Skip to main content
Top
Published in: Head & Face Medicine 1/2018

Open Access 01-12-2018 | Research

Extracorporeal shockwave treatment impedes tooth movement in rats

Authors: Phimon Atsawasuwan, Yinghua Chen, Karan Ganjawalla, Albert L. Kelling, Carla A. Evans

Published in: Head & Face Medicine | Issue 1/2018

Login to get access

Abstract

Background

Accelerated tooth movement has been a topic of interest for orthodontic research recently. Surgically facilitated orthodontic treatment has been shown to be an effective approach to accelerate tooth movement; however, it remains invasive, requires additional surgery, and may increase post-operative complications. In this study, we evaluate the effects of extracorporeal shockwave treatment (ESWT), a non-invasive approach to regenerate alveolar bone, on orthodontic tooth movement in rats.

Materials and methods

Seventy-two male rats, aged 10 weeks old, were subjected to 10-cN closed-coil nickel-titanium springs for unilateral maxillary first molar tooth movement. One group of rats received a single treatment of extracorporeal shockwave treatment at 500 impulses at energy flux density 0.1 mJ/mm2, with a pulse rate of 5 pulses per second immediately after spring installation while the non-ESWT-treated group served as a control group. The rats were sacrificed at day 3, 7, 14, 21 and 28 for tooth movement evaluation and sample analyses. Faxitron radiography, histological, double bone labeling and gene expression analyses were performed. Serum biochemistry was evaluated at day 3, 7 and 28 of the study. Kruskal-Wallis analysis of variance was used to determine the mean difference among groups, and multiple comparisons were analyzed by Mann-Whitney-U tests with a significance level = 0.05.

Results

The results demonstrated that tooth movement in the ESWT-treated rats (0.11 ± 0.07 mm) was impeded compared to the tooth movement in the non-ESWT-treated rats (0.44 ± 0.09 mm). ESWT up-regulated several osteoblastic and osteoclastic gene markers and cytokines; however, the effects on osteoclasts were only transient. Double-fluorescence bone labeling demonstrated that osteoblastic activity increased after ESWT treatment. There was no difference in systemic RANKL/OPG ratio between groups.

Conclusions

ESWT at 500 impulse at energy flux density 0.1 mJ/mm2 increased osteoblast and osteoclast activities and imbalanced bone remodeling resulting in impeded tooth movement in rats.
Literature
1.
go back to reference Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Administration of osteocalcin accelerates orthodontic tooth movement induced by a closed coil spring in rats. Eur J Orthod. 2001;23:535–45.CrossRef Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Administration of osteocalcin accelerates orthodontic tooth movement induced by a closed coil spring in rats. Eur J Orthod. 2001;23:535–45.CrossRef
2.
go back to reference Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Amer J Orthod Dentofac Orthop. 1988;94:278–84.CrossRef Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Amer J Orthod Dentofac Orthop. 1988;94:278–84.CrossRef
3.
go back to reference Brooks PJ, Heckler AF, Wei K, Gong SG. M-CSF accelerates orthodontic tooth movement by targeting preosteoclasts in mice. Angle Orthod. 2011;81:277–83.CrossRef Brooks PJ, Heckler AF, Wei K, Gong SG. M-CSF accelerates orthodontic tooth movement by targeting preosteoclasts in mice. Angle Orthod. 2011;81:277–83.CrossRef
4.
go back to reference Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, et al. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000;79:1717–24.CrossRef Soma S, Matsumoto S, Higuchi Y, Takano-Yamamoto T, Yamashita K, Kurisu K, et al. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000;79:1717–24.CrossRef
5.
go back to reference Darendeliler MA, Zea A, Shen G, Zoellner H. Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: a preliminary study. Aust Dent J. 2007;52:282–7.CrossRef Darendeliler MA, Zea A, Shen G, Zoellner H. Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: a preliminary study. Aust Dent J. 2007;52:282–7.CrossRef
6.
go back to reference Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Amer J Orthod Dentofac Orthop. 2008;133:572–83.CrossRef Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Amer J Orthod Dentofac Orthop. 2008;133:572–83.CrossRef
7.
go back to reference Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, et al. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod. 2013;14:30.CrossRef Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, et al. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod. 2013;14:30.CrossRef
8.
go back to reference Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod. 2010;32:131–9.CrossRef Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod. 2010;32:131–9.CrossRef
9.
go back to reference Alikhani M, Raptis M, Zoldan B, Sangsuwon C, Lee YB, Alyami B, et al. Effect of micro-osteoperforations on the rate of tooth movement. Amer J Orthod Dentofac Orthop. 2013;144:639–48.CrossRef Alikhani M, Raptis M, Zoldan B, Sangsuwon C, Lee YB, Alyami B, et al. Effect of micro-osteoperforations on the rate of tooth movement. Amer J Orthod Dentofac Orthop. 2013;144:639–48.CrossRef
10.
go back to reference Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Amer J Orthod Dentofac Orthop. 2011;139:S83–101.CrossRef Baloul SS, Gerstenfeld LC, Morgan EF, Carvalho RS, Van Dyke TE, Kantarci A. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Amer J Orthod Dentofac Orthop. 2011;139:S83–101.CrossRef
11.
go back to reference Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89:1135–41.CrossRef Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89:1135–41.CrossRef
12.
go back to reference Huang F, Kuo HK, Hsieh CH, Wu PC, Wu YC, Wang CJ. Effect of extracorporeal shockwave treatment on the melanogenic activity of cultured melanocytes. Appl Biochem Biotech. 2012;166:632–9.CrossRef Huang F, Kuo HK, Hsieh CH, Wu PC, Wu YC, Wang CJ. Effect of extracorporeal shockwave treatment on the melanogenic activity of cultured melanocytes. Appl Biochem Biotech. 2012;166:632–9.CrossRef
13.
go back to reference Trebinjac S, Mujic-Skikic E, Ninkovic M, Karaikovic E. Extracorporeal shock wave therapy in orthopaedic diseases. Bosnian J Basic Med. 2005;5:27–32.CrossRef Trebinjac S, Mujic-Skikic E, Ninkovic M, Karaikovic E. Extracorporeal shock wave therapy in orthopaedic diseases. Bosnian J Basic Med. 2005;5:27–32.CrossRef
14.
go back to reference Lai JP, Wang FS, Hung CM, Wang CJ, Huang CJ, Kuo YR. Extracorporeal shock wave accelerates consolidation in distraction osteogenesis of the rat mandible. J Trauma. 2010;69:1252–8.CrossRef Lai JP, Wang FS, Hung CM, Wang CJ, Huang CJ, Kuo YR. Extracorporeal shock wave accelerates consolidation in distraction osteogenesis of the rat mandible. J Trauma. 2010;69:1252–8.CrossRef
15.
go back to reference Mackert GA, Schulte M, Hirche C, Kotsougiani D, Vogelpohl J, Hoener B, Fiebig T, Kirschner S, Brockmann MA, Lehnhardt M, Kneser U, Harhaus L. Low-energy extracorporeal shockwave therapy (ESWT) improves metaphyseal fracture healing in an osteoporotic rat model. PLoS One. 2017;12(12):e0189356.CrossRef Mackert GA, Schulte M, Hirche C, Kotsougiani D, Vogelpohl J, Hoener B, Fiebig T, Kirschner S, Brockmann MA, Lehnhardt M, Kneser U, Harhaus L. Low-energy extracorporeal shockwave therapy (ESWT) improves metaphyseal fracture healing in an osteoporotic rat model. PLoS One. 2017;12(12):e0189356.CrossRef
16.
go back to reference Wolfl C, Schuster L, Honer B, Englert S, Klein R, Hirche C, Munzberg M, Grutzner PA, Kneser U, Harhaus L. Influence of extracorporeal shock wave therapy (ESWT) on bone turnover markets in organisms with normal and low bone mineral density during fracture healing: a randomized clinical trial. GMS Interdiscip Plast Reconstr Surg DGPW. 2017;18:6 Doc 17. Wolfl C, Schuster L, Honer B, Englert S, Klein R, Hirche C, Munzberg M, Grutzner PA, Kneser U, Harhaus L. Influence of extracorporeal shock wave therapy (ESWT) on bone turnover markets in organisms with normal and low bone mineral density during fracture healing: a randomized clinical trial. GMS Interdiscip Plast Reconstr Surg DGPW. 2017;18:6 Doc 17.
17.
go back to reference Yu X, Zhang D, Chen X, Yang J, Shi L, Pang Q. Effectiveness of various hip preservation treatments for non-traumatic osteonecrosis of the femoral head: a network meta-analysis of randomized controlled trials. J Orthop Sci. 2017;17:30346–9. Yu X, Zhang D, Chen X, Yang J, Shi L, Pang Q. Effectiveness of various hip preservation treatments for non-traumatic osteonecrosis of the femoral head: a network meta-analysis of randomized controlled trials. J Orthop Sci. 2017;17:30346–9.
18.
go back to reference Vitali M, Naim Rodriguez N, Pedretti A, Drossinos A, Pironti P, Di Carlo G, Fraschini G. Bone marrow edema syndrom of the medial femoral condyle treated with extracorporeal shock wave therapy: a clinical and MRI retrospective comparative study. Arch Phys Med Rehabil. 2017;17:31392–8. Vitali M, Naim Rodriguez N, Pedretti A, Drossinos A, Pironti P, Di Carlo G, Fraschini G. Bone marrow edema syndrom of the medial femoral condyle treated with extracorporeal shock wave therapy: a clinical and MRI retrospective comparative study. Arch Phys Med Rehabil. 2017;17:31392–8.
19.
go back to reference Hazan-Molina H, Reznick AZ, Kaufman H, Aizenbud D. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model. J Periodontal Res. 2015;50:389–96.CrossRef Hazan-Molina H, Reznick AZ, Kaufman H, Aizenbud D. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model. J Periodontal Res. 2015;50:389–96.CrossRef
20.
go back to reference Falkensammer F, Arnhart C, Krall C, Schaden W, Freudenthaler J, Bantleon HP. Impact of extracorporeal shock wave therapy (ESWT) on orthodontic tooth movement-a randomized clinical trial. Clin Oral Investig. 2014;18:2187–92.CrossRef Falkensammer F, Arnhart C, Krall C, Schaden W, Freudenthaler J, Bantleon HP. Impact of extracorporeal shock wave therapy (ESWT) on orthodontic tooth movement-a randomized clinical trial. Clin Oral Investig. 2014;18:2187–92.CrossRef
21.
go back to reference Ren Y, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement--a critical review and a proposed solution. Eur J Orthod. 2004;26:483–90.CrossRef Ren Y, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement--a critical review and a proposed solution. Eur J Orthod. 2004;26:483–90.CrossRef
22.
go back to reference Sathishkumar S, Meka A, Dawson D, House N, Schaden W, Novak MJ, et al. Extracorporeal shock wave therapy induces alveolar bone regeneration. J Dent Res. 2008;87:687–91.CrossRef Sathishkumar S, Meka A, Dawson D, House N, Schaden W, Novak MJ, et al. Extracorporeal shock wave therapy induces alveolar bone regeneration. J Dent Res. 2008;87:687–91.CrossRef
23.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRef
24.
go back to reference Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci. 2008;116:89–97.CrossRef Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci. 2008;116:89–97.CrossRef
25.
go back to reference Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009;88:597–608.CrossRef Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009;88:597–608.CrossRef
26.
go back to reference Tam KF, Cheung WH, Lee KM, Qin L, Leung KS. Shockwave exerts osteogenic effect on osteoporotic bone in an ovariectomized goat model. Ultrasound Med Biol. 2009;35:1109–18.CrossRef Tam KF, Cheung WH, Lee KM, Qin L, Leung KS. Shockwave exerts osteogenic effect on osteoporotic bone in an ovariectomized goat model. Ultrasound Med Biol. 2009;35:1109–18.CrossRef
27.
go back to reference Wang CJ, Huang CY, Hsu SL, Chen JH, Cheng JH. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals. Arthritis Res Ther. 2014;16:R139.CrossRef Wang CJ, Huang CY, Hsu SL, Chen JH, Cheng JH. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals. Arthritis Res Ther. 2014;16:R139.CrossRef
28.
go back to reference Wang CJ, Wang FS, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg. 2008;128:879–84.CrossRef Wang CJ, Wang FS, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg. 2008;128:879–84.CrossRef
29.
go back to reference Wang CJ, Yang KD, Ko JY, Huang CC, Huang HY, Wang FS. The effects of shockwave on bone healing and systemic concentrations of nitric oxide (NO), TGF-beta1, VEGF and BMP-2 in long bone non-unions. Nitric oxide-Biol Ch. 2009;20:298–303.CrossRef Wang CJ, Yang KD, Ko JY, Huang CC, Huang HY, Wang FS. The effects of shockwave on bone healing and systemic concentrations of nitric oxide (NO), TGF-beta1, VEGF and BMP-2 in long bone non-unions. Nitric oxide-Biol Ch. 2009;20:298–303.CrossRef
30.
go back to reference Martini L, Giavaresi G, Fini M, Borsari V, Torricelli P, Giardino R. Early effects of extracorporeal shock wave treatment on osteoblast-like cells: a comparative study between electromagnetic and electrohydraulic devices. J Trauma. 2006;61:1198–206.CrossRef Martini L, Giavaresi G, Fini M, Borsari V, Torricelli P, Giardino R. Early effects of extracorporeal shock wave treatment on osteoblast-like cells: a comparative study between electromagnetic and electrohydraulic devices. J Trauma. 2006;61:1198–206.CrossRef
31.
go back to reference Takahashi K, Yamazaki M, Saisu T, Nakajima A, Shimizu S, Mitsuhashi S, et al. Gene expression for extracellular matrix proteins in shockwave-induced osteogenesis in rats. Calcif Tissue Int. 2004;74:187–93.CrossRef Takahashi K, Yamazaki M, Saisu T, Nakajima A, Shimizu S, Mitsuhashi S, et al. Gene expression for extracellular matrix proteins in shockwave-induced osteogenesis in rats. Calcif Tissue Int. 2004;74:187–93.CrossRef
32.
go back to reference Hofbauer LC, Kuhne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuron Interact. 2004;4:268–75. Hofbauer LC, Kuhne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuron Interact. 2004;4:268–75.
33.
go back to reference Shi L, Gao F, Sun W, Wang B, Guo W, Cheng L, Li Z, Wang W. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients. Osteopro Int. 2017;28:2945–53.CrossRef Shi L, Gao F, Sun W, Wang B, Guo W, Cheng L, Li Z, Wang W. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients. Osteopro Int. 2017;28:2945–53.CrossRef
34.
go back to reference Gollwitzer H, Gloeck T, Roessner M, Langer R, Horn C, Gerdesmeyer L, Diehl P. Radial extracorporeal shock wave therapy (rESWT) induces new bone formation in vivo: results of an animal study in rabbits. Ultrashound med Biol. 2013;39:126–33.CrossRef Gollwitzer H, Gloeck T, Roessner M, Langer R, Horn C, Gerdesmeyer L, Diehl P. Radial extracorporeal shock wave therapy (rESWT) induces new bone formation in vivo: results of an animal study in rabbits. Ultrashound med Biol. 2013;39:126–33.CrossRef
35.
go back to reference Gerdesmeyer L, Schaden W, Besch L, Studenberg M, Doerner L, Muehlhofer H, Toepfer A. Osteogenetic effect of extracorporeal shock waves in human. Int J Surg. 2015;24:115–9.CrossRef Gerdesmeyer L, Schaden W, Besch L, Studenberg M, Doerner L, Muehlhofer H, Toepfer A. Osteogenetic effect of extracorporeal shock waves in human. Int J Surg. 2015;24:115–9.CrossRef
36.
go back to reference Pfaff JA, Boelck B, Bloch W, Nentwig GH. Growth factors in bone marrow blood of the manddible with application of extracorporeal shock wave therapy. Implant Dent. 2016;35:179–86. Pfaff JA, Boelck B, Bloch W, Nentwig GH. Growth factors in bone marrow blood of the manddible with application of extracorporeal shock wave therapy. Implant Dent. 2016;35:179–86.
Metadata
Title
Extracorporeal shockwave treatment impedes tooth movement in rats
Authors
Phimon Atsawasuwan
Yinghua Chen
Karan Ganjawalla
Albert L. Kelling
Carla A. Evans
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Head & Face Medicine / Issue 1/2018
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-018-0181-5

Other articles of this Issue 1/2018

Head & Face Medicine 1/2018 Go to the issue