. World Journal Gastroenterology, 16:2421-2427.
47.
go back to reference Lv Y, Yuan C, Xiao X, Wang X, Ji X, Yu H, Wu Z, Zhang J (2012) The expression and significance of the enhancer of zeste homolog 2 in lung adenocarcinoma. Oncology Report, 28:147-154. Lv Y, Yuan C, Xiao X, Wang X, Ji X, Yu H, Wu Z, Zhang J (2012) The expression and significance of the enhancer of zeste homolog 2 in lung adenocarcinoma. Oncology Report, 28:147-154.
48.
go back to reference Crea F, Hurt EM, Farrar WL (2010) Clinical significance of Polycomb gene expression in brain tumors. Molecular Cancer, 9:265. Crea F, Hurt EM, Farrar WL (2010) Clinical significance of Polycomb gene expression in brain tumors. Molecular Cancer, 9:265.
49.
go back to reference Reijm EA, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, van Gelder ME, Sieuwerts AM, Sleijfer S, Foekens JA, Berns EM (2011) Decreased expression of EZH2 is associated with upregulation of ER and favorable outcome to tamoxifen in advanced breast cancer. Breast Cancer Research Treatment, 125:387-394. Reijm EA, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, van Gelder ME, Sieuwerts AM, Sleijfer S, Foekens JA, Berns EM (2011) Decreased expression of EZH2 is associated with upregulation of ER and favorable outcome to tamoxifen in advanced breast cancer. Breast Cancer Research Treatment, 125:387-394.
50.
go back to reference Crea F, Hurt EM, Mathews LA, Cabarcas SM, Sun L, Marquez VE, Danesi R, Farrar WL (2010) Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Molecular Cancer, 10:40. Crea F, Hurt EM, Mathews LA, Cabarcas SM, Sun L, Marquez VE, Danesi R, Farrar WL (2010) Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Molecular Cancer, 10:40.
51.
go back to reference Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, Lin MC, Guan XY, Kung HF, Zeng YX, Xie D (2011) High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Molecular Medicine, 17:12-20. Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, Lin MC, Guan XY, Kung HF, Zeng YX, Xie D (2011) High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Molecular Medicine, 17:12-20.
52.
go back to reference Fujii S, Tokita K, Wada N, Ito K, Yamauchi C, Ito Y, Ochiai A (2011) MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene, 30:4118-4128. Fujii S, Tokita K, Wada N, Ito K, Yamauchi C, Ito Y, Ochiai A (2011) MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene, 30:4118-4128.
53.
go back to reference Lovat F, Valeri N, Croce CM (2011) MicroRNAs in the pathogenesis of cancer. Seminars Oncology, 38:724-733. Lovat F, Valeri N, Croce CM (2011) MicroRNAs in the pathogenesis of cancer. Seminars Oncology, 38:724-733.
54.
go back to reference Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, Li MF, Chen GQ, Zhao Q (2011) Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis, 32:2-9. Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, Li MF, Chen GQ, Zhao Q (2011) Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis, 32:2-9.
55.
go back to reference Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, Li Y, Ali S, Sethi S, Hassan O, et al. (2012) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One, 7:e33729. Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, Li Y, Ali S, Sethi S, Hassan O, et al. (2012) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One, 7:e33729.
56.
go back to reference Varambally, S., Cao, Q., Mani, R. S., Shankar, S., Wang, X., Ateeq, B., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322, 1695–1699.PubMedCrossRef Varambally, S., Cao, Q., Mani, R. S., Shankar, S., Wang, X., Ateeq, B., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322, 1695–1699.PubMedCrossRef
57.
go back to reference Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. European Journal Cancer, 46:2295-2303. Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. European Journal Cancer, 46:2295-2303.
58.
go back to reference Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, et al. (2011) Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell, 20:187-199. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, et al. (2011) Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell, 20:187-199.
59.
go back to reference Lu, C., Bonome, T., Li, Y., Kamat, A. A., Han, L. Y., Schmandt, R., et al. (2007). Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Research, 67, 1757–1768.PubMedCrossRef Lu, C., Bonome, T., Li, Y., Kamat, A. A., Han, L. Y., Schmandt, R., et al. (2007). Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Research, 67, 1757–1768.PubMedCrossRef
60.
go back to reference Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, Armaiz-Pena GN, Hu W, Stone RL, Munkarah A, et al. (2010) Regulation of tumor angiogenesis by EZH2. Cancer Cell, 18:185-197. Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, Armaiz-Pena GN, Hu W, Stone RL, Munkarah A, et al. (2010) Regulation of tumor angiogenesis by EZH2. Cancer Cell, 18:185-197.
61.
go back to reference Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN (2011) FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Molecular Cell, 43:285-298. Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN (2011) FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Molecular Cell, 43:285-298.
