Skip to main content
Top
Published in: Immunity & Ageing 1/2024

Open Access 01-12-2024 | Fracture Healing | Review

Monocyte alteration in elderly hip fracture healing: monocyte promising role in bone regeneration

Authors: Clement Shema, Yining Lu, Ling Wang, Yingze Zhang

Published in: Immunity & Ageing | Issue 1/2024

Login to get access

Abstract

Individual aged with various change in cell and cellular microenvironments and the skeletal system undergoes physiological changes that affect the process of bone fracture healing. These changes are accompanied by alterations in regulating critical genes involved in this healing process. Unfortunately, the elderly are particularly susceptible to hip bone fractures, which pose a significant burden associated with higher morbidity and mortality rates. A notable change in older adults is the increased expression of activation, adhesion, and migration markers in circulating monocytes. However, there is a decrease in the expression of co-inhibitory molecules. Recently, research evidence has shown that the migration of specific monocyte subsets to the site of hip fracture plays a crucial role in bone resorption and remodeling, especially concerning age-related factors. In this review, we summarize the current knowledge about uniqueness characteristics of monocytes, and their potential regulation and moderation to enhance the healing process of hip fractures. This breakthrough could significantly contribute to the comprehension of aging process at a fundamental aging mechanism through this initiative would represent a crucial stride for diagnosing and treating age related hip fracture.
Literature
1.
go back to reference Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on Inflamm-Aging: mechanisms, Prevention, and treatment. J Immunol Res. 2016;2016:8426874.PubMedPubMedCentralCrossRef Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on Inflamm-Aging: mechanisms, Prevention, and treatment. J Immunol Res. 2016;2016:8426874.PubMedPubMedCentralCrossRef
2.
go back to reference Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30(7):325–33.PubMedPubMedCentralCrossRef Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30(7):325–33.PubMedPubMedCentralCrossRef
3.
go back to reference Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures. Osteoporos International: J Established as Result Cooperation between Eur Foundation Osteoporos Natl Osteoporos Foundation USA. 2000;11(7):556–61.CrossRef Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures. Osteoporos International: J Established as Result Cooperation between Eur Foundation Osteoporos Natl Osteoporos Foundation USA. 2000;11(7):556–61.CrossRef
4.
go back to reference Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14(2):64–72.PubMed Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14(2):64–72.PubMed
5.
go back to reference Duggal NA, Beswetherick A, Upton J, Hampson P, Phillips AC, Lord JM. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol. 2014;54:27–34.PubMedCrossRef Duggal NA, Beswetherick A, Upton J, Hampson P, Phillips AC, Lord JM. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol. 2014;54:27–34.PubMedCrossRef
6.
go back to reference Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105–11.PubMedCrossRef Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A. Cellular signaling in the aging immune system. Curr Opin Immunol. 2014;29:105–11.PubMedCrossRef
7.
go back to reference Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24(5):331–41.PubMedCrossRef Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24(5):331–41.PubMedCrossRef
8.
go back to reference Baëhl S, Garneau H, Le Page A, Lorrain D, Viens I, Svotelis A, et al. Altered neutrophil functions in elderly patients during a 6-month follow-up period after a hip fracture. Exp Gerontol. 2015;65:58–68.PubMedCrossRef Baëhl S, Garneau H, Le Page A, Lorrain D, Viens I, Svotelis A, et al. Altered neutrophil functions in elderly patients during a 6-month follow-up period after a hip fracture. Exp Gerontol. 2015;65:58–68.PubMedCrossRef
9.
go back to reference Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. Funct Differ Front Immunol. 2014;5:514. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. Funct Differ Front Immunol. 2014;5:514.
10.
go back to reference Vallet H, Chenevier-Gobeaux C, Villain C, Cohen-Bittan J, Ray P, Epelboin L, et al. Prognostic value of serum procalcitonin after orthopedic surgery in the Elderly Population. The Journals of Gerontology Series A Biological Sciences and Medical Sciences. 2017;72(3):438–43.PubMed Vallet H, Chenevier-Gobeaux C, Villain C, Cohen-Bittan J, Ray P, Epelboin L, et al. Prognostic value of serum procalcitonin after orthopedic surgery in the Elderly Population. The Journals of Gerontology Series A Biological Sciences and Medical Sciences. 2017;72(3):438–43.PubMed
12.
go back to reference Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–31.PubMedCrossRef Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–31.PubMedCrossRef
13.
go back to reference Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identif Hum Skeletal Stem Cell Cell. 2018;175(1):43–56e21. Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identif Hum Skeletal Stem Cell Cell. 2018;175(1):43–56e21.
14.
go back to reference Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–23.PubMedPubMedCentralCrossRef Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–23.PubMedPubMedCentralCrossRef
15.
go back to reference Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM et al. Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. Journal of immunology (Baltimore, Md: 1950). 2017;199(4):1405-17. Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM et al. Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. Journal of immunology (Baltimore, Md: 1950). 2017;199(4):1405-17.
16.
go back to reference Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Sci (New York NY). 2016;352(6284):463–6.ADSCrossRef Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Sci (New York NY). 2016;352(6284):463–6.ADSCrossRef
17.
go back to reference Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 2019;106(2):309–22.PubMedCrossRef Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 2019;106(2):309–22.PubMedCrossRef
18.
go back to reference Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53(1–3):41–57.PubMedCrossRef Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53(1–3):41–57.PubMedCrossRef
19.
go back to reference Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS et al. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arteriosclerosis, thrombosis, and vascular biology. 2019;39(1):25–36. Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS et al. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arteriosclerosis, thrombosis, and vascular biology. 2019;39(1):25–36.
20.
go back to reference Cignarella A, Tedesco S, Cappellari R, Fadini GP. The continuum of monocyte phenotypes: experimental evidence and prognostic utility in assessing cardiovascular risk. J Leukoc Biol. 2018. Cignarella A, Tedesco S, Cappellari R, Fadini GP. The continuum of monocyte phenotypes: experimental evidence and prognostic utility in assessing cardiovascular risk. J Leukoc Biol. 2018.
21.
22.
go back to reference Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Investig. 2007;117(1):185–94.PubMedPubMedCentralCrossRef Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Investig. 2007;117(1):185–94.PubMedPubMedCentralCrossRef
23.
go back to reference Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-classical monocytes display inflammatory features: validation in Sepsis and systemic Lupus Erythematous. Sci Rep. 2015;5:13886.ADSPubMedPubMedCentralCrossRef Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-classical monocytes display inflammatory features: validation in Sepsis and systemic Lupus Erythematous. Sci Rep. 2015;5:13886.ADSPubMedPubMedCentralCrossRef
24.
go back to reference Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity. 2011;34(4):590–601.PubMedPubMedCentralCrossRef Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity. 2011;34(4):590–601.PubMedPubMedCentralCrossRef
25.
go back to reference Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guérin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.PubMedPubMedCentralCrossRef Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guérin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.PubMedPubMedCentralCrossRef
26.
go back to reference Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity. 2012;37(2):290–301.PubMedPubMedCentralCrossRef Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity. 2012;37(2):290–301.PubMedPubMedCentralCrossRef
27.
go back to reference Zabel BA, Rott A, Butcher EC. Leukocyte chemoattractant receptors in human disease pathogenesis. Annu Rev Pathol. 2015;10:51–81.PubMedCrossRef Zabel BA, Rott A, Butcher EC. Leukocyte chemoattractant receptors in human disease pathogenesis. Annu Rev Pathol. 2015;10:51–81.PubMedCrossRef
29.
go back to reference Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.PubMedPubMedCentralCrossRef Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.PubMedPubMedCentralCrossRef
30.
go back to reference Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE. 2010;5(10):e13693.ADSPubMedPubMedCentralCrossRef Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS ONE. 2010;5(10):e13693.ADSPubMedPubMedCentralCrossRef
31.
go back to reference Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, Friedlander G, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity. 2012;37(6):1076–90.PubMedCrossRef Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, Friedlander G, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity. 2012;37(6):1076–90.PubMedCrossRef
32.
go back to reference Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med. 2012;209(1):139–55.PubMedPubMedCentralCrossRef Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med. 2012;209(1):139–55.PubMedPubMedCentralCrossRef
33.
go back to reference Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Volume 332. New York, NY: Science; 2011. pp. 1284–8. 6035. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Volume 332. New York, NY: Science; 2011. pp. 1284–8. 6035.
34.
go back to reference Egawa M, Mukai K, Yoshikawa S, Iki M, Mukaida N, Kawano Y, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity. 2013;38(3):570–80.PubMedCrossRef Egawa M, Mukai K, Yoshikawa S, Iki M, Mukaida N, Kawano Y, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity. 2013;38(3):570–80.PubMedCrossRef
35.
go back to reference Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349–62.PubMedCrossRef Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349–62.PubMedCrossRef
36.
go back to reference Xu CP, Sun HT, Yang YJ, Cui Z, Wang J, Yu B, et al. ELP2 negatively regulates osteoblastic differentiation impaired by tumor necrosis factor α in MC3T3-E1 cells through STAT3 activation. J Cell Physiol. 2019;234(10):18075–85.PubMedPubMedCentralCrossRef Xu CP, Sun HT, Yang YJ, Cui Z, Wang J, Yu B, et al. ELP2 negatively regulates osteoblastic differentiation impaired by tumor necrosis factor α in MC3T3-E1 cells through STAT3 activation. J Cell Physiol. 2019;234(10):18075–85.PubMedPubMedCentralCrossRef
37.
go back to reference Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev. 2021;70:101410.PubMedCrossRef Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev. 2021;70:101410.PubMedCrossRef
38.
go back to reference Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev. 2020;57:100998.PubMedCrossRef Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev. 2020;57:100998.PubMedCrossRef
39.
go back to reference Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev. 2021;71:101422.PubMedCrossRef Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev. 2021;71:101422.PubMedCrossRef
40.
go back to reference Damasceno D, Teodosio C, van den Bossche WBL, Perez-Andres M, Arriba-Méndez S, Muñoz-Bellvis L, et al. Distribution of subsets of blood monocytic cells throughout life. J Allergy Clin Immunol. 2019;144(1):320–3e6.PubMedCrossRef Damasceno D, Teodosio C, van den Bossche WBL, Perez-Andres M, Arriba-Méndez S, Muñoz-Bellvis L, et al. Distribution of subsets of blood monocytic cells throughout life. J Allergy Clin Immunol. 2019;144(1):320–3e6.PubMedCrossRef
41.
go back to reference Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.PubMedCrossRef Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.PubMedCrossRef
42.
go back to reference Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C et al. Phenotypic and functional alterations of monocyte subsets with aging. Immunity & ageing: I & A. 2022;19(1):63. Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C et al. Phenotypic and functional alterations of monocyte subsets with aging. Immunity & ageing: I & A. 2022;19(1):63.
43.
go back to reference Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30(6):806–13.PubMedPubMedCentralCrossRef Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol. 2010;30(6):806–13.PubMedPubMedCentralCrossRef
44.
go back to reference Lewis ED, Wu D, Meydani SN. Age-associated alterations in immune function and inflammation. Prog Neuro-psychopharmacol Biol Psychiatry. 2022;118:110576.CrossRef Lewis ED, Wu D, Meydani SN. Age-associated alterations in immune function and inflammation. Prog Neuro-psychopharmacol Biol Psychiatry. 2022;118:110576.CrossRef
45.
go back to reference De Martinis M, Modesti M, Loreto MF, Quaglino D, Ginaldi L. Adhesion molecules on peripheral blood lymphocyte subpopulations in the elderly. Life Sci. 2000;68(2):139–51.PubMedCrossRef De Martinis M, Modesti M, Loreto MF, Quaglino D, Ginaldi L. Adhesion molecules on peripheral blood lymphocyte subpopulations in the elderly. Life Sci. 2000;68(2):139–51.PubMedCrossRef
46.
go back to reference Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.PubMedPubMedCentralCrossRef Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1.PubMedPubMedCentralCrossRef
47.
go back to reference Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, et al. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun. 2022;13(1):7947.ADSPubMedPubMedCentralCrossRef Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, et al. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun. 2022;13(1):7947.ADSPubMedPubMedCentralCrossRef
48.
go back to reference Vallania F, Zisman L, Macaubas C, Hung SC, Rajasekaran N, Mason S, et al. Multicohort Analysis identifies Monocyte Gene signatures to accurately monitor subset-specific changes in Human diseases. Front Immunol. 2021;12:659255.PubMedPubMedCentralCrossRef Vallania F, Zisman L, Macaubas C, Hung SC, Rajasekaran N, Mason S, et al. Multicohort Analysis identifies Monocyte Gene signatures to accurately monitor subset-specific changes in Human diseases. Front Immunol. 2021;12:659255.PubMedPubMedCentralCrossRef
49.
go back to reference Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.PubMedCrossRef Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.PubMedCrossRef
50.
go back to reference Löffler J, Sass FA, Filter S, Rose A, Ellinghaus A, Duda GN, et al. Compromised bone healing in aged rats is Associated with impaired M2 macrophage function. Front Immunol. 2019;10:2443.PubMedPubMedCentralCrossRef Löffler J, Sass FA, Filter S, Rose A, Ellinghaus A, Duda GN, et al. Compromised bone healing in aged rats is Associated with impaired M2 macrophage function. Front Immunol. 2019;10:2443.PubMedPubMedCentralCrossRef
51.
go back to reference Bordoni V, Reina G, Orecchioni M, Furesi G, Thiele S, Gardin C, et al. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale. 2019;11(41):19408–21.PubMedCrossRef Bordoni V, Reina G, Orecchioni M, Furesi G, Thiele S, Gardin C, et al. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale. 2019;11(41):19408–21.PubMedCrossRef
52.
go back to reference Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2015;30(6):1090–102.CrossRef Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2015;30(6):1090–102.CrossRef
53.
go back to reference Vuoti E, Lehenkari P, Tuukkanen J, Glumoff V, Kylmäoja E. Osteoclastogenesis of human peripheral blood, bone marrow, and cord blood monocytes. Sci Rep. 2023;13(1):3763.ADSPubMedPubMedCentralCrossRef Vuoti E, Lehenkari P, Tuukkanen J, Glumoff V, Kylmäoja E. Osteoclastogenesis of human peripheral blood, bone marrow, and cord blood monocytes. Sci Rep. 2023;13(1):3763.ADSPubMedPubMedCentralCrossRef
54.
go back to reference Donati S, Ciuffi S, Palmini G, Brandi ML. Circulating miRNAs: a New Opportunity in Bone Fragility. Biomolecules. 2020;10(6). Donati S, Ciuffi S, Palmini G, Brandi ML. Circulating miRNAs: a New Opportunity in Bone Fragility. Biomolecules. 2020;10(6).
55.
go back to reference Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front Immunol. 2019;10:1408.PubMedPubMedCentralCrossRef Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front Immunol. 2019;10:1408.PubMedPubMedCentralCrossRef
56.
go back to reference Harvey N, Dennison E, Cooper C. Osteoporosis: impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99–105.PubMedCrossRef Harvey N, Dennison E, Cooper C. Osteoporosis: impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99–105.PubMedCrossRef
58.
go back to reference Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.PubMedPubMedCentralCrossRef Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.PubMedPubMedCentralCrossRef
61.
go back to reference Bonewald LF. The amazing osteocyte. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2011;26(2):229–38.CrossRef Bonewald LF. The amazing osteocyte. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2011;26(2):229–38.CrossRef
62.
go back to reference Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2006;17(12):1726–33. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2006;17(12):1726–33.
63.
go back to reference Marie PJ. Bone cell senescence: mechanisms and perspectives. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2014;29(6):1311–21.CrossRef Marie PJ. Bone cell senescence: mechanisms and perspectives. J bone Mineral Research: Official J Am Soc Bone Mineral Res. 2014;29(6):1311–21.CrossRef
64.
go back to reference Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune System Dysfunction in the Elderly. Anais Da Academia Brasileira De Ciencias. 2017;89(1):285–99.PubMedCrossRef Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune System Dysfunction in the Elderly. Anais Da Academia Brasileira De Ciencias. 2017;89(1):285–99.PubMedCrossRef
65.
go back to reference Min D, Nube V, Tao A, Yuan X, Williams PF, Brooks BA, et al. Monocyte phenotype as a predictive marker for wound healing in diabetes-related foot ulcers. J Diabetes Complicat. 2021;35(5):107889.CrossRef Min D, Nube V, Tao A, Yuan X, Williams PF, Brooks BA, et al. Monocyte phenotype as a predictive marker for wound healing in diabetes-related foot ulcers. J Diabetes Complicat. 2021;35(5):107889.CrossRef
66.
go back to reference Wang Z, Zhou Q, Liu H, Zhang J, Zhu Z, Wu J, et al. Association between Monocyte Count and Preoperative Deep venous thrombosis in older patients with hip fracture: a retrospective study. Clin Appl thrombosis/hemostasis: Official J Int Acad Clin Appl Thrombosis/Hemostasis. 2022;28:10760296221100806. Wang Z, Zhou Q, Liu H, Zhang J, Zhu Z, Wu J, et al. Association between Monocyte Count and Preoperative Deep venous thrombosis in older patients with hip fracture: a retrospective study. Clin Appl thrombosis/hemostasis: Official J Int Acad Clin Appl Thrombosis/Hemostasis. 2022;28:10760296221100806.
67.
go back to reference Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.PubMedPubMedCentralCrossRef Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30.PubMedPubMedCentralCrossRef
68.
go back to reference Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–42.PubMedCrossRef Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–42.PubMedCrossRef
69.
go back to reference Brassolatti P, Castro CA, Santos HLD, Simões IT, Almeida-Lopes L, Silva JVD, et al. Systemic and local inflammatory response after implantation of biomaterial in critical bone injuries. Acta Cirurgica Brasileira. 2023;38:e383823.PubMedPubMedCentralCrossRef Brassolatti P, Castro CA, Santos HLD, Simões IT, Almeida-Lopes L, Silva JVD, et al. Systemic and local inflammatory response after implantation of biomaterial in critical bone injuries. Acta Cirurgica Brasileira. 2023;38:e383823.PubMedPubMedCentralCrossRef
70.
go back to reference Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep. 2017;6:87–100.PubMedPubMedCentralCrossRef Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep. 2017;6:87–100.PubMedPubMedCentralCrossRef
71.
go back to reference Meinel L, Hofmann S, Betz O, Fajardo R, Merkle HP, Langer R, et al. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials. 2006;27(28):4993–5002.PubMedCrossRef Meinel L, Hofmann S, Betz O, Fajardo R, Merkle HP, Langer R, et al. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials. 2006;27(28):4993–5002.PubMedCrossRef
72.
go back to reference Wang Q, Jin Y, Deng X, Liu H, Pang H, Shi P, et al. Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials. 2015;53:659–68.PubMedCrossRef Wang Q, Jin Y, Deng X, Liu H, Pang H, Shi P, et al. Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials. 2015;53:659–68.PubMedCrossRef
73.
go back to reference Tevlin R, Seo EY, Marecic O, McArdle A, Tong X, Zimdahl B et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med. 2017;9(372). Tevlin R, Seo EY, Marecic O, McArdle A, Tong X, Zimdahl B et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med. 2017;9(372).
74.
go back to reference Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.PubMedCrossRef Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.PubMedCrossRef
75.
go back to reference Fuchs AK, Syrovets T, Haas KA, Loos C, Musyanovych A, Mailänder V, et al. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials. 2016;85:78–87.PubMedCrossRef Fuchs AK, Syrovets T, Haas KA, Loos C, Musyanovych A, Mailänder V, et al. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials. 2016;85:78–87.PubMedCrossRef
76.
go back to reference Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi SM, Mokhtarzadeh A et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Materials science & engineering C, Materials for biological applications. 2020;107:110267. Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi SM, Mokhtarzadeh A et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Materials science & engineering C, Materials for biological applications. 2020;107:110267.
77.
go back to reference Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation Effect of Biomaterials on bone formation. J Funct Biomaterials. 2022;13(3). Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation Effect of Biomaterials on bone formation. J Funct Biomaterials. 2022;13(3).
78.
go back to reference Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13(11):1118–28.PubMedPubMedCentralCrossRef Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13(11):1118–28.PubMedPubMedCentralCrossRef
79.
go back to reference Gordon S. Targeting a monocyte subset to reduce inflammation. Circul Res. 2012;110(12):1546–8.CrossRef Gordon S. Targeting a monocyte subset to reduce inflammation. Circul Res. 2012;110(12):1546–8.CrossRef
80.
go back to reference Li X, Qu S, Ouyang Q, Qin F, Guo J, Qin M et al. A multifunctional composite nanoparticle with antibacterial activities, anti-inflammatory, and angiogenesis for diabetic wound healing. Int J Biol Macromol. 2024:129531. Li X, Qu S, Ouyang Q, Qin F, Guo J, Qin M et al. A multifunctional composite nanoparticle with antibacterial activities, anti-inflammatory, and angiogenesis for diabetic wound healing. Int J Biol Macromol. 2024:129531.
81.
go back to reference Liu X, Liu Y, Zhou J, Yu X, Wan J, Wang J, et al. Porous collagen sponge loaded with large efficacy-potentiated exosome-mimicking nanovesicles for Diabetic skin Wound Healing. ACS biomaterials science & engineering; 2024. Liu X, Liu Y, Zhou J, Yu X, Wan J, Wang J, et al. Porous collagen sponge loaded with large efficacy-potentiated exosome-mimicking nanovesicles for Diabetic skin Wound Healing. ACS biomaterials science & engineering; 2024.
82.
go back to reference Ma L, Li M, Komasa S, Hontsu S, Hashimoto Y, Okazaki J et al. Effect of Er:YAG Pulsed laser-deposited Hydroxyapatite Film on Titanium implants on M2 macrophage polarization in Vitro and Osteogenesis in vivo. Int J Mol Sci. 2023;25(1). Ma L, Li M, Komasa S, Hontsu S, Hashimoto Y, Okazaki J et al. Effect of Er:YAG Pulsed laser-deposited Hydroxyapatite Film on Titanium implants on M2 macrophage polarization in Vitro and Osteogenesis in vivo. Int J Mol Sci. 2023;25(1).
83.
go back to reference Li PL, Chen DF, Li XT, Hao RC, Zhao ZD, Li ZL, et al. Microgel-based carriers enhance skeletal stem cell reprogramming towards immunomodulatory phenotype in osteoarthritic therapy. Bioact Mater. 2024;34:204–20.PubMed Li PL, Chen DF, Li XT, Hao RC, Zhao ZD, Li ZL, et al. Microgel-based carriers enhance skeletal stem cell reprogramming towards immunomodulatory phenotype in osteoarthritic therapy. Bioact Mater. 2024;34:204–20.PubMed
84.
go back to reference Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792–802.PubMedPubMedCentralCrossRef Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792–802.PubMedPubMedCentralCrossRef
85.
go back to reference Hotchkiss KM, Sowers KT, Olivares-Navarrete R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Materials: Official Publication Acad Dent Mater. 2019;35(1):176–84.CrossRef Hotchkiss KM, Sowers KT, Olivares-Navarrete R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Materials: Official Publication Acad Dent Mater. 2019;35(1):176–84.CrossRef
86.
go back to reference Stepanova M, Averianov I, Gofman I, Shevchenko N, Rubinstein A, Egorova T et al. Drug loaded 3D-Printed poly(ε-Caprolactone) scaffolds for local antibacterial or anti-inflammatory treatment in bone regeneration. Polymers. 2023;15(19). Stepanova M, Averianov I, Gofman I, Shevchenko N, Rubinstein A, Egorova T et al. Drug loaded 3D-Printed poly(ε-Caprolactone) scaffolds for local antibacterial or anti-inflammatory treatment in bone regeneration. Polymers. 2023;15(19).
87.
go back to reference Xiong S, Zhang Y, Zeng J, Zhou J, Liu S, Wei P, et al. DLP fabrication of HA scaffold with customized porous structures to regulate immune microenvironment and macrophage polarization for enhancing bone regeneration. Mater Today Bio. 2024;24:100929.PubMedCrossRef Xiong S, Zhang Y, Zeng J, Zhou J, Liu S, Wei P, et al. DLP fabrication of HA scaffold with customized porous structures to regulate immune microenvironment and macrophage polarization for enhancing bone regeneration. Mater Today Bio. 2024;24:100929.PubMedCrossRef
Metadata
Title
Monocyte alteration in elderly hip fracture healing: monocyte promising role in bone regeneration
Authors
Clement Shema
Yining Lu
Ling Wang
Yingze Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2024
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-024-00413-8

Other articles of this Issue 1/2024

Immunity & Ageing 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine