Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 8/2008

01-08-2008 | Basic Science

Biological effects of extracorporeal shockwave in bone healing: a study in rabbits

Authors: Ching-Jen Wang, Feng-Sheng Wang, Kuender D. Yang

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 8/2008

Login to get access

Abstract

Introduction

This study is an investigation of the biological effects of extracorporeal shockwave treatment (ESWT) on bone healing in a rabbit model.

Materials and methods

Sixteen 12-month-old New Zealand white rabbits with body weight ranging from 2.5 to 3.5 kg were used in the study. An intra-medullary pin was inserted retrograde into the femur canal. A closed fracture of the femur was created with a three-point bend method. The animals were randomly divided into the study group and the control group with eight rabbits in each group. The study group received shockwave treatment, whereas the control group did not. The animals were killed at 12 weeks, and a 5-cm long femur bone including the callus was harvested. The specimens were subjected to biomechanical study, histomorphological examination, and immunohistochemical analysis.

Results

The shockwave group showed significantly better bone strength in biomechanical study, more cortical bone formation in histomorphological examination and higher number of neo-vessels and angiogenic and osteogenic growth markers including VEGF, eNOS, PCNA, and BMP-2 on immunohistochemical stains than the control group.

Conclusion

ESWT significantly improved bone healing after fracture of the femur in rabbit. ESWT promoted the formation of cortical bone what might have been associated with increased biomechanical results. ESWT-promoted bone healing was associated with increased neovascularization and up-regulation of angiogenic and osteogenic growth factors.
Literature
1.
go back to reference Chen YJ, Kuo YR, Yang KD, Wang CJ, Huang HC, Wang FS (2003) Shock wave application enhances pertussis toxin-sensitive bone formation in segmental defect in rats. J Bone Miner Res 18:2169–2179PubMedCrossRef Chen YJ, Kuo YR, Yang KD, Wang CJ, Huang HC, Wang FS (2003) Shock wave application enhances pertussis toxin-sensitive bone formation in segmental defect in rats. J Bone Miner Res 18:2169–2179PubMedCrossRef
2.
go back to reference Delius M, Draenert K, Al Diek Y, Draenert Y (1995) Biological effect of shockwave: in vivo effect of high-energy pulses on rabbit bone. Ultrasound Med Biol 21:1219–1225PubMedCrossRef Delius M, Draenert K, Al Diek Y, Draenert Y (1995) Biological effect of shockwave: in vivo effect of high-energy pulses on rabbit bone. Ultrasound Med Biol 21:1219–1225PubMedCrossRef
3.
go back to reference Haupt G (1997) Use of extracorporeal shock wave in the treatment of pseudoarthrosis, tendinopathy and other orthopaedic disease. J Urol 158:4–11PubMedCrossRef Haupt G (1997) Use of extracorporeal shock wave in the treatment of pseudoarthrosis, tendinopathy and other orthopaedic disease. J Urol 158:4–11PubMedCrossRef
4.
go back to reference Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M (1992) Influence of shockwave on fracture healing. Urology 39:529–532PubMedCrossRef Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M (1992) Influence of shockwave on fracture healing. Urology 39:529–532PubMedCrossRef
5.
go back to reference Jamsa T, Jalovaara P, Peng Z, Vaananen HK, Tuukkanen J (1998) Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength in mouse femur and tibia. Bone 23:155–161PubMedCrossRef Jamsa T, Jalovaara P, Peng Z, Vaananen HK, Tuukkanen J (1998) Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength in mouse femur and tibia. Bone 23:155–161PubMedCrossRef
6.
go back to reference Johannes EJ, Kaulesar Sukul DM, Matura E (1994) High-energy shockwave for treatment of nonunion. An experiment on dogs. J Surg Res 57:246–252PubMedCrossRef Johannes EJ, Kaulesar Sukul DM, Matura E (1994) High-energy shockwave for treatment of nonunion. An experiment on dogs. J Surg Res 57:246–252PubMedCrossRef
7.
go back to reference Kaulesar Sukul DM, Johannes EJ, Pierik EG, van Eijck GJ, Kristelijn MJ (1993) The effect of high-energy shock waves focused on cortical bone: an in vitro study. J Surg Res 54:46–51PubMedCrossRef Kaulesar Sukul DM, Johannes EJ, Pierik EG, van Eijck GJ, Kristelijn MJ (1993) The effect of high-energy shock waves focused on cortical bone: an in vitro study. J Surg Res 54:46–51PubMedCrossRef
8.
go back to reference Ogden JA, Tóth-Kischkat A, Schultheiss R (2001) Principles of shock wave therapy. Clin Orthop 387:8–17PubMedCrossRef Ogden JA, Tóth-Kischkat A, Schultheiss R (2001) Principles of shock wave therapy. Clin Orthop 387:8–17PubMedCrossRef
9.
go back to reference Rompe JD, Rosendahl T, Schöllner C, Theis C (2001) High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop 387:102–111PubMedCrossRef Rompe JD, Rosendahl T, Schöllner C, Theis C (2001) High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop 387:102–111PubMedCrossRef
10.
go back to reference Schaden W, Fischer A, Sailer A (2001) Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop 387:90–94PubMedCrossRef Schaden W, Fischer A, Sailer A (2001) Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop 387:90–94PubMedCrossRef
11.
go back to reference Schleberger R, Senge T (1992) Noninvasive treatment of long bone pseudoarthrosis by shock waves (ESWL). Arch Ortho Trauma Surg 111:224–227CrossRef Schleberger R, Senge T (1992) Noninvasive treatment of long bone pseudoarthrosis by shock waves (ESWL). Arch Ortho Trauma Surg 111:224–227CrossRef
12.
go back to reference Valchanou VD, Michailov P (1991) High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 15:181–184PubMedCrossRef Valchanou VD, Michailov P (1991) High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 15:181–184PubMedCrossRef
13.
go back to reference Vogel J, Hopf C, Eysel P, Rompe JD (1997) Application of extracorporeal shock waves in the treatment of pseudarthrosis of the lower extremity: preliminary results. Arch Orthop Trauma Surg 116:480–483PubMedCrossRef Vogel J, Hopf C, Eysel P, Rompe JD (1997) Application of extracorporeal shock waves in the treatment of pseudarthrosis of the lower extremity: preliminary results. Arch Orthop Trauma Surg 116:480–483PubMedCrossRef
14.
go back to reference Wang CJ, Chen HS, Chen CE, Yang KD (2001) Treatment of nonunions of long bone fractures with shock waves. Clin Orthop 387:95–101PubMedCrossRef Wang CJ, Chen HS, Chen CE, Yang KD (2001) Treatment of nonunions of long bone fractures with shock waves. Clin Orthop 387:95–101PubMedCrossRef
15.
go back to reference Wang CJ, Huang HY, Chen HH, Pai CH, Yang KD (2001) The effect of shock wave therapy on acute fractures of the tibia. A study in a dog model. Clin Orthop 387:112–118PubMedCrossRef Wang CJ, Huang HY, Chen HH, Pai CH, Yang KD (2001) The effect of shock wave therapy on acute fractures of the tibia. A study in a dog model. Clin Orthop 387:112–118PubMedCrossRef
16.
go back to reference Wang FS, Wang CJ, Huang HC, Chung H, Chen RF, Yang KD (2001) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648–655PubMedCrossRef Wang FS, Wang CJ, Huang HC, Chung H, Chen RF, Yang KD (2001) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648–655PubMedCrossRef
17.
go back to reference Wang CJ, Huang HY, Pai CH (2002) Shock wave enhanced neovascularization at the bone-tendon junction. A study in a dog model. J Foot Ankle Surg 41:16–22PubMedCrossRef Wang CJ, Huang HY, Pai CH (2002) Shock wave enhanced neovascularization at the bone-tendon junction. A study in a dog model. J Foot Ankle Surg 41:16–22PubMedCrossRef
18.
go back to reference Wang FS, Wang CJ, Sheen-Chen SM, Chen RF, Kuo YR, Yang KD (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cells differentiation toward osteoprogenitors. J Biol Chem 277:10931–10937PubMedCrossRef Wang FS, Wang CJ, Sheen-Chen SM, Chen RF, Kuo YR, Yang KD (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cells differentiation toward osteoprogenitors. J Biol Chem 277:10931–10937PubMedCrossRef
19.
go back to reference Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM (2002) Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg 84B:457–461CrossRef Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM (2002) Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg 84B:457–461CrossRef
20.
go back to reference Wang CJ, Wang FS, Yang KD, Huang CS, Hsu CC (2003) Shockwave therapy induced neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 21:984–989PubMedCrossRef Wang CJ, Wang FS, Yang KD, Huang CS, Hsu CC (2003) Shockwave therapy induced neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 21:984–989PubMedCrossRef
21.
go back to reference Wang FS, Yang KD, Kuo YR, Wang CJ, Huang HJ, Chen YJ (2003) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of fracture defect. Bone 32:387–396PubMedCrossRef Wang FS, Yang KD, Kuo YR, Wang CJ, Huang HJ, Chen YJ (2003) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of fracture defect. Bone 32:387–396PubMedCrossRef
22.
go back to reference Wang CJ, Wang FS, Yang KD (2004) Shock wave treatment produced dose-dependent enhancement in bone mass and bone strength after fracture. Bone 34:225–230PubMedCrossRef Wang CJ, Wang FS, Yang KD (2004) Shock wave treatment produced dose-dependent enhancement in bone mass and bone strength after fracture. Bone 34:225–230PubMedCrossRef
23.
go back to reference Yang C, Heston WDW, Gulati S, Fair WR (1988) The effects of high-energy shock waves (HESW) on human bone marrow. Urol Res 16:427–429PubMedCrossRef Yang C, Heston WDW, Gulati S, Fair WR (1988) The effects of high-energy shock waves (HESW) on human bone marrow. Urol Res 16:427–429PubMedCrossRef
Metadata
Title
Biological effects of extracorporeal shockwave in bone healing: a study in rabbits
Authors
Ching-Jen Wang
Feng-Sheng Wang
Kuender D. Yang
Publication date
01-08-2008
Publisher
Springer-Verlag
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 8/2008
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-008-0663-1

Other articles of this Issue 8/2008

Archives of Orthopaedic and Trauma Surgery 8/2008 Go to the issue