Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2024

10-11-2023 | REVIEW

From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies

Authors: Shashi Anand, Kunwar Somesh Vikramdeo, Sarabjeet Kour Sudan, Amod Sharma, Srijan Acharya, Mohammad Aslam Khan, Seema Singh, Ajay Pratap Singh

Published in: Cancer and Metastasis Reviews | Issue 1/2024

Login to get access

Abstract

MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.
Literature
13.
go back to reference Ogata, K., Kanei-Ishii, C., Sasaki, M., Hatanaka, H., Nagadoi, A., Enari, M., et al. (1996). The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Natural Structural Biology, 3, 178–187. https://doi.org/10.1038/nsb0296-178CrossRef Ogata, K., Kanei-Ishii, C., Sasaki, M., Hatanaka, H., Nagadoi, A., Enari, M., et al. (1996). The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Natural Structural Biology, 3, 178–187. https://​doi.​org/​10.​1038/​nsb0296-178CrossRef
14.
go back to reference Ogata, K., Hojo, H., Aimoto, S., Nakai, T., Nakamura, H., Sarai, A., et al. (1992). Solution structure of a DNA-binding unit of Myb: A helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proceedings of the National Academy of Sciences U S A, 89, 6428–6432. https://doi.org/10.1073/pnas.89.14.6428CrossRef Ogata, K., Hojo, H., Aimoto, S., Nakai, T., Nakamura, H., Sarai, A., et al. (1992). Solution structure of a DNA-binding unit of Myb: A helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proceedings of the National Academy of Sciences U S A, 89, 6428–6432. https://​doi.​org/​10.​1073/​pnas.​89.​14.​6428CrossRef
20.
go back to reference Sleeman, J. P. (1993). Xenopus A-myb is expressed during early spermatogenesis. Oncogene, 8, 1931–1941.PubMed Sleeman, J. P. (1993). Xenopus A-myb is expressed during early spermatogenesis. Oncogene, 8, 1931–1941.PubMed
26.
go back to reference Ramsay, R. G., Morrice, N., Van Eeden, P., Kanagasundaram, V., Nomura, T., De Blaquiere, J., et al. (1995). Regulation of c-Myb through protein phosphorylation and leucine zipper interactions. Oncogene, 11, 2113–2120.PubMed Ramsay, R. G., Morrice, N., Van Eeden, P., Kanagasundaram, V., Nomura, T., De Blaquiere, J., et al. (1995). Regulation of c-Myb through protein phosphorylation and leucine zipper interactions. Oncogene, 11, 2113–2120.PubMed
29.
go back to reference Wallrapp, C., Muller-Pillasch, F., Solinas-Toldo, S., Lichter, P., Friess, H., Buchler, M., et al. (1997). Characterization of a high copy number amplification at 6q24 in pancreatic cancer identifies c-myb as a candidate oncogene. Cancer Research, 57, 3135–3139.PubMed Wallrapp, C., Muller-Pillasch, F., Solinas-Toldo, S., Lichter, P., Friess, H., Buchler, M., et al. (1997). Characterization of a high copy number amplification at 6q24 in pancreatic cancer identifies c-myb as a candidate oncogene. Cancer Research, 57, 3135–3139.PubMed
30.
go back to reference Kauraniemi, P., Hedenfalk, I., Persson, K., Duggan, D. J., Tanner, M., Johannsson, O., et al. (2000). MYB oncogene amplification in hereditary BRCA1 breast cancer. Cancer Research, 60, 5323–5328.PubMed Kauraniemi, P., Hedenfalk, I., Persson, K., Duggan, D. J., Tanner, M., Johannsson, O., et al. (2000). MYB oncogene amplification in hereditary BRCA1 breast cancer. Cancer Research, 60, 5323–5328.PubMed
33.
go back to reference Edwards, J., Krishna, N. S., Witton, C. J., & Bartlett, J. M. (2003). Gene amplifications associated with the development of hormone-resistant prostate cancer. Clinical Cancer Research, 9, 5271–5281.PubMed Edwards, J., Krishna, N. S., Witton, C. J., & Bartlett, J. M. (2003). Gene amplifications associated with the development of hormone-resistant prostate cancer. Clinical Cancer Research, 9, 5271–5281.PubMed
34.
go back to reference Dong, G., Mao, Q., Yu, D., Zhang, Y., Qiu, M., Dong, G., et al. (2017). Integrative analysis of copy number and transcriptional expression profiles in esophageal cancer to identify a novel driver gene for therapy. Sciences Reports, 7, 42060. https://doi.org/10.1038/srep42060CrossRef Dong, G., Mao, Q., Yu, D., Zhang, Y., Qiu, M., Dong, G., et al. (2017). Integrative analysis of copy number and transcriptional expression profiles in esophageal cancer to identify a novel driver gene for therapy. Sciences Reports, 7, 42060. https://​doi.​org/​10.​1038/​srep42060CrossRef
35.
go back to reference Ramkissoon, L. A., Horowitz, P. M., Craig, J. M., Ramkissoon, S. H., Rich, B. E., Schumacher, S. E., et al. (2013). Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proceedings National Academy Sciences U S A, 110, 8188–8193. https://doi.org/10.1073/pnas.130025211CrossRef Ramkissoon, L. A., Horowitz, P. M., Craig, J. M., Ramkissoon, S. H., Rich, B. E., Schumacher, S. E., et al. (2013). Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proceedings National Academy Sciences U S A, 110, 8188–8193. https://​doi.​org/​10.​1073/​pnas.​130025211CrossRef
38.
go back to reference Tanner, M. M., Grenman, S., Koul, A., Johannsson, O., Meltzer, P., Pejovic, T., et al. (2000). Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clinical Cancer Research, 6, 1833–1839.PubMed Tanner, M. M., Grenman, S., Koul, A., Johannsson, O., Meltzer, P., Pejovic, T., et al. (2000). Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clinical Cancer Research, 6, 1833–1839.PubMed
42.
51.
go back to reference Introna, M., Luchetti, M., Castellano, M., Arsura, M., & Golay, J. (1994). The myb oncogene family of transcription factors: Potent regulators of hematopoietic cell proliferation and differentiation. Seminars in Cancer Biology, 5, 113–124.PubMed Introna, M., Luchetti, M., Castellano, M., Arsura, M., & Golay, J. (1994). The myb oncogene family of transcription factors: Potent regulators of hematopoietic cell proliferation and differentiation. Seminars in Cancer Biology, 5, 113–124.PubMed
57.
62.
go back to reference Wei, M., Yang, R., Ye, M., Zhan, Y., Liu, B., Meng, L., et al. (2022). MYBL2 accelerates epithelial-mesenchymal transition and hepatoblastoma metastasis via the Smad/SNAI1 pathway. American Journal of Cancer Research, 12, 1960–1981.PubMedPubMedCentral Wei, M., Yang, R., Ye, M., Zhan, Y., Liu, B., Meng, L., et al. (2022). MYBL2 accelerates epithelial-mesenchymal transition and hepatoblastoma metastasis via the Smad/SNAI1 pathway. American Journal of Cancer Research, 12, 1960–1981.PubMedPubMedCentral
68.
go back to reference Drabsch, Y., Hugo, H., Zhang, R., Dowhan, D. H., Miao, Y. R., Gewirtz, A. M., et al. (2007). Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proceedings of the National Academy Sciences U S A, 104, 13762–13767. https://doi.org/10.1073/pnas.0700104104CrossRef Drabsch, Y., Hugo, H., Zhang, R., Dowhan, D. H., Miao, Y. R., Gewirtz, A. M., et al. (2007). Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proceedings of the National Academy Sciences U S A, 104, 13762–13767. https://​doi.​org/​10.​1073/​pnas.​0700104104CrossRef
101.
go back to reference Grassilli, E., Salomoni, P., Perrotti, D., Franceschi, C., & Calabretta, B. (1999). Resistance to apoptosis in CTLL-2 cells overexpressing B-Myb is associated with B-Myb-dependent bcl-2 induction. Cancer Research, 59, 2451–2456.PubMed Grassilli, E., Salomoni, P., Perrotti, D., Franceschi, C., & Calabretta, B. (1999). Resistance to apoptosis in CTLL-2 cells overexpressing B-Myb is associated with B-Myb-dependent bcl-2 induction. Cancer Research, 59, 2451–2456.PubMed
106.
go back to reference Qi, G., Zhang, C., Ma, H., Li, Y., Peng, J., Chen, J., et al. (2021). CDCA8, targeted by MYBL2, promotes malignant progression and olaparib insensitivity in ovarian cancer. American Journal of Cancer Research, 11, 389–415.PubMedPubMedCentral Qi, G., Zhang, C., Ma, H., Li, Y., Peng, J., Chen, J., et al. (2021). CDCA8, targeted by MYBL2, promotes malignant progression and olaparib insensitivity in ovarian cancer. American Journal of Cancer Research, 11, 389–415.PubMedPubMedCentral
116.
go back to reference Chen, I. X., Chauhan, V. P., Posada, J., Ng, M. R., Wu, M. W., Adstamongkonkul, P., et al. (2019). Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proceeding of the National Academy Sciences U S A, 116, 4558–4566. https://doi.org/10.1073/pnas.1815515116CrossRef Chen, I. X., Chauhan, V. P., Posada, J., Ng, M. R., Wu, M. W., Adstamongkonkul, P., et al. (2019). Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proceeding of the National Academy Sciences U S A, 116, 4558–4566. https://​doi.​org/​10.​1073/​pnas.​1815515116CrossRef
117.
go back to reference Biasci, D., Smoragiewicz, M., Connell, C. M., Wang, Z., Gao, Y., Thaventhiran, J. E. D., et al. (2020). CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proceedings of the National Academy Sciences U S A, 117, 28960–28970. https://doi.org/10.1073/pnas.2013644117CrossRef Biasci, D., Smoragiewicz, M., Connell, C. M., Wang, Z., Gao, Y., Thaventhiran, J. E. D., et al. (2020). CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proceedings of the National Academy Sciences U S A, 117, 28960–28970. https://​doi.​org/​10.​1073/​pnas.​2013644117CrossRef
Metadata
Title
From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies
Authors
Shashi Anand
Kunwar Somesh Vikramdeo
Sarabjeet Kour Sudan
Amod Sharma
Srijan Acharya
Mohammad Aslam Khan
Seema Singh
Ajay Pratap Singh
Publication date
10-11-2023
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2024
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10153-8

Other articles of this Issue 1/2024

Cancer and Metastasis Reviews 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine