Skip to main content
Top
Published in: Perioperative Medicine 1/2017

Open Access 01-12-2017 | Research

Fluid resuscitation practices in cardiac surgery patients in the USA: a survey of health care providers

Authors: Solomon Aronson, Paul Nisbet, Martin Bunke

Published in: Perioperative Medicine | Issue 1/2017

Login to get access

Abstract

Background

Fluid resuscitation during cardiac surgery is common with significant variability in clinical practice. Our goal was to investigate current practice patterns of fluid volume expansion in patients undergoing cardiac surgeries in the USA.

Methods

We conducted a cross-sectional online survey of 124 cardiothoracic surgeons, cardiovascular anesthesiologists, and perfusionists. Survey questions were designed to assess clinical decision-making patterns of intravenous (IV) fluid utilization in cardiovascular surgery for five types of patients who need volume expansion: (1) patients undergoing cardiopulmonary bypass (CPB) without bleeding, (2) patients undergoing CPB with bleeding, (3) patients undergoing acute normovolemic hemodilution (ANH), (4) patients requiring extracorporeal membrane oxygenation (ECMO) or use of a ventricular assist device (VAD), and (5) patients undergoing either off-pump coronary artery bypass graft (OPCABG) surgery or transcatheter aortic valve replacement (TAVR). First-choice fluid used in fluid boluses for these five patient types was requested. Descriptive statistics were performed using Kruskal-Wallis test and follow-up tests, including t tests, to evaluate differences among respondent groups.

Results

The most commonly preferred indicators of volume status were blood pressure, urine output, cardiac output, central venous pressure, and heart rate. The first choice of fluid for patients needing volume expansion during CPB without bleeding was crystalloids, whereas 5% albumin was the most preferred first choice of fluid for bleeding patients. For volume expansion during ECMO or VAD, the respondents were equally likely to prefer 5% albumin or crystalloids as a first choice of IV fluid, with 5% albumin being the most frequently used adjunct fluid to crystalloids. Surgeons, as a group, more often chose starches as an adjunct fluid to crystalloids for patients needing volume expansion during CPB without bleeding. Surgeons were also more likely to use 25% albumin as an adjunct fluid than were anesthesiologists. While most perfusionists reported using crystalloids to prime the CPB circuit, one third preferred a mixture of 25% albumin and crystalloids. Less interstitial edema and more sustained volume expansion were considered the most important colloid traits in volume expansion.

Conclusions

Fluid utilization practice patterns in the USA varied depending on patient characteristics and clinical specialties of health care professionals.
Appendix
Available only for authorised users
Literature
go back to reference Aditianingsih D, George YW. Guiding principles of fluid and volume therapy. Best Pract Res Clin Anaesthesiol. 2014;28(3):249–60.CrossRefPubMed Aditianingsih D, George YW. Guiding principles of fluid and volume therapy. Best Pract Res Clin Anaesthesiol. 2014;28(3):249–60.CrossRefPubMed
go back to reference Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med. 2010;36(8):1286–98.CrossRefPubMed Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med. 2010;36(8):1286–98.CrossRefPubMed
go back to reference Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.CrossRefPubMed Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.CrossRefPubMed
go back to reference Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105(6):687–701.CrossRefPubMed Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105(6):687–701.CrossRefPubMed
go back to reference Cherpanath TG, Aarts LP, Groeneveld JA, Geerts BF. Defining fluid responsiveness: a guide to patient-tailored volume titration. J Cardiothorac Vasc Anesth. 2014;28(3):745–54.CrossRefPubMed Cherpanath TG, Aarts LP, Groeneveld JA, Geerts BF. Defining fluid responsiveness: a guide to patient-tailored volume titration. J Cardiothorac Vasc Anesth. 2014;28(3):745–54.CrossRefPubMed
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.CrossRefPubMed
go back to reference Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.CrossRefPubMed Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.CrossRefPubMed
go back to reference Hirleman E, Larson DF. Cardiopulmonary bypass and edema: physiology and pathophysiology. Perfusion. 2008;23(6):311–22.CrossRefPubMed Hirleman E, Larson DF. Cardiopulmonary bypass and edema: physiology and pathophysiology. Perfusion. 2008;23(6):311–22.CrossRefPubMed
go back to reference Hoeft A, Korb H, Mehlhorn U, Stephan H, Sonntag H. Priming of cardiopulmonary bypass with human albumin or Ringer lactate: effect on colloid osmotic pressure and extravascular lung water. Br J Anaesth. 1991;66(1):73–80.CrossRefPubMed Hoeft A, Korb H, Mehlhorn U, Stephan H, Sonntag H. Priming of cardiopulmonary bypass with human albumin or Ringer lactate: effect on colloid osmotic pressure and extravascular lung water. Br J Anaesth. 1991;66(1):73–80.CrossRefPubMed
go back to reference Jacob M, Chappell D. Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care. 2013;19(4):282–9.CrossRefPubMed Jacob M, Chappell D. Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care. 2013;19(4):282–9.CrossRefPubMed
go back to reference Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, et al. The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care. 2012;16(3):R86.CrossRefPubMedPubMedCentral Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, et al. The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care. 2012;16(3):R86.CrossRefPubMedPubMedCentral
go back to reference Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200.CrossRefPubMed Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200.CrossRefPubMed
go back to reference Kuitunen AH, Hynynen MJ, Vahtera E, Salmenpera MT. Hydroxyethyl starch as a priming solution for cardiopulmonary bypass impairs hemostasis after cardiac surgery. Anesth Analg. 2004;98(2):291–7.CrossRefPubMed Kuitunen AH, Hynynen MJ, Vahtera E, Salmenpera MT. Hydroxyethyl starch as a priming solution for cardiopulmonary bypass impairs hemostasis after cardiac surgery. Anesth Analg. 2004;98(2):291–7.CrossRefPubMed
go back to reference Lange M, Ertmer C, Van Aken H, Westphal M. Intravascular volume therapy with colloids in cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25(5):847–55.CrossRefPubMed Lange M, Ertmer C, Van Aken H, Westphal M. Intravascular volume therapy with colloids in cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25(5):847–55.CrossRefPubMed
go back to reference Lee EH, Kim WJ, Kim JY, Chin JH, Choi DK, Sim JY, et al. Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl. Anesthesiology. 2016;124(5):1001–11.CrossRefPubMed Lee EH, Kim WJ, Kim JY, Chin JH, Choi DK, Sim JY, et al. Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl. Anesthesiology. 2016;124(5):1001–11.CrossRefPubMed
go back to reference Morin J-F, Mistry B, Langlois Y, Ma F, Chamoun P, Holcroft C. Fluid overload after coronary artery bypass grafting surgery increases the incidence of post-operative complications. World Journal of Cardiovascular Surgery. 2011;01(02):18–23.CrossRef Morin J-F, Mistry B, Langlois Y, Ma F, Chamoun P, Holcroft C. Fluid overload after coronary artery bypass grafting surgery increases the incidence of post-operative complications. World Journal of Cardiovascular Surgery. 2011;01(02):18–23.CrossRef
go back to reference Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.CrossRefPubMed Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.CrossRefPubMed