62.
go back to reference Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 468:824-828. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 468:824-828.
63.
go back to reference Miranda, T. B., Cortez, C. C., Yoo, C. B., Liang, G., Abe, M., Kelly, T. K., et al. (2009). DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Molecular Cancer Therapeutics, 8, 1579–1588.PubMedCrossRef Miranda, T. B., Cortez, C. C., Yoo, C. B., Liang, G., Abe, M., Kelly, T. K., et al. (2009). DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Molecular Cancer Therapeutics, 8, 1579–1588.PubMedCrossRef
64.
go back to reference Hayden A, Johnson PW, Packham G, Crabb SJ (2011) S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Research Treatment, 127:109-119. Hayden A, Johnson PW, Packham G, Crabb SJ (2011) S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Research Treatment, 127:109-119.
65.
go back to reference Kemp CD, Rao M, Xi S, Inchauste S, Mani H, Fetsch P, Filie A, Zhang M, Hong JA, Walker RL, et al. (2012) Polycomb repressor complex-2 is a novel target for mesothelioma therapy. Clinics Cancer Research, 18:77-90. Kemp CD, Rao M, Xi S, Inchauste S, Mani H, Fetsch P, Filie A, Zhang M, Hong JA, Walker RL, et al. (2012) Polycomb repressor complex-2 is a novel target for mesothelioma therapy. Clinics Cancer Research, 18:77-90.
66.
go back to reference Suva, M. L., Riggi, N., Janiszewska, M., Radovanovic, I., Provero, P., Stehle, J. C., et al. (2009). EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Research, 69, 9211–9218.PubMedCrossRef Suva, M. L., Riggi, N., Janiszewska, M., Radovanovic, I., Provero, P., Stehle, J. C., et al. (2009). EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Research, 69, 9211–9218.PubMedCrossRef
67.
go back to reference Chiba T, Suzuki E, Negishi M, Saraya A, Miyagi S, Konuma T, Tanaka S, Tada M, Kanai F, Imazeki F, et al. (2012) 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. International Journal of Cancer, 130:2557-2567. Chiba T, Suzuki E, Negishi M, Saraya A, Miyagi S, Konuma T, Tanaka S, Tada M, Kanai F, Imazeki F, et al. (2012) 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. International Journal of Cancer, 130:2557-2567.
68.
go back to reference Fiskus, W., Wang, Y., Sreekumar, A., Buckley, K. M., Shi, H., Jillella, A., et al. (2009). Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood, 114, 2733–2743.PubMedCrossRef Fiskus, W., Wang, Y., Sreekumar, A., Buckley, K. M., Shi, H., Jillella, A., et al. (2009). Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood, 114, 2733–2743.PubMedCrossRef
69.
go back to reference Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE, Cloos J, Breakefield XO, Krichevsky AM, Noske DP, et al. (2011) Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One, 6:e16282. Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE, Cloos J, Breakefield XO, Krichevsky AM, Noske DP, et al. (2011) Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One, 6:e16282.
70.
go back to reference Coulombe, R. A., Jr., Sharma, R. P., & Huggins, J. W. (1995). Pharmacokinetics of the antiviral agent 3-deazaneplanocin A. European Journal of Drug Metabolism and Pharmacokinetics, 20, 197–202.PubMedCrossRef Coulombe, R. A., Jr., Sharma, R. P., & Huggins, J. W. (1995). Pharmacokinetics of the antiviral agent 3-deazaneplanocin A. European Journal of Drug Metabolism and Pharmacokinetics, 20, 197–202.PubMedCrossRef
71.
go back to reference Sun F, Li J, Yu Q, Chan E (2012) Loading 3-deazaneplanocin A into pegylated unilamellar liposomes by forming transient phenylboronic acid-drug complex and its pharmacokinetic features in Sprague-Dawley rats. European Journal of Pharmacology and Biopharmacology, 80:323-331. Sun F, Li J, Yu Q, Chan E (2012) Loading 3-deazaneplanocin A into pegylated unilamellar liposomes by forming transient phenylboronic acid-drug complex and its pharmacokinetic features in Sprague-Dawley rats. European Journal of Pharmacology and Biopharmacology, 80:323-331.
72.
go back to reference Fiskus, W., Buckley, K., Rao, R., Mandawat, A., Yang, Y., Joshi, R., et al. (2009). Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biology & Therapy, 8, 939–950.CrossRef Fiskus, W., Buckley, K., Rao, R., Mandawat, A., Yang, Y., Joshi, R., et al. (2009). Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biology & Therapy, 8, 939–950.CrossRef
73.
go back to reference Choudhury SR, Balasubramanian S, Chew YC, Han B, Marquez VE, Eckert RL (2011) (-)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells. Carcinogenesis, 32:1525-1532. Choudhury SR, Balasubramanian S, Chew YC, Han B, Marquez VE, Eckert RL (2011) (-)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells. Carcinogenesis, 32:1525-1532.
