Skip to main content
Top
Published in: European Radiology 5/2020

01-05-2020 | Frontotemporal Dementia | Neuro

Normative brain volume reports may improve differential diagnosis of dementing neurodegenerative diseases in clinical practice

Authors: Dennis M. Hedderich, Michael Dieckmeyer, Tiberiu Andrisan, Marion Ortner, Lioba Grundl, Simon Schön, Per Suppa, Tom Finck, Kornelia Kreiser, Claus Zimmer, Igor Yakushev, Timo Grimmer

Published in: European Radiology | Issue 5/2020

Login to get access

Abstract

Objectives

Normative brain volume reports (NBVRs) are becoming more and more available for the workup of dementia patients in clinical routine. However, it is yet unknown how this information can be used in the radiological decision-making process. The present study investigates the diagnostic value of NBVRs for detection and differential diagnosis of distinct regional brain atrophy in several dementing neurodegenerative disorders.

Methods

NBVRs were obtained for 81 consecutive patients with distinct dementing neurodegenerative diseases and 13 healthy controls (HC). Forty Alzheimer’s disease (AD; 18 with dementia, 22 with mild cognitive impairment (MCI), 11 posterior cortical atrophy (PCA)), 20 frontotemporal dementia (FTD), and ten semantic dementia (SD) cases were analyzed, and reports were tested qualitatively for the representation of atrophy patterns. Gold standard diagnoses were based on the patients’ clinical course, FDG-PET imaging, and/or cerebrospinal fluid (CSF) biomarkers following established diagnostic criteria. Diagnostic accuracy of pattern representations was calculated.

Results

NBVRs improved the correct identification of patients vs. healthy controls based on structural MRI for rater 1 (p < 0.001) whereas the amount of correct classifications was rather unchanged for rater 2. Correct differential diagnosis of dementing neurodegenerative disorders was significantly improved for both rater 1 (p = 0.001) and rater 2 (p = 0.022). Furthermore, interrater reliability was improved from moderate to excellent for both detection and differential diagnosis of neurodegenerative diseases (κ = 0.556/0.894 and κ = 0.403/0.850, respectively).

Conclusion

NBVRs deliver valuable and observer-independent information, which can improve differential diagnosis of neurodegenerative diseases.

Key Points

• Normative brain volume reports increase detection of neurodegenerative atrophy patterns compared to visual reading alone.
• Differential diagnosis of regionally distinct atrophy patterns is improved.
• Agreement between radiologists is significantly improved from moderate to excellent when using normative brain volume reports.
Appendix
Available only for authorised users
Literature
1.
go back to reference Teipel S, Drzezga A, Grothe MJ et al (2015) Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. Lancet Neurol 14:1037–1053CrossRef Teipel S, Drzezga A, Grothe MJ et al (2015) Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. Lancet Neurol 14:1037–1053CrossRef
2.
go back to reference Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77 Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77
3.
go back to reference Teipel S, Kilimann I, Thyrian JR, Klöppel S, Hoffmann W (2017) Potential role of neuroimaging markers for early diagnosis of dementia in primary care. Curr Alzheimer Res 15:18–27CrossRef Teipel S, Kilimann I, Thyrian JR, Klöppel S, Hoffmann W (2017) Potential role of neuroimaging markers for early diagnosis of dementia in primary care. Curr Alzheimer Res 15:18–27CrossRef
4.
go back to reference Harper L, Fumagalli GG, Barkhof F et al (2016) MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139:1211–1225CrossRef Harper L, Fumagalli GG, Barkhof F et al (2016) MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139:1211–1225CrossRef
5.
go back to reference Wahlund LO, Westman E, van Westen D et al (2017) Imaging biomarkers of dementia: recommended visual rating scales with teaching cases. Insights Imaging 8:79–90CrossRef Wahlund LO, Westman E, van Westen D et al (2017) Imaging biomarkers of dementia: recommended visual rating scales with teaching cases. Insights Imaging 8:79–90CrossRef
6.
go back to reference Potvin O, Dieumegarde L, Duchesne S; Alzheimer's Disease Neuroimaging Initiative (2017) Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain. Neuroimage 156:315–339 Potvin O, Dieumegarde L, Duchesne S; Alzheimer's Disease Neuroimaging Initiative (2017) Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain. Neuroimage 156:315–339
7.
go back to reference Bruun M, Frederiksen KS, Rhodius-Meester HFM et al (2019) Impact of a clinical decision support tool on prediction of progression in early-stage dementia: a prospective validation study. Alzheimers Res Ther 16:91–101CrossRef Bruun M, Frederiksen KS, Rhodius-Meester HFM et al (2019) Impact of a clinical decision support tool on prediction of progression in early-stage dementia: a prospective validation study. Alzheimers Res Ther 16:91–101CrossRef
8.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248PubMed
9.
go back to reference Brown RKJ, Bohnen NI, Wong KK, Minoshima S, Frey KA (2014) Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics 34:684–701CrossRef Brown RKJ, Bohnen NI, Wong KK, Minoshima S, Frey KA (2014) Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics 34:684–701CrossRef
10.
go back to reference Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279CrossRef Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279CrossRef
11.
go back to reference McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269CrossRef McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269CrossRef
12.
go back to reference Mendez MF, Ghajarania M, Perryman KM (2002) Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer’s disease. Dement Geriatr Cogn Disord 14:33–40CrossRef Mendez MF, Ghajarania M, Perryman KM (2002) Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer’s disease. Dement Geriatr Cogn Disord 14:33–40CrossRef
13.
go back to reference Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRef Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRef
14.
go back to reference Savio A, Funger S, Tahmasian M et al (2017) Resting-state networks as simultaneously measured with functional MRI and PET. J Nucl Med 58:1314–1317CrossRef Savio A, Funger S, Tahmasian M et al (2017) Resting-state networks as simultaneously measured with functional MRI and PET. J Nucl Med 58:1314–1317CrossRef
15.
go back to reference Chen W-P, Samuraki M, Yanase D et al (2008) Effect of sample size for normal database on diagnostic performance of brain FDG PET for the detection of Alzheimer’s disease using automated image analysis. Nucl Med Commun 29:270–276CrossRef Chen W-P, Samuraki M, Yanase D et al (2008) Effect of sample size for normal database on diagnostic performance of brain FDG PET for the detection of Alzheimer’s disease using automated image analysis. Nucl Med Commun 29:270–276CrossRef
16.
go back to reference Buchert R (2008) On the effect of sample size of the normal database on statistical power of single subject analysis. Nucl Med Commun 29:837CrossRef Buchert R (2008) On the effect of sample size of the normal database on statistical power of single subject analysis. Nucl Med Commun 29:837CrossRef
17.
go back to reference Huppertz H-J, Kroll-Seger J, Kloppel S, Ganz RE, Kassubek J (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49:2216–2224CrossRef Huppertz H-J, Kroll-Seger J, Kloppel S, Ganz RE, Kassubek J (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49:2216–2224CrossRef
18.
go back to reference Opfer R, Suppa P, Kepp T, Spies L, Schippling S, Huppertz H-J (2016) Atlas based brain volumetry: how to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology. Magn Reson Imaging 34:455–461CrossRef Opfer R, Suppa P, Kepp T, Spies L, Schippling S, Huppertz H-J (2016) Atlas based brain volumetry: how to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology. Magn Reson Imaging 34:455–461CrossRef
19.
go back to reference Malone IB, Leung KK, Clegg S et al (2015) Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 104:366–372CrossRef Malone IB, Leung KK, Clegg S et al (2015) Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 104:366–372CrossRef
20.
go back to reference Ashburner J, Friston KJ (2000) Voxel-based morphometry - the methods. Neuroimage 11:805–821CrossRef Ashburner J, Friston KJ (2000) Voxel-based morphometry - the methods. Neuroimage 11:805–821CrossRef
21.
go back to reference Muhlau M, Wohlschlager AM, Gaser C et al (2009) Voxel-based morphometry in individual patients: a pilot study in early Huntington disease. AJNR Am J Neuroradiol 30:539–543CrossRef Muhlau M, Wohlschlager AM, Gaser C et al (2009) Voxel-based morphometry in individual patients: a pilot study in early Huntington disease. AJNR Am J Neuroradiol 30:539–543CrossRef
22.
go back to reference Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113CrossRef Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113CrossRef
23.
go back to reference Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33:636–647CrossRef Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33:636–647CrossRef
24.
go back to reference Risacher S, Saykin A (2013) Neuroimaging biomarkers of neurodegenerative diseases and dementia. Semin Neurol 33:386–416CrossRef Risacher S, Saykin A (2013) Neuroimaging biomarkers of neurodegenerative diseases and dementia. Semin Neurol 33:386–416CrossRef
25.
go back to reference Whitwell JL, Jack CR Jr, Przybelski SA et al (2011) Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis. Neurobiol Aging 32:1531–1541 Whitwell JL, Jack CR Jr, Przybelski SA et al (2011) Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis. Neurobiol Aging 32:1531–1541
26.
go back to reference Lehmann M, Crutch SJ, Ridgway GR et al (2011) Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer’s disease. Neurobiol Aging 32:1466–1476CrossRef Lehmann M, Crutch SJ, Ridgway GR et al (2011) Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer’s disease. Neurobiol Aging 32:1466–1476CrossRef
27.
go back to reference Rohrer JD (2012) Structural brain imaging in frontotemporal dementia. Biochim Biophys Acta 1822:325–332CrossRef Rohrer JD (2012) Structural brain imaging in frontotemporal dementia. Biochim Biophys Acta 1822:325–332CrossRef
28.
go back to reference Rohrer JD, Warren JD, Modat M et al (2009) Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 72:1562–1569CrossRef Rohrer JD, Warren JD, Modat M et al (2009) Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 72:1562–1569CrossRef
29.
go back to reference Lee G, Nho K, Kang B, Sohn KA, Kim D; for Alzheimer's Disease Neuroimaging Initiative (2019) Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci Rep 9:1952 Lee G, Nho K, Kang B, Sohn KA, Kim D; for Alzheimer's Disease Neuroimaging Initiative (2019) Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Sci Rep 9:1952
30.
go back to reference Basaia S, Agosta F, Wagner L et al (2019) Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin 21:101645CrossRef Basaia S, Agosta F, Wagner L et al (2019) Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin 21:101645CrossRef
31.
go back to reference Diehl-Schmid J, Onur OA, Kuhn J, Gruppe T, Drzezga A (2014) Imaging frontotemporal lobar degeneration. Curr Neurol Neurosci Rep 14:1–11CrossRef Diehl-Schmid J, Onur OA, Kuhn J, Gruppe T, Drzezga A (2014) Imaging frontotemporal lobar degeneration. Curr Neurol Neurosci Rep 14:1–11CrossRef
32.
go back to reference King RD, Brown B, Hwang M, Jeon T, George AT (2010) Fractal dimension analysis of the cortical ribbon in mild Alzheimer’s disease. Neuroimage 53:471–479CrossRef King RD, Brown B, Hwang M, Jeon T, George AT (2010) Fractal dimension analysis of the cortical ribbon in mild Alzheimer’s disease. Neuroimage 53:471–479CrossRef
33.
go back to reference Cho Y, Seong J-K, Jeong Y, Shin SY (2012) Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59:2217–2230CrossRef Cho Y, Seong J-K, Jeong Y, Shin SY (2012) Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59:2217–2230CrossRef
34.
go back to reference Klöppel S, Yang S, Kellner E et al (2018) Voxel-wise deviations from healthy aging for the detection of region-specific atrophy. NeuroImage Clin 20:851–860CrossRef Klöppel S, Yang S, Kellner E et al (2018) Voxel-wise deviations from healthy aging for the detection of region-specific atrophy. NeuroImage Clin 20:851–860CrossRef
35.
go back to reference Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972CrossRef Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972CrossRef
36.
go back to reference Ferreira D, Cavallin L, Larsson EM et al (2015) Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med 278:277–290CrossRef Ferreira D, Cavallin L, Larsson EM et al (2015) Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med 278:277–290CrossRef
Metadata
Title
Normative brain volume reports may improve differential diagnosis of dementing neurodegenerative diseases in clinical practice
Authors
Dennis M. Hedderich
Michael Dieckmeyer
Tiberiu Andrisan
Marion Ortner
Lioba Grundl
Simon Schön
Per Suppa
Tom Finck
Kornelia Kreiser
Claus Zimmer
Igor Yakushev
Timo Grimmer
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2020
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06602-0

Other articles of this Issue 5/2020

European Radiology 5/2020 Go to the issue