go back to reference Ortega-Loubon C, Hinojal YC, Carreras EF, Nunez GL, Pelaez PP, Saez MB, et al. Extracorporeal circulation in cardiac surgery inflammatory response, controversies and future directions. Intl Arch Med. 2015;8(19):1–13. Ortega-Loubon C, Hinojal YC, Carreras EF, Nunez GL, Pelaez PP, Saez MB, et al. Extracorporeal circulation in cardiac surgery inflammatory response, controversies and future directions. Intl Arch Med. 2015;8(19):1–13.
go back to reference Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.CrossRefPubMed Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.CrossRefPubMed
go back to reference Rabin J, Meyenburg T, Lowery AV, Rouse M, Gammie JS, Herr D. Restricted albumin utilization is safe and cost effective in a cardiac surgery intensive care unit. Ann Thorac Surg. 2017;104(1):42–48. Rabin J, Meyenburg T, Lowery AV, Rouse M, Gammie JS, Herr D. Restricted albumin utilization is safe and cost effective in a cardiac surgery intensive care unit. Ann Thorac Surg. 2017;104(1):42–48.
go back to reference Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906.CrossRefPubMed Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906.CrossRefPubMed
go back to reference Roger C, Muller L, Deras P, Louart G, Nouvellon E, Molinari N, et al. Does the type of fluid affect rapidity of shock reversal in an anaesthetized-piglet model of near-fatal controlled haemorrhage? A randomized study. Br J Anaesth. 2014;112(6):1015–23.CrossRefPubMed Roger C, Muller L, Deras P, Louart G, Nouvellon E, Molinari N, et al. Does the type of fluid affect rapidity of shock reversal in an anaesthetized-piglet model of near-fatal controlled haemorrhage? A randomized study. Br J Anaesth. 2014;112(6):1015–23.CrossRefPubMed
go back to reference Russell JA, Navickis RJ, Wilkes MM. Albumin versus crystalloid for pump priming in cardiac surgery: meta-analysis of controlled trials. J Cardiothorac Vasc Anesth. 2004;18(4):429–37.CrossRefPubMed Russell JA, Navickis RJ, Wilkes MM. Albumin versus crystalloid for pump priming in cardiac surgery: meta-analysis of controlled trials. J Cardiothorac Vasc Anesth. 2004;18(4):429–37.CrossRefPubMed
go back to reference Sade RM, Stroud MR, Crawford FA Jr, Kratz JM, Dearing JP, Bartles DM. A prospective randomized study of hydroxyethyl starch, albumin, and lactated Ringer’s solution as priming fluid for cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1985;89(5):713–22.PubMed Sade RM, Stroud MR, Crawford FA Jr, Kratz JM, Dearing JP, Bartles DM. A prospective randomized study of hydroxyethyl starch, albumin, and lactated Ringer’s solution as priming fluid for cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1985;89(5):713–22.PubMed
go back to reference Sedrakyan A, Gondek K, Paltiel D, Elefteriades JA. Volume expansion with albumin decreases mortality after coronary artery bypass graft surgery. Chest. 2003;123(6):1853–7.CrossRefPubMed Sedrakyan A, Gondek K, Paltiel D, Elefteriades JA. Volume expansion with albumin decreases mortality after coronary artery bypass graft surgery. Chest. 2003;123(6):1853–7.CrossRefPubMed
go back to reference Skhirtladze K, Base EM, Lassnigg A, Kaider A, Linke S, Dworschak M, et al. Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.4 6%, and Ringer’s lactate on blood loss and coagulation after cardiac surgery. Br J Anaesth. 2014;112(2):255–64.CrossRefPubMed Skhirtladze K, Base EM, Lassnigg A, Kaider A, Linke S, Dworschak M, et al. Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.4 6%, and Ringer’s lactate on blood loss and coagulation after cardiac surgery. Br J Anaesth. 2014;112(2):255–64.CrossRefPubMed
go back to reference Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011;165(1):136–41.CrossRefPubMed Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011;165(1):136–41.CrossRefPubMed
go back to reference van Haren F, Zacharowski K. What’s new in volume therapy in the intensive care unit? Best Pract Res Clin Anaesthesiol. 2014;28(3):275–83.CrossRefPubMed van Haren F, Zacharowski K. What’s new in volume therapy in the intensive care unit? Best Pract Res Clin Anaesthesiol. 2014;28(3):275–83.CrossRefPubMed
go back to reference Verheij J, van Lingen A, Beishuizen A, Christiaans HM, de Jong JR, Girbes AR, et al. Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med. 2006;32(7):1030–8.CrossRefPubMed Verheij J, van Lingen A, Beishuizen A, Christiaans HM, de Jong JR, Girbes AR, et al. Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med. 2006;32(7):1030–8.CrossRefPubMed
go back to reference Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.CrossRefPubMed Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.CrossRefPubMed
Metadata
Title
Fluid resuscitation practices in cardiac surgery patients in the USA: a survey of health care providers
Authors
Solomon Aronson
Paul Nisbet
Martin Bunke
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Perioperative Medicine / Issue 1/2017
Electronic ISSN: 2047-0525
DOI
https://doi.org/10.1186/s13741-017-0071-6

Other articles of this Issue 1/2017

Perioperative Medicine 1/2017 Go to the issue