74.
go back to reference Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, Woodward WA, Hsu JM, Hortobagyi GN, Hung MC (2011) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell, 19:86-100. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, Woodward WA, Hsu JM, Hortobagyi GN, Hung MC (2011) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell, 19:86-100.
75.
go back to reference Zeng X, Chen S, Huang H (2011) Phosphorylation of EZH2 by CDK1 and CDK2: a possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions. Cell Cycle, 10:579-583. Zeng X, Chen S, Huang H (2011) Phosphorylation of EZH2 by CDK1 and CDK2: a possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions. Cell Cycle, 10:579-583.
76.
go back to reference Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). Oncomine: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1–6.PubMed Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). Oncomine: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1–6.PubMed
77.
go back to reference Radvanyi, L., Singh-Sandhu, D., Gallichan, S., Lovitt, C., Pedyczak, A., Mallo, G., et al. (2005). The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 102, 11005–11010.PubMedCrossRef Radvanyi, L., Singh-Sandhu, D., Gallichan, S., Lovitt, C., Pedyczak, A., Mallo, G., et al. (2005). The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 102, 11005–11010.PubMedCrossRef
78.
go back to reference Graudens, E., Boulanger, V., Mollard, C., Mariage-Samson, R., Barlet, X., Gremy, G., et al. (2006). Deciphering cellular states of innate tumor drug responses. Genome Biology, 7, R19.PubMedCrossRef Graudens, E., Boulanger, V., Mollard, C., Mariage-Samson, R., Barlet, X., Gremy, G., et al. (2006). Deciphering cellular states of innate tumor drug responses. Genome Biology, 7, R19.PubMedCrossRef
79.
go back to reference Chen, X., Leung, S. Y., Yuen, S. T., Chu, K. M., Ji, J., Li, R., et al. (2003). Variation in gene expression patterns in human gastric cancers. Molecular Biology of the Cell, 14, 3208–3215.PubMedCrossRef Chen, X., Leung, S. Y., Yuen, S. T., Chu, K. M., Ji, J., Li, R., et al. (2003). Variation in gene expression patterns in human gastric cancers. Molecular Biology of the Cell, 14, 3208–3215.PubMedCrossRef
80.
go back to reference Lapointe, J., Li, C., Higgins, J. P., van de Rijn, M., Bair, E., Montgomery, K., et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 101, 811–816.PubMedCrossRef Lapointe, J., Li, C., Higgins, J. P., van de Rijn, M., Bair, E., Montgomery, K., et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 101, 811–816.PubMedCrossRef
81.
go back to reference Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S., et al. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical Cancer Research, 14, 5198–5208.PubMedCrossRef Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S., et al. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical Cancer Research, 14, 5198–5208.PubMedCrossRef
82.
go back to reference O'Donnell, R. K., Kupferman, M., Wei, S. J., Singhal, S., Weber, R., O'Malley, B., et al. (2005). Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene, 24, 1244–1251.PubMedCrossRef O'Donnell, R. K., Kupferman, M., Wei, S. J., Singhal, S., Weber, R., O'Malley, B., et al. (2005). Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene, 24, 1244–1251.PubMedCrossRef
83.
go back to reference Shin YJ, Kim JH (2012) The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One, 7:e30393. Shin YJ, Kim JH (2012) The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One, 7:e30393.
84.
go back to reference Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9, 407–415.PubMedCrossRef Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9, 407–415.PubMedCrossRef
85.
go back to reference Zucker, S., Hymowitz, M., Conner, C., Zarrabi, H. M., Hurewitz, A. N., Matrisian, L., et al. (1999). Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Annals of the New York Academy of Sciences, 878, 212–227.PubMedCrossRef Zucker, S., Hymowitz, M., Conner, C., Zarrabi, H. M., Hurewitz, A. N., Matrisian, L., et al. (1999). Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Annals of the New York Academy of Sciences, 878, 212–227.PubMedCrossRef
86.
go back to reference Wu Z, Lee ST, Qiao Y, Li Z, Lee PL, Lee YJ, Jiang X, Tan J, Aau M, Lim CZ, Yu Q: Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage. Cell Death and Differentiation, 18:1771-1779. Wu Z, Lee ST, Qiao Y, Li Z, Lee PL, Lee YJ, Jiang X, Tan J, Aau M, Lim CZ, Yu Q: Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage. Cell Death and Differentiation, 18:1771-1779.
Metadata
Title
EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis
Authors
Francesco Crea
Lorenzo Fornaro
Guido Bocci
Lei Sun
William L. Farrar
Alfredo Falcone
Romano Danesi
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9387-3

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine