Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

01-12-2011

Extracellular and intracellular sphingosine-1-phosphate in cancer

Authors: Jessie W. Yester, Etsegenet Tizazu, Kuzhuvelil B. Harikumar, Tomasz Kordula

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Literature
1.
go back to reference Ponnusamy, S., Meyers-Needham, M., Senkal, C. E., Saddoughi, S. A., Sentelle, D., Selvam, S. P., et al. (2010). Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncology, 6, 1603–1624.PubMed Ponnusamy, S., Meyers-Needham, M., Senkal, C. E., Saddoughi, S. A., Sentelle, D., Selvam, S. P., et al. (2010). Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncology, 6, 1603–1624.PubMed
2.
go back to reference Morales, A., & Fernandez-Checa, J. C. (2007). Pharmacological modulation of sphingolipids and role in disease and cancer cell biology. Mini Reviews in Medicinal Chemistry, 7, 371–382.PubMed Morales, A., & Fernandez-Checa, J. C. (2007). Pharmacological modulation of sphingolipids and role in disease and cancer cell biology. Mini Reviews in Medicinal Chemistry, 7, 371–382.PubMed
3.
go back to reference Park, J. H., & Schuchman, E. H. (2006). Acid ceramidase and human disease. Biochimica et Biophysica Acta, 1758, 2133–2138.PubMed Park, J. H., & Schuchman, E. H. (2006). Acid ceramidase and human disease. Biochimica et Biophysica Acta, 1758, 2133–2138.PubMed
4.
go back to reference Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., et al. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800–803.PubMed Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., et al. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800–803.PubMed
5.
go back to reference Zhang, H., Desai, N. N., Olivera, A., Seki, T., Brooker, G., & Spiegel, S. (1991). Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. The Journal of Cell Biology, 114, 155–167.PubMed Zhang, H., Desai, N. N., Olivera, A., Seki, T., Brooker, G., & Spiegel, S. (1991). Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. The Journal of Cell Biology, 114, 155–167.PubMed
6.
go back to reference Olivera, A., & Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365, 557–560.PubMed Olivera, A., & Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365, 557–560.PubMed
7.
go back to reference Mitra, P., Oskeritzian, C. A., Payne, S. G., Beaven, M. A., Milstien, S., & Spiegel, S. (2006). Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 16394–16399.PubMed Mitra, P., Oskeritzian, C. A., Payne, S. G., Beaven, M. A., Milstien, S., & Spiegel, S. (2006). Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 16394–16399.PubMed
8.
go back to reference Boujaoude, L. C., Bradshaw-Wilder, C., Mao, C., Cohn, J., Ogretmen, B., Hannun, Y. A., et al. (2001). Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. Journal of Biological Chemistry, 276, 35258–35264.PubMed Boujaoude, L. C., Bradshaw-Wilder, C., Mao, C., Cohn, J., Ogretmen, B., Hannun, Y. A., et al. (2001). Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. Journal of Biological Chemistry, 276, 35258–35264.PubMed
9.
go back to reference Osborne, N., Brand-Arzamendi, K., Ober, E. A., Jin, S. W., Verkade, H., Holtzman, N. G., et al. (2008). The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Current Biology, 18, 1882–1888.PubMed Osborne, N., Brand-Arzamendi, K., Ober, E. A., Jin, S. W., Verkade, H., Holtzman, N. G., et al. (2008). The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Current Biology, 18, 1882–1888.PubMed
10.
go back to reference Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., & Mochizuki, N. (2009). The sphingolipid transporter Spns2 functions in migration of zebrafish myocardial precursors. Science, 323, 524–527.PubMed Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., & Mochizuki, N. (2009). The sphingolipid transporter Spns2 functions in migration of zebrafish myocardial precursors. Science, 323, 524–527.PubMed
11.
go back to reference Hisano, Y., Kobayashi, N., Kawahara, A., Yamaguchi, A., & Nishi, T. (2011). The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. Journal of Biological Chemistry, 286, 1758–1766.PubMed Hisano, Y., Kobayashi, N., Kawahara, A., Yamaguchi, A., & Nishi, T. (2011). The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. Journal of Biological Chemistry, 286, 1758–1766.PubMed
12.
go back to reference Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science, 325, 1254–1257.PubMed Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science, 325, 1254–1257.PubMed
13.
go back to reference Alvarez, S. E., Harikumar, K. B., Hait, N. C., Allegood, J., Strub, G. M., Kim, E. Y., et al. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 465, 1084–1088.PubMed Alvarez, S. E., Harikumar, K. B., Hait, N. C., Allegood, J., Strub, G. M., Kim, E. Y., et al. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 465, 1084–1088.PubMed
14.
go back to reference Strub, G. M., Paillard, M., Liang, J., Gomez, L., Allegood, J. C., Hait, N. C., et al. (2010). Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. The FASEB Journal, 25, 600–612.PubMed Strub, G. M., Paillard, M., Liang, J., Gomez, L., Allegood, J. C., Hait, N. C., et al. (2010). Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. The FASEB Journal, 25, 600–612.PubMed
15.
go back to reference Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. Journal of Neuroscience, 31, 6850–6857.PubMed Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. Journal of Neuroscience, 31, 6850–6857.PubMed
16.
go back to reference Le Stunff, H., Peterson, C., Thornton, R., Milstien, S., Mandala, S. M., & Spiegel, S. (2002). Characterization of murine sphingosine-1-phosphate phosphohydrolase. Journal of Biological Chemistry, 277, 8920–8927.PubMed Le Stunff, H., Peterson, C., Thornton, R., Milstien, S., Mandala, S. M., & Spiegel, S. (2002). Characterization of murine sphingosine-1-phosphate phosphohydrolase. Journal of Biological Chemistry, 277, 8920–8927.PubMed
17.
go back to reference Van Veldhoven, P. P. (2000). Sphingosine-1-phosphate lyase. Methods in Enzymology, 311, 244–254.PubMed Van Veldhoven, P. P. (2000). Sphingosine-1-phosphate lyase. Methods in Enzymology, 311, 244–254.PubMed
18.
go back to reference Spiegel, S., & Milstien, S. (2002). Sphingosine 1-phosphate, a key cell signaling molecule. Journal of Biological Chemistry, 277, 25851–25854.PubMed Spiegel, S., & Milstien, S. (2002). Sphingosine 1-phosphate, a key cell signaling molecule. Journal of Biological Chemistry, 277, 25851–25854.PubMed
19.
go back to reference Birbes, H., El Bawab, S., Obeid, L. M., & Hannun, Y. A. (2002). Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Advances in Enzyme Regulation, 42, 113–129.PubMed Birbes, H., El Bawab, S., Obeid, L. M., & Hannun, Y. A. (2002). Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Advances in Enzyme Regulation, 42, 113–129.PubMed
20.
go back to reference Tilly, J. L., & Kolesnick, R. N. (2002). Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochimica et Biophysica Acta, 1585, 135–138.PubMed Tilly, J. L., & Kolesnick, R. N. (2002). Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochimica et Biophysica Acta, 1585, 135–138.PubMed
21.
go back to reference Olivera, A., Kohama, T., Tu, Z., Milstien, S., & Spiegel, S. (1998). Purification and characterization of rat kidney sphingosine kinase. Journal of Biological Chemistry, 273, 12576–12583.PubMed Olivera, A., Kohama, T., Tu, Z., Milstien, S., & Spiegel, S. (1998). Purification and characterization of rat kidney sphingosine kinase. Journal of Biological Chemistry, 273, 12576–12583.PubMed
22.
go back to reference Liu, H., Sugiura, M., Nava, V. E., Edsall, L. C., Kono, K., Poulton, S., et al. (2000). Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. Journal of Biological Chemistry, 275, 19513–19520.PubMed Liu, H., Sugiura, M., Nava, V. E., Edsall, L. C., Kono, K., Poulton, S., et al. (2000). Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. Journal of Biological Chemistry, 275, 19513–19520.PubMed
23.
go back to reference Allende, M. L., Sasaki, T., Kawai, H., Olivera, A., Mi, Y., van Echten-Deckert, G., et al. (2004). Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. Journal of Biological Chemistry, 279, 52487–52492.PubMed Allende, M. L., Sasaki, T., Kawai, H., Olivera, A., Mi, Y., van Echten-Deckert, G., et al. (2004). Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. Journal of Biological Chemistry, 279, 52487–52492.PubMed
24.
go back to reference Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., & Proia, R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Molecular and Cellular Biology, 25, 11113–11121.PubMed Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., & Proia, R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Molecular and Cellular Biology, 25, 11113–11121.PubMed
25.
go back to reference Sarkar, S., Maceyka, M., Hait, N. C., Paugh, S. W., Sankala, H., Milstien, S., et al. (2005). Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Letters, 579, 5313–5317.PubMed Sarkar, S., Maceyka, M., Hait, N. C., Paugh, S. W., Sankala, H., Milstien, S., et al. (2005). Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Letters, 579, 5313–5317.PubMed
26.
go back to reference Hobson, J. P., Rosenfeldt, H. M., Barak, L. S., Olivera, A., Poulton, S., Caron, M. G., et al. (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science, 291, 1800–1803.PubMed Hobson, J. P., Rosenfeldt, H. M., Barak, L. S., Olivera, A., Poulton, S., Caron, M. G., et al. (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science, 291, 1800–1803.PubMed
27.
go back to reference Shu, X., Wu, W., Mosteller, R. D., & Broek, D. (2002). Sphingosine kinase mediates vascular endothelial growth factor-induced activation of Ras and mitogen-activated protein kinases. Molecular and Cellular Biology, 22, 7758–7768.PubMed Shu, X., Wu, W., Mosteller, R. D., & Broek, D. (2002). Sphingosine kinase mediates vascular endothelial growth factor-induced activation of Ras and mitogen-activated protein kinases. Molecular and Cellular Biology, 22, 7758–7768.PubMed
28.
go back to reference Xia, P., Wang, L., Moretti, P. A., Albanese, N., Chai, F., Pitson, S. M., et al. (2002). Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. Journal of Biological Chemistry, 277, 7996–8003.PubMed Xia, P., Wang, L., Moretti, P. A., Albanese, N., Chai, F., Pitson, S. M., et al. (2002). Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. Journal of Biological Chemistry, 277, 7996–8003.PubMed
29.
go back to reference Pettus, B. J., Bielawski, J., Porcelli, A. M., Reames, D. L., Johnson, K. R., Morrow, J., et al. (2003). The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. The FASEB Journal, 17, 1411–1421.PubMed Pettus, B. J., Bielawski, J., Porcelli, A. M., Reames, D. L., Johnson, K. R., Morrow, J., et al. (2003). The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. The FASEB Journal, 17, 1411–1421.PubMed
30.
go back to reference Jolly, P. S., Bektas, M., Olivera, A., Gonzalez-Espinosa, C., Proia, R. L., Rivera, J., et al. (2004). Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. The Journal of Experimental Medicine, 199, 959–970.PubMed Jolly, P. S., Bektas, M., Olivera, A., Gonzalez-Espinosa, C., Proia, R. L., Rivera, J., et al. (2004). Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. The Journal of Experimental Medicine, 199, 959–970.PubMed
31.
go back to reference Taha, T. A., Hannun, Y. A., & Obeid, L. M. (2006). Sphingosine kinase: biochemical and cellular regulation and role in disease. Journal of Biochemistry and Molecular Biology, 39, 113–131.PubMed Taha, T. A., Hannun, Y. A., & Obeid, L. M. (2006). Sphingosine kinase: biochemical and cellular regulation and role in disease. Journal of Biochemistry and Molecular Biology, 39, 113–131.PubMed
32.
go back to reference Alvarez, S. E., Milstien, S., & Spiegel, S. (2007). Autocrine and paracrine roles of sphingosine-1-phosphate. Trends in Endocrinology and Metabolism, 18, 300–307.PubMed Alvarez, S. E., Milstien, S., & Spiegel, S. (2007). Autocrine and paracrine roles of sphingosine-1-phosphate. Trends in Endocrinology and Metabolism, 18, 300–307.PubMed
33.
go back to reference Pitson, S. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A., et al. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO Journal, 22, 5491–5500.PubMed Pitson, S. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A., et al. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO Journal, 22, 5491–5500.PubMed
34.
go back to reference Stahelin, R. V., Hwang, J. H., Kim, J. H., Park, Z. Y., Johnson, K. R., Obeid, L. M., et al. (2005). The mechanism of membrane targeting of human sphingosine kinase 1. Journal of Biological Chemistry, 280, 43030–43038.PubMed Stahelin, R. V., Hwang, J. H., Kim, J. H., Park, Z. Y., Johnson, K. R., Obeid, L. M., et al. (2005). The mechanism of membrane targeting of human sphingosine kinase 1. Journal of Biological Chemistry, 280, 43030–43038.PubMed
35.
go back to reference Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews Molecular Cell Biology, 4, 397–407.PubMed Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews Molecular Cell Biology, 4, 397–407.PubMed
36.
go back to reference Jarman, K. E., Moretti, P. A., Zebol, J. R., & Pitson, S. M. (2010). Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. Journal of Biological Chemistry, 285, 483–492.PubMed Jarman, K. E., Moretti, P. A., Zebol, J. R., & Pitson, S. M. (2010). Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. Journal of Biological Chemistry, 285, 483–492.PubMed
37.
go back to reference Bryan, L., Kordula, T., Spiegel, S., & Milstien, S. (2008). Regulation and functions of sphingosine kinases in the brain. Biochimica et Biophysica Acta, 1781, 459–466.PubMed Bryan, L., Kordula, T., Spiegel, S., & Milstien, S. (2008). Regulation and functions of sphingosine kinases in the brain. Biochimica et Biophysica Acta, 1781, 459–466.PubMed
38.
go back to reference Sobue, S., Hagiwara, K., Banno, Y., Tamiya-Koizumi, K., Suzuki, M., Takagi, A., et al. (2005). Transcription factor specificity protein 1 (Sp1) is the main regulator of nerve growth factor-induced sphingosine kinase 1 gene expression of the rat pheochromocytoma cell line, PC12. Journal of Neurochemistry, 95, 940–949.PubMed Sobue, S., Hagiwara, K., Banno, Y., Tamiya-Koizumi, K., Suzuki, M., Takagi, A., et al. (2005). Transcription factor specificity protein 1 (Sp1) is the main regulator of nerve growth factor-induced sphingosine kinase 1 gene expression of the rat pheochromocytoma cell line, PC12. Journal of Neurochemistry, 95, 940–949.PubMed
39.
go back to reference Paugh, B. S., Bryan, L., Paugh, S. W., Wilczynska, K. M., Alvarez, S. M., Singh, S. K., et al. (2009). Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. Journal of Biological Chemistry, 284, 3408–3417.PubMed Paugh, B. S., Bryan, L., Paugh, S. W., Wilczynska, K. M., Alvarez, S. M., Singh, S. K., et al. (2009). Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. Journal of Biological Chemistry, 284, 3408–3417.PubMed
40.
go back to reference Nakade, Y., Banno, Y., Tamiya-Koizumi, K., Hagiwara, K., Sobue, S., Koda, M., et al. (2003). Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochimica et Biophysica Acta, 1635, 104–116.PubMed Nakade, Y., Banno, Y., Tamiya-Koizumi, K., Hagiwara, K., Sobue, S., Koda, M., et al. (2003). Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochimica et Biophysica Acta, 1635, 104–116.PubMed
41.
go back to reference Anelli, V., Gault, C. R., Cheng, A. B., & Obeid, L. M. (2008). Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. Journal of Biological Chemistry, 283, 3365–3375.PubMed Anelli, V., Gault, C. R., Cheng, A. B., & Obeid, L. M. (2008). Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. Journal of Biological Chemistry, 283, 3365–3375.PubMed
42.
go back to reference Doll, F., Pfeilschifter, J., & Huwiler, A. (2007). Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocrine-Related Cancer, 14, 325–335.PubMed Doll, F., Pfeilschifter, J., & Huwiler, A. (2007). Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocrine-Related Cancer, 14, 325–335.PubMed
43.
go back to reference Ancellin, N., Colmont, C., Su, J., Li, Q., Mittereder, N., Chae, S. S., et al. (2002). Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. Journal of Biological Chemistry, 277, 6667–6675.PubMed Ancellin, N., Colmont, C., Su, J., Li, Q., Mittereder, N., Chae, S. S., et al. (2002). Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. Journal of Biological Chemistry, 277, 6667–6675.PubMed
44.
go back to reference Venkataraman, K., Thangada, S., Michaud, J., Oo, M. L., Ai, Y., Lee, Y. M., et al. (2006). Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochemical Journal, 397, 461–471.PubMed Venkataraman, K., Thangada, S., Michaud, J., Oo, M. L., Ai, Y., Lee, Y. M., et al. (2006). Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochemical Journal, 397, 461–471.PubMed
45.
go back to reference Kawamori, T., Osta, W., Johnson, K. R., Pettus, B. J., Bielawski, J., Tanaka, T., et al. (2006). Sphingosine kinase 1 is up-regulated in colon carcinogenesis. The FASEB Journal, 20, 386–388.PubMed Kawamori, T., Osta, W., Johnson, K. R., Pettus, B. J., Bielawski, J., Tanaka, T., et al. (2006). Sphingosine kinase 1 is up-regulated in colon carcinogenesis. The FASEB Journal, 20, 386–388.PubMed
46.
go back to reference Kawamori, T., Kaneshiro, T., Okumura, M., Maalouf, S., Uflacker, A., Bielawski, J., et al. (2009). Role for sphingosine kinase 1 in colon carcinogenesis. The FASEB Journal, 23, 405–414.PubMed Kawamori, T., Kaneshiro, T., Okumura, M., Maalouf, S., Uflacker, A., Bielawski, J., et al. (2009). Role for sphingosine kinase 1 in colon carcinogenesis. The FASEB Journal, 23, 405–414.PubMed
47.
go back to reference Malavaud, B., Pchejetski, D., Mazerolles, C., de Paiva, G. R., Calvet, C., Doumerc, N., et al. (2010). Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. European Journal of Cancer, 46, 3417–3424.PubMed Malavaud, B., Pchejetski, D., Mazerolles, C., de Paiva, G. R., Calvet, C., Doumerc, N., et al. (2010). Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. European Journal of Cancer, 46, 3417–3424.PubMed
48.
go back to reference Song, L., Xiong, H., Li, J., Liao, W., Wang, L., Wu, J., et al. (2011). Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clinical Cancer Research, 17, 1839–1849.PubMed Song, L., Xiong, H., Li, J., Liao, W., Wang, L., Wu, J., et al. (2011). Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clinical Cancer Research, 17, 1839–1849.PubMed
49.
go back to reference Marfe, G., Di Stefano, C., Gambacurta, A., Ottone, T., Martini, V., Abruzzese, E., et al. (2011). Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Experimental Hematology, 39, 653–665.e6.PubMed Marfe, G., Di Stefano, C., Gambacurta, A., Ottone, T., Martini, V., Abruzzese, E., et al. (2011). Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Experimental Hematology, 39, 653–665.e6.PubMed
50.
go back to reference Li, J., Guan, H. Y., Gong, L. Y., Song, L. B., Zhang, N., Wu, J., et al. (2008). Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clinical Cancer Research, 14, 6996–7003.PubMed Li, J., Guan, H. Y., Gong, L. Y., Song, L. B., Zhang, N., Wu, J., et al. (2008). Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clinical Cancer Research, 14, 6996–7003.PubMed
51.
go back to reference Van Brocklyn, J. R., Jackson, C. A., Pearl, D. K., Kotur, M. S., Snyder, P. J., & Prior, T. W. (2005). Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. Journal of Neuropathology and Experimental Neurology, 64, 695–705.PubMed Van Brocklyn, J. R., Jackson, C. A., Pearl, D. K., Kotur, M. S., Snyder, P. J., & Prior, T. W. (2005). Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. Journal of Neuropathology and Experimental Neurology, 64, 695–705.PubMed
52.
go back to reference Nava, V. E., Hobson, J. P., Murthy, S., Milstien, S., & Spiegel, S. (2002). Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Experimental Cell Research, 281, 115–127.PubMed Nava, V. E., Hobson, J. P., Murthy, S., Milstien, S., & Spiegel, S. (2002). Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Experimental Cell Research, 281, 115–127.PubMed
53.
go back to reference Osborne, C. K., Hamilton, B., Titus, G., & Livingston, R. B. (1980). Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Research, 40, 2361–2366.PubMed Osborne, C. K., Hamilton, B., Titus, G., & Livingston, R. B. (1980). Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Research, 40, 2361–2366.PubMed
54.
go back to reference Li, Q. F., Huang, W. R., Duan, H. F., Wang, H., Wu, C. T., & Wang, L. S. (2007). Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene, 26, 7904–7908.PubMed Li, Q. F., Huang, W. R., Duan, H. F., Wang, H., Wu, C. T., & Wang, L. S. (2007). Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene, 26, 7904–7908.PubMed
55.
go back to reference Salas, A., Ponnusamy, S., Senkal, C. E., Meyers-Needham, M., Selvam, S. P., Saddoughi, S. A., et al. (2011). Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood, 117, 5941–5952.PubMed Salas, A., Ponnusamy, S., Senkal, C. E., Meyers-Needham, M., Selvam, S. P., Saddoughi, S. A., et al. (2011). Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood, 117, 5941–5952.PubMed
56.
go back to reference Liu, H., Toman, R. E., Goparaju, S. K., Maceyka, M., Nava, V. E., Sankala, H., et al. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. Journal of Biological Chemistry, 278, 40330–40336.PubMed Liu, H., Toman, R. E., Goparaju, S. K., Maceyka, M., Nava, V. E., Sankala, H., et al. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. Journal of Biological Chemistry, 278, 40330–40336.PubMed
57.
go back to reference Sankala, H. M., Hait, N. C., Paugh, S. W., Shida, D., Lepine, S., Elmore, L. W., et al. (2007). Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Research, 67, 10466–10474.PubMed Sankala, H. M., Hait, N. C., Paugh, S. W., Shida, D., Lepine, S., Elmore, L. W., et al. (2007). Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Research, 67, 10466–10474.PubMed
58.
go back to reference Weigert, A., Johann, A. M., von Knethen, A., Schmidt, H., Geisslinger, G., & Brune, B. (2006). Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood, 108, 1635–1642.PubMed Weigert, A., Johann, A. M., von Knethen, A., Schmidt, H., Geisslinger, G., & Brune, B. (2006). Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood, 108, 1635–1642.PubMed
59.
go back to reference Weigert, A., Cremer, S., Schmidt, M. V., von Knethen, A., Angioni, C., Geisslinger, G., et al. (2010). Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood, 115, 3531–3540.PubMed Weigert, A., Cremer, S., Schmidt, M. V., von Knethen, A., Angioni, C., Geisslinger, G., et al. (2010). Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood, 115, 3531–3540.PubMed
60.
go back to reference Gude, D. R., Alvarez, S. E., Paugh, S. W., Mitra, P., Yu, J., Griffiths, R., et al. (2008). Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. The FASEB Journal, 22, 2629–2638.PubMed Gude, D. R., Alvarez, S. E., Paugh, S. W., Mitra, P., Yu, J., Griffiths, R., et al. (2008). Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. The FASEB Journal, 22, 2629–2638.PubMed
61.
go back to reference Gu, Y., Forostyan, T., Sabbadini, R., & Rosenblatt, J. (2011). Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. The Journal of Cell Biology, 193, 667–676.PubMed Gu, Y., Forostyan, T., Sabbadini, R., & Rosenblatt, J. (2011). Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. The Journal of Cell Biology, 193, 667–676.PubMed
62.
go back to reference Hait, N. C., Bellamy, A., Milstien, S., Kordula, T., & Spiegel, S. (2007). Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. Journal of Biological Chemistry, 282, 12058–12065.PubMed Hait, N. C., Bellamy, A., Milstien, S., Kordula, T., & Spiegel, S. (2007). Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. Journal of Biological Chemistry, 282, 12058–12065.PubMed
63.
go back to reference Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S., & Spiegel, S. (2003). The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Letters, 554, 189–193.PubMed Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S., & Spiegel, S. (2003). The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Letters, 554, 189–193.PubMed
64.
go back to reference Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., et al. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427, 355–360.PubMed Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., et al. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427, 355–360.PubMed
65.
go back to reference Martin, R. (2010). Multiple sclerosis: closing in on an oral treatment. Nature, 464, 360–362.PubMed Martin, R. (2010). Multiple sclerosis: closing in on an oral treatment. Nature, 464, 360–362.PubMed
66.
go back to reference Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S., & Spiegel, S. (2002). Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. The Journal of Cell Biology, 158, 1039–1049.PubMed Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S., & Spiegel, S. (2002). Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. The Journal of Cell Biology, 158, 1039–1049.PubMed
67.
go back to reference Pyne, S., Lee, S. C., Long, J., & Pyne, N. J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cellular Signalling, 21, 14–21.PubMed Pyne, S., Lee, S. C., Long, J., & Pyne, N. J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cellular Signalling, 21, 14–21.PubMed
68.
go back to reference Sciorra, V. A., & Morris, A. J. (1999). Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Molecular Biology of the Cell, 10, 3863–3876.PubMed Sciorra, V. A., & Morris, A. J. (1999). Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Molecular Biology of the Cell, 10, 3863–3876.PubMed
69.
go back to reference Nanjundan, M., & Possmayer, F. (2001). Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms. Biochemical Journal, 358, 637–646.PubMed Nanjundan, M., & Possmayer, F. (2001). Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms. Biochemical Journal, 358, 637–646.PubMed
70.
go back to reference Kai, M., Sakane, F., Jia, Y. J., Imai, S., Yasuda, S., & Kanoh, H. (2006). Lipid phosphate phosphatases 1 and 3 are localized in distinct lipid rafts. Journal of Biochemistry, 140, 677–686.PubMed Kai, M., Sakane, F., Jia, Y. J., Imai, S., Yasuda, S., & Kanoh, H. (2006). Lipid phosphate phosphatases 1 and 3 are localized in distinct lipid rafts. Journal of Biochemistry, 140, 677–686.PubMed
71.
go back to reference Jia, Y. J., Kai, M., Wada, I., Sakane, F., & Kanoh, H. (2003). Differential localization of lipid phosphate phosphatases 1 and 3 to cell surface subdomains in polarized MDCK cells. FEBS Letters, 552, 240–246.PubMed Jia, Y. J., Kai, M., Wada, I., Sakane, F., & Kanoh, H. (2003). Differential localization of lipid phosphate phosphatases 1 and 3 to cell surface subdomains in polarized MDCK cells. FEBS Letters, 552, 240–246.PubMed
72.
go back to reference Alderton, F., Darroch, P., Sambi, B., McKie, A., Ahmed, I. S., Pyne, N., et al. (2001). G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. Journal of Biological Chemistry, 276, 13452–13460.PubMed Alderton, F., Darroch, P., Sambi, B., McKie, A., Ahmed, I. S., Pyne, N., et al. (2001). G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. Journal of Biological Chemistry, 276, 13452–13460.PubMed
73.
go back to reference Kai, M., Wada, I., Imai, S., Sakane, F., & Kanoh, H. (1997). Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. Journal of Biological Chemistry, 272, 24572–24578.PubMed Kai, M., Wada, I., Imai, S., Sakane, F., & Kanoh, H. (1997). Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. Journal of Biological Chemistry, 272, 24572–24578.PubMed
74.
go back to reference Ulrix, W., Swinnen, J. V., Heyns, W., & Verhoeven, G. (1998). Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. Journal of Biological Chemistry, 273, 4660–4665.PubMed Ulrix, W., Swinnen, J. V., Heyns, W., & Verhoeven, G. (1998). Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. Journal of Biological Chemistry, 273, 4660–4665.PubMed
75.
go back to reference Mandala, S. M., Thornton, R., Galve-Roperh, I., Poulton, S., Peterson, C., Olivera, A., et al. (2000). Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proceedings of the National Academy of Sciences of the United States of America, 97, 7859–7864.PubMed Mandala, S. M., Thornton, R., Galve-Roperh, I., Poulton, S., Peterson, C., Olivera, A., et al. (2000). Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proceedings of the National Academy of Sciences of the United States of America, 97, 7859–7864.PubMed
76.
go back to reference Lepine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., & Spiegel, S. (2011). Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death and Differentiation, 18, 350–361.PubMed Lepine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., & Spiegel, S. (2011). Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death and Differentiation, 18, 350–361.PubMed
77.
go back to reference Ogawa, C., Kihara, A., Gokoh, M., & Igarashi, Y. (2003). Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. Journal of Biological Chemistry, 278, 1268–1272.PubMed Ogawa, C., Kihara, A., Gokoh, M., & Igarashi, Y. (2003). Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. Journal of Biological Chemistry, 278, 1268–1272.PubMed
78.
go back to reference Mechtcheriakova, D., Wlachos, A., Sobanov, J., Kopp, T., Reuschel, R., Bornancin, F., et al. (2007). Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cellular Signalling, 19, 748–760.PubMed Mechtcheriakova, D., Wlachos, A., Sobanov, J., Kopp, T., Reuschel, R., Bornancin, F., et al. (2007). Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cellular Signalling, 19, 748–760.PubMed
79.
go back to reference Bandhuvula, P., & Saba, J. D. (2007). Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends in Molecular Medicine, 13, 210–217.PubMed Bandhuvula, P., & Saba, J. D. (2007). Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends in Molecular Medicine, 13, 210–217.PubMed
80.
go back to reference Van Veldhoven, P. P., Gijsbers, S., Mannaerts, G. P., Vermeesch, J. R., & Brys, V. (2000). Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochimica et Biophysica Acta, 1487, 128–134.PubMed Van Veldhoven, P. P., Gijsbers, S., Mannaerts, G. P., Vermeesch, J. R., & Brys, V. (2000). Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochimica et Biophysica Acta, 1487, 128–134.PubMed
81.
go back to reference Colie, S., Van Veldhoven, P. P., Kedjouar, B., Bedia, C., Albinet, V., Sorli, S. C., et al. (2009). Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Research, 69, 9346–9353.PubMed Colie, S., Van Veldhoven, P. P., Kedjouar, B., Bedia, C., Albinet, V., Sorli, S. C., et al. (2009). Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Research, 69, 9346–9353.PubMed
82.
go back to reference Allende, M. L., Bektas, M., Lee, B. G., Bonifacino, E., Kang, J., Tuymetova, G., et al. (2011). Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. Journal of Biological Chemistry, 286, 7348–7358.PubMed Allende, M. L., Bektas, M., Lee, B. G., Bonifacino, E., Kang, J., Tuymetova, G., et al. (2011). Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. Journal of Biological Chemistry, 286, 7348–7358.PubMed
83.
go back to reference Min, J., Van Veldhoven, P. P., Zhang, L., Hanigan, M. H., Alexander, H., & Alexander, S. (2005). Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Molecular Cancer Research, 3, 287–296.PubMed Min, J., Van Veldhoven, P. P., Zhang, L., Hanigan, M. H., Alexander, H., & Alexander, S. (2005). Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Molecular Cancer Research, 3, 287–296.PubMed
84.
go back to reference Oskouian, B., Sooriyakumaran, P., Borowsky, A. D., Crans, A., Dillard-Telm, L., Tam, Y. Y., et al. (2006). Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 103, 17384–17389.PubMed Oskouian, B., Sooriyakumaran, P., Borowsky, A. D., Crans, A., Dillard-Telm, L., Tam, Y. Y., et al. (2006). Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 103, 17384–17389.PubMed
85.
go back to reference Kumar, A., Oskouian, B., Fyrst, H., Zhang, M., Paris, F., & Saba, J. D. (2011). S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism. Cell Death and Disease, 2, e119.PubMed Kumar, A., Oskouian, B., Fyrst, H., Zhang, M., Paris, F., & Saba, J. D. (2011). S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism. Cell Death and Disease, 2, e119.PubMed
86.
go back to reference Min, J., Stegner, A. L., Alexander, H., & Alexander, S. (2004). Overexpression of sphingosine-1-phosphate lyase or inhibition of sphingosine kinase in Dictyostelium discoideum results in a selective increase in sensitivity to platinum-based chemotherapy drugs. Eukaryotic Cell, 3, 795–805.PubMed Min, J., Stegner, A. L., Alexander, H., & Alexander, S. (2004). Overexpression of sphingosine-1-phosphate lyase or inhibition of sphingosine kinase in Dictyostelium discoideum results in a selective increase in sensitivity to platinum-based chemotherapy drugs. Eukaryotic Cell, 3, 795–805.PubMed
87.
go back to reference Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews. Cancer, 10, 489–503.PubMed Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews. Cancer, 10, 489–503.PubMed
88.
go back to reference Maceyka, M., Milstien, S., & Spiegel, S. (2009). Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. Journal of Lipid Research, 50(Suppl), S272–S276.PubMed Maceyka, M., Milstien, S., & Spiegel, S. (2009). Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. Journal of Lipid Research, 50(Suppl), S272–S276.PubMed
89.
go back to reference Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., et al. (1998). Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science, 279, 1552–1555.PubMed Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., et al. (1998). Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science, 279, 1552–1555.PubMed
90.
go back to reference Wang, F., Van Brocklyn, J. R., Hobson, J. P., Movafagh, S., Zukowska-Grojec, Z., Milstien, S., et al. (1999). Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. Journal of Biological Chemistry, 274, 35343–35350.PubMed Wang, F., Van Brocklyn, J. R., Hobson, J. P., Movafagh, S., Zukowska-Grojec, Z., Milstien, S., et al. (1999). Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. Journal of Biological Chemistry, 274, 35343–35350.PubMed
91.
go back to reference Lee, M. J., Thangada, S., Paik, J. H., Sapkota, G. P., Ancellin, N., Chae, S. S., et al. (2001). Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Molecular Cell, 8, 693–704.PubMed Lee, M. J., Thangada, S., Paik, J. H., Sapkota, G. P., Ancellin, N., Chae, S. S., et al. (2001). Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Molecular Cell, 8, 693–704.PubMed
92.
go back to reference Rosenfeldt, H. M., Hobson, J. P., Milstien, S., & Spiegel, S. (2001). The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility. Biochemical Society Transactions, 29, 836–839.PubMed Rosenfeldt, H. M., Hobson, J. P., Milstien, S., & Spiegel, S. (2001). The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility. Biochemical Society Transactions, 29, 836–839.PubMed
93.
go back to reference Graler, M. H., Grosse, R., Kusch, A., Kremmer, E., Gudermann, T., & Lipp, M. (2003). The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. Journal of Cellular Biochemistry, 89, 507–519.PubMed Graler, M. H., Grosse, R., Kusch, A., Kremmer, E., Gudermann, T., & Lipp, M. (2003). The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. Journal of Cellular Biochemistry, 89, 507–519.PubMed
94.
go back to reference Takuwa, Y., Takuwa, N., & Sugimoto, N. (2002). The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. Journal of Biochemistry, 131, 767–771.PubMed Takuwa, Y., Takuwa, N., & Sugimoto, N. (2002). The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. Journal of Biochemistry, 131, 767–771.PubMed
95.
go back to reference Bryan, L., Paugh, B. S., Kapitonov, D., Wilczynska, K. M., Alvarez, S. M., Singh, S. K., et al. (2008). Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness. Molecular Cancer Research, 6, 1469–1477.PubMed Bryan, L., Paugh, B. S., Kapitonov, D., Wilczynska, K. M., Alvarez, S. M., Singh, S. K., et al. (2008). Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness. Molecular Cancer Research, 6, 1469–1477.PubMed
96.
go back to reference Young, N., Pearl, D. K., & Van Brocklyn, J. R. (2009). Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. Molecular Cancer Research, 7, 23–32.PubMed Young, N., Pearl, D. K., & Van Brocklyn, J. R. (2009). Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. Molecular Cancer Research, 7, 23–32.PubMed
97.
go back to reference LaMontagne, K., Littlewood-Evans, A., Schnell, C., O’Reilly, T., Wyder, L., Sanchez, T., et al. (2006). Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Research, 66, 221–231.PubMed LaMontagne, K., Littlewood-Evans, A., Schnell, C., O’Reilly, T., Wyder, L., Sanchez, T., et al. (2006). Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Research, 66, 221–231.PubMed
98.
go back to reference English, D., Kovala, A. T., Welch, Z., Harvey, K. A., Siddiqui, R. A., Brindley, D. N., et al. (1999). Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. Journal of Hematotherapy & Stem Cell Research, 8, 627–634. English, D., Kovala, A. T., Welch, Z., Harvey, K. A., Siddiqui, R. A., Brindley, D. N., et al. (1999). Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. Journal of Hematotherapy & Stem Cell Research, 8, 627–634.
99.
go back to reference Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., et al. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. The Journal of Clinical Investigation, 106, 951–961.PubMed Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., et al. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. The Journal of Clinical Investigation, 106, 951–961.PubMed
100.
go back to reference Schaphorst, K. L., Chiang, E., Jacobs, K. N., Zaiman, A., Natarajan, V., Wigley, F., et al. (2003). Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L258–L267.PubMed Schaphorst, K. L., Chiang, E., Jacobs, K. N., Zaiman, A., Natarajan, V., Wigley, F., et al. (2003). Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L258–L267.PubMed
101.
go back to reference Schwab, S. R., & Cyster, J. G. (2007). Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunology, 8, 1295–1301.PubMed Schwab, S. R., & Cyster, J. G. (2007). Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunology, 8, 1295–1301.PubMed
102.
go back to reference Rosen, H., Gonzalez-Cabrera, P. J., Sanna, M. G., & Brown, S. (2009). Sphingosine 1-phosphate receptor signaling. Annual Review of Biochemistry, 78, 743–768.PubMed Rosen, H., Gonzalez-Cabrera, P. J., Sanna, M. G., & Brown, S. (2009). Sphingosine 1-phosphate receptor signaling. Annual Review of Biochemistry, 78, 743–768.PubMed
103.
go back to reference Van Brocklyn, J. R. (2010). Regulation of cancer cell migration and invasion by sphingosine-1-phosphate. World Journal of Biological Chemistry, 1, 307–312.PubMed Van Brocklyn, J. R. (2010). Regulation of cancer cell migration and invasion by sphingosine-1-phosphate. World Journal of Biological Chemistry, 1, 307–312.PubMed
104.
go back to reference Takuwa, Y., Du, W., Qi, X., Okamoto, Y., Takuwa, N., & Yoshioka, K. (2010). Roles of sphingosine-1-phosphate signaling in angiogenesis. World Journal of Biological Chemistry, 1, 298–306.PubMed Takuwa, Y., Du, W., Qi, X., Okamoto, Y., Takuwa, N., & Yoshioka, K. (2010). Roles of sphingosine-1-phosphate signaling in angiogenesis. World Journal of Biological Chemistry, 1, 298–306.PubMed
105.
go back to reference Strub, G. M., Maceyka, M., Hait, N. C., Milstien, S., & Spiegel, S. (2010). Extracellular and intracellular actions of sphingosine-1-phosphate. Advances in Experimental Medicine and Biology, 688, 141–155.PubMed Strub, G. M., Maceyka, M., Hait, N. C., Milstien, S., & Spiegel, S. (2010). Extracellular and intracellular actions of sphingosine-1-phosphate. Advances in Experimental Medicine and Biology, 688, 141–155.PubMed
106.
go back to reference Maceyka, M., Alvarez, S. E., Milstien, S., & Spiegel, S. (2008). Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Molecular and Cellular Biology, 28, 5687–5697.PubMed Maceyka, M., Alvarez, S. E., Milstien, S., & Spiegel, S. (2008). Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Molecular and Cellular Biology, 28, 5687–5697.PubMed
107.
go back to reference Watson, C., Long, J. S., Orange, C., Tannahill, C. L., Mallon, E., McGlynn, L. M., et al. (2010). High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. American Journal of Pathology, 177, 2205–2215.PubMed Watson, C., Long, J. S., Orange, C., Tannahill, C. L., Mallon, E., McGlynn, L. M., et al. (2010). High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. American Journal of Pathology, 177, 2205–2215.PubMed
108.
go back to reference Allende, M. L., Yamashita, T., & Proia, R. L. (2003). G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 102, 3665–3667.PubMed Allende, M. L., Yamashita, T., & Proia, R. L. (2003). G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 102, 3665–3667.PubMed
109.
go back to reference Harada, J., Foley, M., Moskowitz, M. A., & Waeber, C. (2004). Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. Journal of Neurochemistry, 88, 1026–1039.PubMed Harada, J., Foley, M., Moskowitz, M. A., & Waeber, C. (2004). Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. Journal of Neurochemistry, 88, 1026–1039.PubMed
110.
go back to reference Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., et al. (2002). Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science, 296, 346–349.PubMed Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., et al. (2002). Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science, 296, 346–349.PubMed
111.
go back to reference Balthasar, S., Samulin, J., Ahlgren, H., Bergelin, N., Lundqvist, M., Toescu, E. C., et al. (2006). Sphingosine 1-phosphate receptor expression profile and regulation of migration in human thyroid cancer cells. Biochemical Journal, 398, 547–556.PubMed Balthasar, S., Samulin, J., Ahlgren, H., Bergelin, N., Lundqvist, M., Toescu, E. C., et al. (2006). Sphingosine 1-phosphate receptor expression profile and regulation of migration in human thyroid cancer cells. Biochemical Journal, 398, 547–556.PubMed
112.
go back to reference Bergelin, N., Lof, C., Balthasar, S., Kalhori, V., & Tornquist, K. (2010). S1P1 and VEGFR-2 form a signaling complex with extracellularly regulated kinase 1/2 and protein kinase C-alpha regulating ML-1 thyroid carcinoma cell migration. Endocrinology, 151, 2994–3005.PubMed Bergelin, N., Lof, C., Balthasar, S., Kalhori, V., & Tornquist, K. (2010). S1P1 and VEGFR-2 form a signaling complex with extracellularly regulated kinase 1/2 and protein kinase C-alpha regulating ML-1 thyroid carcinoma cell migration. Endocrinology, 151, 2994–3005.PubMed
113.
go back to reference Waeber, C., Blondeau, N., & Salomone, S. (2004). Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News & Perspectives, 17, 365–382. Waeber, C., Blondeau, N., & Salomone, S. (2004). Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News & Perspectives, 17, 365–382.
114.
go back to reference Herr, D. R., Grillet, N., Schwander, M., Rivera, R., Muller, U., & Chun, J. (2007). Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. Journal of Neuroscience, 27, 1474–1478.PubMed Herr, D. R., Grillet, N., Schwander, M., Rivera, R., Muller, U., & Chun, J. (2007). Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. Journal of Neuroscience, 27, 1474–1478.PubMed
115.
go back to reference Kono, Y., Nishiuma, T., Nishimura, Y., Kotani, Y., Okada, T., Nakamura, S., et al. (2007). Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. American Journal of Respiratory Cell and Molecular Biology, 37, 395–404.PubMed Kono, Y., Nishiuma, T., Nishimura, Y., Kotani, Y., Okada, T., Nakamura, S., et al. (2007). Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. American Journal of Respiratory Cell and Molecular Biology, 37, 395–404.PubMed
116.
go back to reference MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. European Journal of Neuroscience, 14, 203–209.PubMed MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. European Journal of Neuroscience, 14, 203–209.PubMed
117.
go back to reference Yamashita, H., Kitayama, J., Shida, D., Yamaguchi, H., Mori, K., Osada, M., et al. (2006). Sphingosine 1-phosphate receptor expression profile in human gastric cancer cells: differential regulation on the migration and proliferation. Journal of Surgical Research, 130, 80–87.PubMed Yamashita, H., Kitayama, J., Shida, D., Yamaguchi, H., Mori, K., Osada, M., et al. (2006). Sphingosine 1-phosphate receptor expression profile in human gastric cancer cells: differential regulation on the migration and proliferation. Journal of Surgical Research, 130, 80–87.PubMed
118.
go back to reference Ancellin, N., & Hla, T. (1999). Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. Journal of Biological Chemistry, 274, 18997–19002.PubMed Ancellin, N., & Hla, T. (1999). Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. Journal of Biological Chemistry, 274, 18997–19002.PubMed
119.
go back to reference Sugimoto, N., Takuwa, N., Okamoto, H., Sakurada, S., & Takuwa, Y. (2003). Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Molecular and Cellular Biology, 23, 1534–1545.PubMed Sugimoto, N., Takuwa, N., Okamoto, H., Sakurada, S., & Takuwa, Y. (2003). Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Molecular and Cellular Biology, 23, 1534–1545.PubMed
120.
go back to reference Okamoto, H., Takuwa, N., Yokomizo, T., Sugimoto, N., Sakurada, S., Shigematsu, H., et al. (2000). Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Molecular and Cellular Biology, 20, 9247–9261.PubMed Okamoto, H., Takuwa, N., Yokomizo, T., Sugimoto, N., Sakurada, S., Shigematsu, H., et al. (2000). Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Molecular and Cellular Biology, 20, 9247–9261.PubMed
121.
go back to reference Du, W., Takuwa, N., Yoshioka, K., Okamoto, Y., Gonda, K., Sugihara, K., et al. (2010). S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Research, 70, 772–781.PubMed Du, W., Takuwa, N., Yoshioka, K., Okamoto, Y., Gonda, K., Sugihara, K., et al. (2010). S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Research, 70, 772–781.PubMed
122.
go back to reference Lepley, D., Paik, J. H., Hla, T., & Ferrer, F. (2005). The G protein-coupled receptor S1P2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Research, 65, 3788–3795.PubMed Lepley, D., Paik, J. H., Hla, T., & Ferrer, F. (2005). The G protein-coupled receptor S1P2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Research, 65, 3788–3795.PubMed
123.
go back to reference Paik, J. H., Chae, S., Lee, M. J., Thangada, S., & Hla, T. (2001). Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. Journal of Biological Chemistry, 276, 11830–11837.PubMed Paik, J. H., Chae, S., Lee, M. J., Thangada, S., & Hla, T. (2001). Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. Journal of Biological Chemistry, 276, 11830–11837.PubMed
124.
go back to reference Ishii, I., Friedman, B., Ye, X., Kawamura, S., McGiffert, C., Contos, J. J., et al. (2001). Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. Journal of Biological Chemistry, 276, 33697–33704.PubMed Ishii, I., Friedman, B., Ye, X., Kawamura, S., McGiffert, C., Contos, J. J., et al. (2001). Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. Journal of Biological Chemistry, 276, 33697–33704.PubMed
125.
go back to reference Baudhuin, L. M., Jiang, Y., Zaslavsky, A., Ishii, I., Chun, J., & Xu, Y. (2004). S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR). The FASEB Journal, 18, 341–343.PubMed Baudhuin, L. M., Jiang, Y., Zaslavsky, A., Ishii, I., Chun, J., & Xu, Y. (2004). S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR). The FASEB Journal, 18, 341–343.PubMed
126.
go back to reference Sanna, M. G., Liao, J., Jo, E., Alfonso, C., Ahn, M. Y., Peterson, M. S., et al. (2004). Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. Journal of Biological Chemistry, 279, 13839–13848.PubMed Sanna, M. G., Liao, J., Jo, E., Alfonso, C., Ahn, M. Y., Peterson, M. S., et al. (2004). Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. Journal of Biological Chemistry, 279, 13839–13848.PubMed
127.
go back to reference Forrest, M., Sun, S. Y., Hajdu, R., Bergstrom, J., Card, D., Doherty, G., et al. (2004). Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. Journal of Pharmacology and Experimental Therapeutics, 309, 758–768.PubMed Forrest, M., Sun, S. Y., Hajdu, R., Bergstrom, J., Card, D., Doherty, G., et al. (2004). Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. Journal of Pharmacology and Experimental Therapeutics, 309, 758–768.PubMed
128.
go back to reference Graler, M. H., Bernhardt, G., & Lipp, M. (1998). EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics, 53, 164–169.PubMed Graler, M. H., Bernhardt, G., & Lipp, M. (1998). EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics, 53, 164–169.PubMed
129.
go back to reference Van Brocklyn, J. R., Graler, M. H., Bernhardt, G., Hobson, J. P., Lipp, M., & Spiegel, S. (2000). Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood, 95, 2624–2629.PubMed Van Brocklyn, J. R., Graler, M. H., Bernhardt, G., Hobson, J. P., Lipp, M., & Spiegel, S. (2000). Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood, 95, 2624–2629.PubMed
130.
go back to reference Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., et al. (2000). Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochemical and Biophysical Research Communications, 268, 583–589.PubMed Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., et al. (2000). Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochemical and Biophysical Research Communications, 268, 583–589.PubMed
131.
go back to reference Terai, K., Soga, T., Takahashi, M., Kamohara, M., Ohno, K., Yatsugi, S., et al. (2003). Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience, 116, 1053–1062.PubMed Terai, K., Soga, T., Takahashi, M., Kamohara, M., Ohno, K., Yatsugi, S., et al. (2003). Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience, 116, 1053–1062.PubMed
132.
go back to reference Kothapalli, R., Kusmartseva, I., & Loughran, T. P. (2002). Characterization of a human sphingosine-1-phosphate receptor gene (S1P5) and its differential expression in LGL leukemia. Biochimica et Biophysica Acta, 1579, 117–123.PubMed Kothapalli, R., Kusmartseva, I., & Loughran, T. P. (2002). Characterization of a human sphingosine-1-phosphate receptor gene (S1P5) and its differential expression in LGL leukemia. Biochimica et Biophysica Acta, 1579, 117–123.PubMed
133.
go back to reference Walzer, T., Chiossone, L., Chaix, J., Calver, A., Carozzo, C., Garrigue-Antar, L., et al. (2007). Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunology, 8, 1337–1344.PubMed Walzer, T., Chiossone, L., Chaix, J., Calver, A., Carozzo, C., Garrigue-Antar, L., et al. (2007). Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunology, 8, 1337–1344.PubMed
134.
go back to reference Im, D. S., Heise, C. E., Ancellin, N., O’Dowd, B. F., Shei, G. J., Heavens, R. P., et al. (2000). Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. Journal of Biological Chemistry, 275, 14281–14286.PubMed Im, D. S., Heise, C. E., Ancellin, N., O’Dowd, B. F., Shei, G. J., Heavens, R. P., et al. (2000). Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. Journal of Biological Chemistry, 275, 14281–14286.PubMed
135.
go back to reference Malek, R. L., Toman, R. E., Edsall, L. C., Wong, S., Chiu, J., Letterle, C. A., et al. (2001). Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. Journal of Biological Chemistry, 276, 5692–5699.PubMed Malek, R. L., Toman, R. E., Edsall, L. C., Wong, S., Chiu, J., Letterle, C. A., et al. (2001). Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. Journal of Biological Chemistry, 276, 5692–5699.PubMed
136.
go back to reference Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., et al. (2005). Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. Journal of Neuroscience, 25, 1459–1469.PubMed Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., et al. (2005). Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. Journal of Neuroscience, 25, 1459–1469.PubMed
137.
go back to reference Jenne, C. N., Enders, A., Rivera, R., Watson, S. R., Bankovich, A. J., Pereira, J. P., et al. (2009). T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. The Journal of Experimental Medicine, 206, 2469–2481.PubMed Jenne, C. N., Enders, A., Rivera, R., Watson, S. R., Bankovich, A. J., Pereira, J. P., et al. (2009). T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. The Journal of Experimental Medicine, 206, 2469–2481.PubMed
138.
go back to reference Hu, W. M., Li, L., Jing, B. Q., Zhao, Y. S., Wang, C. L., Feng, L., et al. (2010). Effect of S1P5 on proliferation and migration of human esophageal cancer cells. World Journal of Gastroenterology, 16, 1859–1866.PubMed Hu, W. M., Li, L., Jing, B. Q., Zhao, Y. S., Wang, C. L., Feng, L., et al. (2010). Effect of S1P5 on proliferation and migration of human esophageal cancer cells. World Journal of Gastroenterology, 16, 1859–1866.PubMed
139.
go back to reference Kim, R. H., Takabe, K., Milstien, S., & Spiegel, S. (2009). Export and functions of sphingosine-1-phosphate. Biochimica et Biophysica Acta, 1791, 692–696.PubMed Kim, R. H., Takabe, K., Milstien, S., & Spiegel, S. (2009). Export and functions of sphingosine-1-phosphate. Biochimica et Biophysica Acta, 1791, 692–696.PubMed
140.
go back to reference Sato, K., Malchinkhuu, E., Horiuchi, Y., Mogi, C., Tomura, H., Tosaka, M., et al. (2007). Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. Journal of Neurochemistry, 103, 2610–2619.PubMed Sato, K., Malchinkhuu, E., Horiuchi, Y., Mogi, C., Tomura, H., Tosaka, M., et al. (2007). Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. Journal of Neurochemistry, 103, 2610–2619.PubMed
141.
go back to reference Takabe, K., Kim, R. H., Allegood, J. C., Mitra, P., Ramachandran, S., Nagahashi, M., et al. (2010). Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. Journal of Biological Chemistry, 285, 10477–10486.PubMed Takabe, K., Kim, R. H., Allegood, J. C., Mitra, P., Ramachandran, S., Nagahashi, M., et al. (2010). Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. Journal of Biological Chemistry, 285, 10477–10486.PubMed
142.
go back to reference Lee, Y. M., Venkataraman, K., Hwang, S. I., Han, D. K., & Hla, T. (2007). A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins & Other Lipid Mediators, 84, 154–162. Lee, Y. M., Venkataraman, K., Hwang, S. I., Han, D. K., & Hla, T. (2007). A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins & Other Lipid Mediators, 84, 154–162.
143.
go back to reference Birchwood, C. J., Saba, J. D., Dickson, R. C., & Cunningham, K. W. (2001). Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. Journal of Biological Chemistry, 276, 11712–11718.PubMed Birchwood, C. J., Saba, J. D., Dickson, R. C., & Cunningham, K. W. (2001). Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. Journal of Biological Chemistry, 276, 11712–11718.PubMed
144.
go back to reference Ng, C. K., Carr, K., McAinsh, M. R., Powell, B., & Hetherington, A. M. (2001). Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 410, 596–599.PubMed Ng, C. K., Carr, K., McAinsh, M. R., Powell, B., & Hetherington, A. M. (2001). Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 410, 596–599.PubMed
145.
go back to reference Pandey, S., & Assmann, S. M. (2004). The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. The Plant Cell, 16, 1616–1632.PubMed Pandey, S., & Assmann, S. M. (2004). The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. The Plant Cell, 16, 1616–1632.PubMed
146.
go back to reference Meyer zu Heringdorf, D., Liliom, K., Schaefer, M., Danneberg, K., Jaggar, J. H., Tigyi, G., et al. (2003). Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+ mobilization independently of G-protein-coupled receptors. FEBS Letters, 554, 443–449.PubMed Meyer zu Heringdorf, D., Liliom, K., Schaefer, M., Danneberg, K., Jaggar, J. H., Tigyi, G., et al. (2003). Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+ mobilization independently of G-protein-coupled receptors. FEBS Letters, 554, 443–449.PubMed
147.
go back to reference Ding, G., Sonoda, H., Yu, H., Kajimoto, T., Goparaju, S. K., Jahangeer, S., et al. (2007). Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. Journal of Biological Chemistry, 282, 27493–27502.PubMed Ding, G., Sonoda, H., Yu, H., Kajimoto, T., Goparaju, S. K., Jahangeer, S., et al. (2007). Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. Journal of Biological Chemistry, 282, 27493–27502.PubMed
148.
go back to reference Ledeen, R. W., & Wu, G. (2008). Nuclear sphingolipids: metabolism and signaling. Journal of Lipid Research, 49, 1176–1186.PubMed Ledeen, R. W., & Wu, G. (2008). Nuclear sphingolipids: metabolism and signaling. Journal of Lipid Research, 49, 1176–1186.PubMed
149.
go back to reference Albi, E., Lazzarini, R., & Viola Magni, M. (2008). Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochemical Journal, 410, 381–389.PubMed Albi, E., Lazzarini, R., & Viola Magni, M. (2008). Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochemical Journal, 410, 381–389.PubMed
150.
go back to reference Hassig, C. A., Tong, J. K., Fleischer, T. C., Owa, T., Grable, P. G., Ayer, D. E., et al. (1998). A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 95, 3519–3524.PubMed Hassig, C. A., Tong, J. K., Fleischer, T. C., Owa, T., Grable, P. G., Ayer, D. E., et al. (1998). A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 95, 3519–3524.PubMed
151.
go back to reference Zeng, Y., Tang, C. M., Yao, Y. L., Yang, W. M., & Seto, E. (1998). Cloning and characterization of the mouse histone deacetylase-2 gene. Journal of Biological Chemistry, 273, 28921–28930.PubMed Zeng, Y., Tang, C. M., Yao, Y. L., Yang, W. M., & Seto, E. (1998). Cloning and characterization of the mouse histone deacetylase-2 gene. Journal of Biological Chemistry, 273, 28921–28930.PubMed
152.
go back to reference Igarashi, N., Okada, T., Hayashi, S., Fujita, T., Jahangeer, S., & Nakamura, S. (2003). Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. Journal of Biological Chemistry, 278, 46832–46839.PubMed Igarashi, N., Okada, T., Hayashi, S., Fujita, T., Jahangeer, S., & Nakamura, S. (2003). Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. Journal of Biological Chemistry, 278, 46832–46839.PubMed
153.
go back to reference Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer and Metastasis Reviews, 25, 409–416.PubMed Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer and Metastasis Reviews, 25, 409–416.PubMed
154.
go back to reference Xia, P., Gamble, J. R., Rye, K. A., Wang, L., Hii, C. S., Cockerill, P., et al. (1998). Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 95, 14196–14201.PubMed Xia, P., Gamble, J. R., Rye, K. A., Wang, L., Hii, C. S., Cockerill, P., et al. (1998). Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 95, 14196–14201.PubMed
155.
go back to reference Xia, P., Wang, L., Gamble, J. R., & Vadas, M. A. (1999). Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. Journal of Biological Chemistry, 274, 34499–34505.PubMed Xia, P., Wang, L., Gamble, J. R., & Vadas, M. A. (1999). Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. Journal of Biological Chemistry, 274, 34499–34505.PubMed
156.
go back to reference Takabe, K., Paugh, S. W., Milstien, S., & Spiegel, S. (2008). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacological Reviews, 60, 181–195.PubMed Takabe, K., Paugh, S. W., Milstien, S., & Spiegel, S. (2008). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacological Reviews, 60, 181–195.PubMed
157.
go back to reference De Palma, C., Meacci, E., Perrotta, C., Bruni, P., & Clementi, E. (2006). Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 99–105.PubMed De Palma, C., Meacci, E., Perrotta, C., Bruni, P., & Clementi, E. (2006). Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 99–105.PubMed
158.
go back to reference Scherer, E. Q., Yang, J., Canis, M., Reimann, K., Ivanov, K., Diehl, C. D., et al. (2010). Tumor necrosis factor-alpha enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke, 41, 2618–2624.PubMed Scherer, E. Q., Yang, J., Canis, M., Reimann, K., Ivanov, K., Diehl, C. D., et al. (2010). Tumor necrosis factor-alpha enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke, 41, 2618–2624.PubMed
159.
go back to reference Vann, L. R., Payne, S. G., Edsall, L. C., Twitty, S., Spiegel, S., & Milstien, S. (2002). Involvement of sphingosine kinase in TNF-alpha-stimulated tetrahydrobiopterin biosynthesis in C6 glioma cells. Journal of Biological Chemistry, 277, 12649–12656.PubMed Vann, L. R., Payne, S. G., Edsall, L. C., Twitty, S., Spiegel, S., & Milstien, S. (2002). Involvement of sphingosine kinase in TNF-alpha-stimulated tetrahydrobiopterin biosynthesis in C6 glioma cells. Journal of Biological Chemistry, 277, 12649–12656.PubMed
160.
go back to reference Chen, G., & Goeddel, D. V. (2002). TNF-R1 signaling: a beautiful pathway. Science, 296, 1634–1635.PubMed Chen, G., & Goeddel, D. V. (2002). TNF-R1 signaling: a beautiful pathway. Science, 296, 1634–1635.PubMed
161.
go back to reference Lin, Y., Devin, A., Rodriguez, Y., & Liu, Z. G. (1999). Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes & Development, 13, 2514–2526. Lin, Y., Devin, A., Rodriguez, Y., & Liu, Z. G. (1999). Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes & Development, 13, 2514–2526.
162.
go back to reference Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cellular Signalling, 104, 487–501. Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cellular Signalling, 104, 487–501.
163.
go back to reference Lee, T. K., Man, K., Ho, J. W., Sun, C. K., Ng, K. T., Wang, X. H., et al. (2004). FTY720 induces apoptosis of human hepatoma cell lines through PI3-K-mediated Akt dephosphorylation. Carcinogenesis, 25, 2397–2405.PubMed Lee, T. K., Man, K., Ho, J. W., Sun, C. K., Ng, K. T., Wang, X. H., et al. (2004). FTY720 induces apoptosis of human hepatoma cell lines through PI3-K-mediated Akt dephosphorylation. Carcinogenesis, 25, 2397–2405.PubMed
164.
go back to reference Napolitano, G., & Karin, M. (2010). Sphingolipids: the oil on the TRAFire that promotes inflammation. Science Signaling, 3, pe34.PubMed Napolitano, G., & Karin, M. (2010). Sphingolipids: the oil on the TRAFire that promotes inflammation. Science Signaling, 3, pe34.PubMed
165.
go back to reference Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285–296.PubMed Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285–296.PubMed
166.
go back to reference Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461–466.PubMed Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461–466.PubMed
167.
go back to reference Hoeller, D., & Dikic, I. (2009). Targeting the ubiquitin system in cancer therapy. Nature, 458, 438–444.PubMed Hoeller, D., & Dikic, I. (2009). Targeting the ubiquitin system in cancer therapy. Nature, 458, 438–444.PubMed
168.
go back to reference Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMed Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMed
169.
go back to reference Haglund, K., & Dikic, I. (2005). Ubiquitylation and cell signaling. EMBO Journal, 24, 3353–3359.PubMed Haglund, K., & Dikic, I. (2005). Ubiquitylation and cell signaling. EMBO Journal, 24, 3353–3359.PubMed
170.
go back to reference Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.PubMed Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.PubMed
171.
go back to reference Berger, K. H., & Yaffe, M. P. (1998). Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Molecular and Cellular Biology, 18, 4043–4052.PubMed Berger, K. H., & Yaffe, M. P. (1998). Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Molecular and Cellular Biology, 18, 4043–4052.PubMed
172.
go back to reference Nijtmans, L. G., de Jong, L., Artal Sanz, M., Coates, P. J., Berden, J. A., Back, J. W., et al. (2000). Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO Journal, 19, 2444–2451.PubMed Nijtmans, L. G., de Jong, L., Artal Sanz, M., Coates, P. J., Berden, J. A., Back, J. W., et al. (2000). Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO Journal, 19, 2444–2451.PubMed
173.
go back to reference Nijtmans, L. G., Artal, S. M., Grivell, L. A., & Coates, P. J. (2002). The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cellular and Molecular Life Sciences, 59, 143–155.PubMed Nijtmans, L. G., Artal, S. M., Grivell, L. A., & Coates, P. J. (2002). The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cellular and Molecular Life Sciences, 59, 143–155.PubMed
174.
go back to reference Osman, C., Merkwirth, C., & Langer, T. (2009). Prohibitins and the functional compartmentalization of mitochondrial membranes. Journal of Cell Science, 122, 3823–3830.PubMed Osman, C., Merkwirth, C., & Langer, T. (2009). Prohibitins and the functional compartmentalization of mitochondrial membranes. Journal of Cell Science, 122, 3823–3830.PubMed
175.
go back to reference Coates, P. J., Jamieson, D. J., Smart, K., Prescott, A. R., & Hall, P. A. (1997). The prohibitin family of mitochondrial proteins regulate replicative lifespan. Current Biology, 7, 607–610.PubMed Coates, P. J., Jamieson, D. J., Smart, K., Prescott, A. R., & Hall, P. A. (1997). The prohibitin family of mitochondrial proteins regulate replicative lifespan. Current Biology, 7, 607–610.PubMed
176.
go back to reference Kasashima, K., Ohta, E., Kagawa, Y., & Endo, H. (2006). Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. Journal of Biological Chemistry, 281, 36401–36410.PubMed Kasashima, K., Ohta, E., Kagawa, Y., & Endo, H. (2006). Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. Journal of Biological Chemistry, 281, 36401–36410.PubMed
177.
go back to reference Coates, P. J., Nenutil, R., McGregor, A., Picksley, S. M., Crouch, D. H., Hall, P. A., et al. (2001). Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Experimental Cell Research, 265, 262–273.PubMed Coates, P. J., Nenutil, R., McGregor, A., Picksley, S. M., Crouch, D. H., Hall, P. A., et al. (2001). Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Experimental Cell Research, 265, 262–273.PubMed
178.
go back to reference Manjeshwar, S., Branam, D. E., Lerner, M. R., Brackett, D. J., & Jupe, E. R. (2003). Tumor suppression by the prohibitin gene 3′untranslated region RNA in human breast cancer. Cancer Research, 63, 5251–5256.PubMed Manjeshwar, S., Branam, D. E., Lerner, M. R., Brackett, D. J., & Jupe, E. R. (2003). Tumor suppression by the prohibitin gene 3′untranslated region RNA in human breast cancer. Cancer Research, 63, 5251–5256.PubMed
179.
go back to reference Vassar, R., Kovacs, D. M., Yan, R., & Wong, P. C. (2009). The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. Journal of Neuroscience, 29, 12787–12794.PubMed Vassar, R., Kovacs, D. M., Yan, R., & Wong, P. C. (2009). The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. Journal of Neuroscience, 29, 12787–12794.PubMed
180.
go back to reference Fleck, D., Garratt, A.N., Haass, C., and Willem, M. (2011). BACE1 dependent neuregulin proteolysis. Current Alzheimer Research, in press. Fleck, D., Garratt, A.N., Haass, C., and Willem, M. (2011). BACE1 dependent neuregulin proteolysis. Current Alzheimer Research, in press.
181.
go back to reference Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749–759.PubMed Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749–759.PubMed
182.
go back to reference Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell, 9, 459–470.PubMed Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell, 9, 459–470.PubMed
183.
go back to reference Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., et al. (2009). Apoptosis and cancer: mutations within caspase genes. Journal of Medical Genetics, 46, 497–510.PubMed Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., et al. (2009). Apoptosis and cancer: mutations within caspase genes. Journal of Medical Genetics, 46, 497–510.PubMed
184.
go back to reference Heinrich, M., Wickel, M., Winoto-Morbach, S., Schneider-Brachert, W., Weber, T., Brunner, J., et al. (2000). Ceramide as an activator lipid of cathepsin D. Advances in Experimental Medicine and Biology, 477, 305–315.PubMed Heinrich, M., Wickel, M., Winoto-Morbach, S., Schneider-Brachert, W., Weber, T., Brunner, J., et al. (2000). Ceramide as an activator lipid of cathepsin D. Advances in Experimental Medicine and Biology, 477, 305–315.PubMed
185.
go back to reference Chalfant, C. E., Kishikawa, K., Mumby, M. C., Kamibayashi, C., Bielawska, A., & Hannun, Y. A. (1999). Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. Journal of Biological Chemistry, 274, 20313–20317.PubMed Chalfant, C. E., Kishikawa, K., Mumby, M. C., Kamibayashi, C., Bielawska, A., & Hannun, Y. A. (1999). Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. Journal of Biological Chemistry, 274, 20313–20317.PubMed
186.
go back to reference Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., & Hannun, Y. A. (1993). Ceramide activates heterotrimeric protein phosphatase 2A. Journal of Biological Chemistry, 268, 15523–15530.PubMed Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., & Hannun, Y. A. (1993). Ceramide activates heterotrimeric protein phosphatase 2A. Journal of Biological Chemistry, 268, 15523–15530.PubMed
187.
go back to reference Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B. G., & Bieberich, E. (2005). Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. Journal of Biological Chemistry, 280, 26415–26424.PubMed Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B. G., & Bieberich, E. (2005). Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. Journal of Biological Chemistry, 280, 26415–26424.PubMed
188.
go back to reference Fox, T. E., Houck, K. L., O’Neill, S. M., Nagarajan, M., Stover, T. C., Pomianowski, P. T., et al. (2007). Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. Journal of Biological Chemistry, 282, 12450–12457.PubMed Fox, T. E., Houck, K. L., O’Neill, S. M., Nagarajan, M., Stover, T. C., Pomianowski, P. T., et al. (2007). Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. Journal of Biological Chemistry, 282, 12450–12457.PubMed
189.
go back to reference Cuvillier, O., Rosenthal, D. S., Smulson, M. E., & Spiegel, S. (1998). Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. Journal of Biological Chemistry, 273, 2910–2916.PubMed Cuvillier, O., Rosenthal, D. S., Smulson, M. E., & Spiegel, S. (1998). Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. Journal of Biological Chemistry, 273, 2910–2916.PubMed
190.
go back to reference Cuvillier, O., & Levade, T. (2001). Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood, 98, 2828–2836.PubMed Cuvillier, O., & Levade, T. (2001). Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood, 98, 2828–2836.PubMed
191.
go back to reference Li, Q. F., Wu, C. T., Guo, Q., Wang, H., & Wang, L. S. (2008). Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochemical and Biophysical Research Communications, 371, 159–162.PubMed Li, Q. F., Wu, C. T., Guo, Q., Wang, H., & Wang, L. S. (2008). Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochemical and Biophysical Research Communications, 371, 159–162.PubMed
192.
go back to reference Sauer, B., Gonska, H., Manggau, M., Kim, D. S., Schraut, C., Schafer-Korting, M., et al. (2005). Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie, 60, 298–304.PubMed Sauer, B., Gonska, H., Manggau, M., Kim, D. S., Schraut, C., Schafer-Korting, M., et al. (2005). Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie, 60, 298–304.PubMed
193.
go back to reference Avery, K., Avery, S., Shepherd, J., Heath, P. R., & Moore, H. (2008). Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells and Development, 17, 1195–1205.PubMed Avery, K., Avery, S., Shepherd, J., Heath, P. R., & Moore, H. (2008). Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells and Development, 17, 1195–1205.PubMed
194.
go back to reference Betito, S., & Cuvillier, O. (2006). Regulation by sphingosine 1-phosphate of Bax and Bad activities during apoptosis in a MEK-dependent manner. Biochemical and Biophysical Research Communications, 340, 1273–1277.PubMed Betito, S., & Cuvillier, O. (2006). Regulation by sphingosine 1-phosphate of Bax and Bad activities during apoptosis in a MEK-dependent manner. Biochemical and Biophysical Research Communications, 340, 1273–1277.PubMed
195.
go back to reference Bonhoure, E., Lauret, A., Barnes, D. J., Martin, C., Malavaud, B., Kohama, T., et al. (2008). Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells. Leukemia, 22, 971–979.PubMed Bonhoure, E., Lauret, A., Barnes, D. J., Martin, C., Malavaud, B., Kohama, T., et al. (2008). Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells. Leukemia, 22, 971–979.PubMed
196.
go back to reference Damgaard, R. B., & Gyrd-Hansen, M. (2011). Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity. Discovery Medicine, 11, 221–231.PubMed Damgaard, R. B., & Gyrd-Hansen, M. (2011). Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity. Discovery Medicine, 11, 221–231.PubMed
197.
go back to reference Bonnaud, S., Niaudet, C., Pottier, G., Gaugler, M. H., Millour, J., Barbet, J., et al. (2007). Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Research, 67, 1803–1811.PubMed Bonnaud, S., Niaudet, C., Pottier, G., Gaugler, M. H., Millour, J., Barbet, J., et al. (2007). Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Research, 67, 1803–1811.PubMed
198.
go back to reference Lockman, K., Hinson, J. S., Medlin, M. D., Morris, D., Taylor, J. M., & Mack, C. P. (2004). Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. Journal of Biological Chemistry, 279, 42422–42430.PubMed Lockman, K., Hinson, J. S., Medlin, M. D., Morris, D., Taylor, J. M., & Mack, C. P. (2004). Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. Journal of Biological Chemistry, 279, 42422–42430.PubMed
199.
go back to reference Xia, P., Gamble, J. R., Wang, L., Pitson, S. M., Moretti, P. A., Wattenberg, B. W., et al. (2000). An oncogenic role of sphingosine kinase. Current Biology, 10, 1527–1530.PubMed Xia, P., Gamble, J. R., Wang, L., Pitson, S. M., Moretti, P. A., Wattenberg, B. W., et al. (2000). An oncogenic role of sphingosine kinase. Current Biology, 10, 1527–1530.PubMed
200.
go back to reference Arikawa, K., Takuwa, N., Yamaguchi, H., Sugimoto, N., Kitayama, J., Nagawa, H., et al. (2003). Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. Journal of Biological Chemistry, 278, 32841–32851.PubMed Arikawa, K., Takuwa, N., Yamaguchi, H., Sugimoto, N., Kitayama, J., Nagawa, H., et al. (2003). Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. Journal of Biological Chemistry, 278, 32841–32851.PubMed
201.
go back to reference Van Brocklyn, J. R., Young, N., & Roof, R. (2003). Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Letters, 199, 53–60.PubMed Van Brocklyn, J. R., Young, N., & Roof, R. (2003). Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Letters, 199, 53–60.PubMed
202.
go back to reference Malchinkhuu, E., Sato, K., Maehama, T., Mogi, C., Tomura, H., Ishiuchi, S., et al. (2008). S1P(2) receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. Biochemical and Biophysical Research Communications, 366, 963–968.PubMed Malchinkhuu, E., Sato, K., Maehama, T., Mogi, C., Tomura, H., Ishiuchi, S., et al. (2008). S1P(2) receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. Biochemical and Biophysical Research Communications, 366, 963–968.PubMed
203.
go back to reference Windh, R. T., Lee, M. J., Hla, T., An, S., Barr, A. J., & Manning, D. R. (1999). Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. Journal of Biological Chemistry, 274, 27351–27358.PubMed Windh, R. T., Lee, M. J., Hla, T., An, S., Barr, A. J., & Manning, D. R. (1999). Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. Journal of Biological Chemistry, 274, 27351–27358.PubMed
204.
go back to reference Okamoto, H., Takuwa, N., Yatomi, Y., Gonda, K., Shigematsu, H., & Takuwa, Y. (1999). EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochemical and Biophysical Research Communications, 260, 203–208.PubMed Okamoto, H., Takuwa, N., Yatomi, Y., Gonda, K., Shigematsu, H., & Takuwa, Y. (1999). EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochemical and Biophysical Research Communications, 260, 203–208.PubMed
205.
go back to reference Taha, T. A., Argraves, K. M., & Obeid, L. M. (2004). Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochimica et Biophysica Acta, 1682, 48–55.PubMed Taha, T. A., Argraves, K. M., & Obeid, L. M. (2004). Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochimica et Biophysica Acta, 1682, 48–55.PubMed
206.
go back to reference Waters, C. M., Long, J., Gorshkova, I., Fujiwara, Y., Connell, M., Belmonte, K. E., et al. (2006). Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. The FASEB Journal, 20, 509–511.PubMed Waters, C. M., Long, J., Gorshkova, I., Fujiwara, Y., Connell, M., Belmonte, K. E., et al. (2006). Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. The FASEB Journal, 20, 509–511.PubMed
207.
go back to reference Hsieh, H. L., Sun, C. C., Wu, C. B., Wu, C. Y., Tung, W. H., Wang, H. H., et al. (2008). Sphingosine 1-phosphate induces EGFR expression via Akt/NF-kappaB and ERK/AP-1 pathways in rat vascular smooth muscle cells. Journal of Cellular Biochemistry, 103, 1732–1746.PubMed Hsieh, H. L., Sun, C. C., Wu, C. B., Wu, C. Y., Tung, W. H., Wang, H. H., et al. (2008). Sphingosine 1-phosphate induces EGFR expression via Akt/NF-kappaB and ERK/AP-1 pathways in rat vascular smooth muscle cells. Journal of Cellular Biochemistry, 103, 1732–1746.PubMed
208.
go back to reference Paugh, B. S., Paugh, S. W., Bryan, L., Kapitonov, D., Wilczynska, K. M., Gopalan, S. M., et al. (2008). EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. The FASEB Journal, 22, 455–465.PubMed Paugh, B. S., Paugh, S. W., Bryan, L., Kapitonov, D., Wilczynska, K. M., Gopalan, S. M., et al. (2008). EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. The FASEB Journal, 22, 455–465.PubMed
209.
go back to reference Sukocheva, O., Wadham, C., Holmes, A., Albanese, N., Verrier, E., Feng, F., et al. (2006). Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. The Journal of Cell Biology, 173, 301–310.PubMed Sukocheva, O., Wadham, C., Holmes, A., Albanese, N., Verrier, E., Feng, F., et al. (2006). Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. The Journal of Cell Biology, 173, 301–310.PubMed
210.
go back to reference Shida, D., Kitayama, J., Yamaguchi, H., Yamashita, H., Mori, K., Watanabe, T., et al. (2004). Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. FEBS Letters, 577, 333–338.PubMed Shida, D., Kitayama, J., Yamaguchi, H., Yamashita, H., Mori, K., Watanabe, T., et al. (2004). Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. FEBS Letters, 577, 333–338.PubMed
211.
go back to reference Hart, S., Fischer, O. M., Prenzel, N., Zwick-Wallasch, E., Schneider, M., Hennighausen, L., et al. (2005). GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways. Biological Chemistry, 386, 845–855.PubMed Hart, S., Fischer, O. M., Prenzel, N., Zwick-Wallasch, E., Schneider, M., Hennighausen, L., et al. (2005). GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways. Biological Chemistry, 386, 845–855.PubMed
212.
go back to reference Shida, D., Fang, X., Kordula, T., Takabe, K., Lepine, S., Alvarez, S. E., et al. (2008). Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Research, 68, 6569–6577.PubMed Shida, D., Fang, X., Kordula, T., Takabe, K., Lepine, S., Alvarez, S. E., et al. (2008). Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Research, 68, 6569–6577.PubMed
213.
go back to reference Balthasar, S., Bergelin, N., Lof, C., Vainio, M., Andersson, S., & Tornquist, K. (2008). Interactions between sphingosine-1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid carcinoma cells. Endocrine-Related Cancer, 15, 521–534.PubMed Balthasar, S., Bergelin, N., Lof, C., Vainio, M., Andersson, S., & Tornquist, K. (2008). Interactions between sphingosine-1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid carcinoma cells. Endocrine-Related Cancer, 15, 521–534.PubMed
214.
go back to reference Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H., & Collard, J. G. (1998). Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO Journal, 17, 4066–4074.PubMed Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H., & Collard, J. G. (1998). Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO Journal, 17, 4066–4074.PubMed
215.
go back to reference Li, M. H., Sanchez, T., Yamase, H., Hla, T., Oo, M. L., Pappalardo, A., et al. (2009). S1P/S1P1 signaling stimulates cell migration and invasion in Wilms tumor. Cancer Letters, 276, 171–179.PubMed Li, M. H., Sanchez, T., Yamase, H., Hla, T., Oo, M. L., Pappalardo, A., et al. (2009). S1P/S1P1 signaling stimulates cell migration and invasion in Wilms tumor. Cancer Letters, 276, 171–179.PubMed
216.
go back to reference Devine, K. M., Smicun, Y., Hope, J. M., & Fishman, D. A. (2008). S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. Gynecologic Oncology, 110, 237–245.PubMed Devine, K. M., Smicun, Y., Hope, J. M., & Fishman, D. A. (2008). S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. Gynecologic Oncology, 110, 237–245.PubMed
217.
go back to reference Rachfal, A. W., & Brigstock, D. R. (2005). Structural and functional properties of CCN proteins. Vitamins and Hormones, 70, 69–103.PubMed Rachfal, A. W., & Brigstock, D. R. (2005). Structural and functional properties of CCN proteins. Vitamins and Hormones, 70, 69–103.PubMed
218.
go back to reference Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307.PubMed Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307.PubMed
219.
go back to reference Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40, 294–309.PubMed Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40, 294–309.PubMed
220.
go back to reference Ahmad, M., Long, J. S., Pyne, N. J., & Pyne, S. (2006). The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins & Other Lipid Mediators, 79, 278–286. Ahmad, M., Long, J. S., Pyne, N. J., & Pyne, S. (2006). The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins & Other Lipid Mediators, 79, 278–286.
221.
go back to reference Schwalm, S., Doll, F., Romer, I., Bubnova, S., Pfeilschifter, J., & Huwiler, A. (2008). Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochemical and Biophysical Research Communications, 368, 1020–1025.PubMed Schwalm, S., Doll, F., Romer, I., Bubnova, S., Pfeilschifter, J., & Huwiler, A. (2008). Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochemical and Biophysical Research Communications, 368, 1020–1025.PubMed
222.
go back to reference Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B., & Cuvillier, O. (2008). Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Research, 68, 8635–8642.PubMed Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B., & Cuvillier, O. (2008). Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Research, 68, 8635–8642.PubMed
223.
go back to reference Schnitzer, S. E., Weigert, A., Zhou, J., & Brune, B. (2009). Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells. Molecular Cancer Research, 7, 393–401.PubMed Schnitzer, S. E., Weigert, A., Zhou, J., & Brune, B. (2009). Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells. Molecular Cancer Research, 7, 393–401.PubMed
224.
go back to reference Liu, F., Verin, A. D., Wang, P., Day, R., Wersto, R. P., Chrest, F. J., et al. (2001). Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. American Journal of Respiratory Cell and Molecular Biology, 24, 711–719.PubMed Liu, F., Verin, A. D., Wang, P., Day, R., Wersto, R. P., Chrest, F. J., et al. (2001). Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. American Journal of Respiratory Cell and Molecular Biology, 24, 711–719.PubMed
225.
go back to reference Heo, K., Park, K. A., Kim, Y. H., Kim, S. H., Oh, Y. S., Kim, I. H., et al. (2009). Sphingosine 1-phosphate induces vascular endothelial growth factor expression in endothelial cells. BMB Reports, 42, 685–690.PubMed Heo, K., Park, K. A., Kim, Y. H., Kim, S. H., Oh, Y. S., Kim, I. H., et al. (2009). Sphingosine 1-phosphate induces vascular endothelial growth factor expression in endothelial cells. BMB Reports, 42, 685–690.PubMed
226.
go back to reference Sun, H. Y., Wei, S. P., Xu, R. C., Xu, P. X., & Zhang, W. C. (2010). Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: novel insights into angiogenesis. Biochemical and Biophysical Research Communications, 395, 361–366.PubMed Sun, H. Y., Wei, S. P., Xu, R. C., Xu, P. X., & Zhang, W. C. (2010). Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: novel insights into angiogenesis. Biochemical and Biophysical Research Communications, 395, 361–366.PubMed
227.
go back to reference Igarashi, J., Erwin, P. A., Dantas, A. P., Chen, H., & Michel, T. (2003). VEGF induces S1P1 receptors in endothelial cells: implications for cross-talk between sphingolipid and growth factor receptors. Proceedings of the National Academy of Sciences of the United States of America, 100, 10664–10669.PubMed Igarashi, J., Erwin, P. A., Dantas, A. P., Chen, H., & Michel, T. (2003). VEGF induces S1P1 receptors in endothelial cells: implications for cross-talk between sphingolipid and growth factor receptors. Proceedings of the National Academy of Sciences of the United States of America, 100, 10664–10669.PubMed
228.
go back to reference Chae, S. S., Paik, J. H., Furneaux, H., & Hla, T. (2004). Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. The Journal of Clinical Investigation, 114, 1082–1089.PubMed Chae, S. S., Paik, J. H., Furneaux, H., & Hla, T. (2004). Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. The Journal of Clinical Investigation, 114, 1082–1089.PubMed
229.
go back to reference Krump-Konvalinkova, V., Yasuda, S., Rubic, T., Makarova, N., Mages, J., Erl, W., et al. (2005). Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 546–552.PubMed Krump-Konvalinkova, V., Yasuda, S., Rubic, T., Makarova, N., Mages, J., Erl, W., et al. (2005). Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 546–552.PubMed
230.
go back to reference Visentin, B., Vekich, J. A., Sibbald, B. J., Cavalli, A. L., Moreno, K. M., Matteo, R. G., et al. (2006). Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell, 9, 225–238.PubMed Visentin, B., Vekich, J. A., Sibbald, B. J., Cavalli, A. L., Moreno, K. M., Matteo, R. G., et al. (2006). Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell, 9, 225–238.PubMed
231.
go back to reference Klionsky, D. J., & Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science, 290, 1717–1721.PubMed Klionsky, D. J., & Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science, 290, 1717–1721.PubMed
232.
go back to reference Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132, 27–42.PubMed Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132, 27–42.PubMed
233.
go back to reference Eisenberg-Lerner, A., Bialik, S., Simon, H. U., & Kimchi, A. (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death and Differentiation, 16, 966–975.PubMed Eisenberg-Lerner, A., Bialik, S., Simon, H. U., & Kimchi, A. (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death and Differentiation, 16, 966–975.PubMed
234.
go back to reference Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8, 741–752.PubMed Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8, 741–752.PubMed
235.
go back to reference Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y., & Kondo, S. (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Research, 64, 4286–4293.PubMed Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y., & Kondo, S. (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Research, 64, 4286–4293.PubMed
236.
go back to reference Lavieu, G., Scarlatti, F., Sala, G., Levade, T., Ghidoni, R., Botti, J., et al. (2007). Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy, 3, 45–47.PubMed Lavieu, G., Scarlatti, F., Sala, G., Levade, T., Ghidoni, R., Botti, J., et al. (2007). Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy, 3, 45–47.PubMed
237.
go back to reference Scarlatti, F., Bauvy, C., Ventruti, A., Sala, G., Cluzeaud, F., Vandewalle, A., et al. (2004). Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. Journal of Biological Chemistry, 279, 18384–18391.PubMed Scarlatti, F., Bauvy, C., Ventruti, A., Sala, G., Cluzeaud, F., Vandewalle, A., et al. (2004). Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. Journal of Biological Chemistry, 279, 18384–18391.PubMed
238.
go back to reference Lepine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., & Spiegel, S. (2010). Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death and Differentiation, 18, 350–361.PubMed Lepine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., & Spiegel, S. (2010). Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death and Differentiation, 18, 350–361.PubMed
239.
go back to reference Chang, C. L., Ho, M. C., Lee, P. H., Hsu, C. Y., Huang, W. P., & Lee, H. (2009). S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells. American Journal of Physiology. Cell Physiology, 297, C451–C458.PubMed Chang, C. L., Ho, M. C., Lee, P. H., Hsu, C. Y., Huang, W. P., & Lee, H. (2009). S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells. American Journal of Physiology. Cell Physiology, 297, C451–C458.PubMed
240.
go back to reference Huang, Y. L., Huang, W. P., & Lee, H. (2011). Roles of sphingosine 1-phosphate on tumorigenesis. World Journal of Biological Chemistry, 2, 25–34.PubMed Huang, Y. L., Huang, W. P., & Lee, H. (2011). Roles of sphingosine 1-phosphate on tumorigenesis. World Journal of Biological Chemistry, 2, 25–34.PubMed
241.
go back to reference He, G., & Karin, M. (2011). NF-kappaB and STAT3—key players in liver inflammation and cancer. Cell Research, 21, 159–168.PubMed He, G., & Karin, M. (2011). NF-kappaB and STAT3—key players in liver inflammation and cancer. Cell Research, 21, 159–168.PubMed
242.
go back to reference Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews. Cancer, 9, 798–809.PubMed Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews. Cancer, 9, 798–809.PubMed
243.
go back to reference Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 7, 41–51.PubMed Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 7, 41–51.PubMed
244.
go back to reference Hedvat, M., Huszar, D., Herrmann, A., Gozgit, J. M., Schroeder, A., Sheehy, A., et al. (2009). The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell, 16, 487–497.PubMed Hedvat, M., Huszar, D., Herrmann, A., Gozgit, J. M., Schroeder, A., Sheehy, A., et al. (2009). The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell, 16, 487–497.PubMed
245.
go back to reference Gough, D. J., Corlett, A., Schlessinger, K., Wegrzyn, J., Larner, A. C., & Levy, D. E. (2009). Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science, 324, 1713–1716.PubMed Gough, D. J., Corlett, A., Schlessinger, K., Wegrzyn, J., Larner, A. C., & Levy, D. E. (2009). Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science, 324, 1713–1716.PubMed
246.
go back to reference Pelletier, S., Duhamel, F., Coulombe, P., Popoff, M. R., & Meloche, S. (2003). Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Molecular and Cellular Biology, 23, 1316–1333.PubMed Pelletier, S., Duhamel, F., Coulombe, P., Popoff, M. R., & Meloche, S. (2003). Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Molecular and Cellular Biology, 23, 1316–1333.PubMed
247.
go back to reference Wu, E. H., Lo, R. K., & Wong, Y. H. (2003). Regulation of STAT3 activity by G16-coupled receptors. Biochemical and Biophysical Research Communications, 303, 920–925.PubMed Wu, E. H., Lo, R. K., & Wong, Y. H. (2003). Regulation of STAT3 activity by G16-coupled receptors. Biochemical and Biophysical Research Communications, 303, 920–925.PubMed
248.
go back to reference Ferrand, A., Kowalski-Chauvel, A., Bertrand, C., Escrieut, C., Mathieu, A., Portolan, G., et al. (2005). A novel mechanism for JAK2 activation by a G protein-coupled receptor, the CCK2R: implication of this signaling pathway in pancreatic tumor models. Journal of Biological Chemistry, 280, 10710–10715.PubMed Ferrand, A., Kowalski-Chauvel, A., Bertrand, C., Escrieut, C., Mathieu, A., Portolan, G., et al. (2005). A novel mechanism for JAK2 activation by a G protein-coupled receptor, the CCK2R: implication of this signaling pathway in pancreatic tumor models. Journal of Biological Chemistry, 280, 10710–10715.PubMed
249.
go back to reference Ho, M. K., Su, Y., Yeung, W. W., & Wong, Y. H. (2009). Regulation of transcription factors by heterotrimeric G proteins. Current Molecular Pharmacology, 2, 19–31.PubMed Ho, M. K., Su, Y., Yeung, W. W., & Wong, Y. H. (2009). Regulation of transcription factors by heterotrimeric G proteins. Current Molecular Pharmacology, 2, 19–31.PubMed
250.
go back to reference Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C., et al. (1999). Stat3 as an oncogene. Cell, 98, 295–303.PubMed Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C., et al. (1999). Stat3 as an oncogene. Cell, 98, 295–303.PubMed
251.
go back to reference Devarajan, E., & Huang, S. (2009). STAT3 as a central regulator of tumor metastases. Current Molecular Medicine, 9, 626–633.PubMed Devarajan, E., & Huang, S. (2009). STAT3 as a central regulator of tumor metastases. Current Molecular Medicine, 9, 626–633.PubMed
252.
go back to reference Lee, H., Deng, J., Kujawski, M., Yang, C., Liu, Y., Herrmann, A., et al. (2010). STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine, 16, 1421–1428.PubMed Lee, H., Deng, J., Kujawski, M., Yang, C., Liu, Y., Herrmann, A., et al. (2010). STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine, 16, 1421–1428.PubMed
253.
go back to reference Frias, M. A., James, R. W., Gerber-Wicht, C., & Lang, U. (2009). Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovascular Research, 82, 313–323.PubMed Frias, M. A., James, R. W., Gerber-Wicht, C., & Lang, U. (2009). Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovascular Research, 82, 313–323.PubMed
254.
go back to reference Sekine, Y., Suzuki, K., & Remaley, A. T. (2011). HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion. Prostate, 71, 690–699.PubMed Sekine, Y., Suzuki, K., & Remaley, A. T. (2011). HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion. Prostate, 71, 690–699.PubMed
255.
go back to reference Abbott, C. M., & Proud, C. G. (2004). Translation factors: in sickness and in health. Trends in Biochemical Sciences, 29, 25–31.PubMed Abbott, C. M., & Proud, C. G. (2004). Translation factors: in sickness and in health. Trends in Biochemical Sciences, 29, 25–31.PubMed
256.
go back to reference Ejiri, S. (2002). Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Bioscience, Biotechnology, and Biochemistry, 66, 1–21.PubMed Ejiri, S. (2002). Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Bioscience, Biotechnology, and Biochemistry, 66, 1–21.PubMed
257.
go back to reference Al-Maghrebi, M., Anim, J. T., & Olalu, A. A. (2005). Up-regulation of eukaryotic elongation factor-1 subunits in breast carcinoma. Anticancer Research, 25, 2573–2577.PubMed Al-Maghrebi, M., Anim, J. T., & Olalu, A. A. (2005). Up-regulation of eukaryotic elongation factor-1 subunits in breast carcinoma. Anticancer Research, 25, 2573–2577.PubMed
258.
go back to reference Leclercq, T. M., Moretti, P. A., Vadas, M. A., & Pitson, S. M. (2008). Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. Journal of Biological Chemistry, 283, 9606–9614.PubMed Leclercq, T. M., Moretti, P. A., Vadas, M. A., & Pitson, S. M. (2008). Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. Journal of Biological Chemistry, 283, 9606–9614.PubMed
259.
go back to reference Leclercq, T. M., Moretti, P. A., & Pitson, S. M. (2011). Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene, 30, 372–378.PubMed Leclercq, T. M., Moretti, P. A., & Pitson, S. M. (2011). Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene, 30, 372–378.PubMed
260.
go back to reference Pitson, S. M., Xia, P., Leclercq, T. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., et al. (2005). Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. The Journal of Experimental Medicine, 201, 49–54.PubMed Pitson, S. M., Xia, P., Leclercq, T. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., et al. (2005). Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. The Journal of Experimental Medicine, 201, 49–54.PubMed
261.
go back to reference Shaw, R. J., & Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424–430.PubMed Shaw, R. J., & Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424–430.PubMed
262.
go back to reference Grey, A., Chen, Q., Callon, K., Xu, X., Reid, I. R., & Cornish, J. (2002). The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology, 143, 4755–4763.PubMed Grey, A., Chen, Q., Callon, K., Xu, X., Reid, I. R., & Cornish, J. (2002). The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology, 143, 4755–4763.PubMed
263.
go back to reference Kluk, M. J., & Hla, T. (2001). Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circulation Research, 89, 496–502.PubMed Kluk, M. J., & Hla, T. (2001). Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circulation Research, 89, 496–502.PubMed
264.
go back to reference Chung, T., Crilly, K. S., Anderson, W. H., Mukherjee, J. J., & Kiss, Z. (1997). ATP-dependent choline phosphate-induced mitogenesis in fibroblasts involves activation of pp 70 S6 kinase and phosphatidylinositol 3′-kinase through an extracellular site. Synergistic mitogenic effects of choline phosphate and sphingosine 1-phosphate. Journal of Biological Chemistry, 272, 3064–3072.PubMed Chung, T., Crilly, K. S., Anderson, W. H., Mukherjee, J. J., & Kiss, Z. (1997). ATP-dependent choline phosphate-induced mitogenesis in fibroblasts involves activation of pp 70 S6 kinase and phosphatidylinositol 3′-kinase through an extracellular site. Synergistic mitogenic effects of choline phosphate and sphingosine 1-phosphate. Journal of Biological Chemistry, 272, 3064–3072.PubMed
265.
go back to reference Liu, G., Yang, K., Burns, S., Shrestha, S., & Chi, H. (2010). The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nature Immunology, 11, 1047–1056.PubMed Liu, G., Yang, K., Burns, S., Shrestha, S., & Chi, H. (2010). The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nature Immunology, 11, 1047–1056.PubMed
266.
go back to reference Maeurer, C., Holland, S., Pierre, S., Potstada, W., & Scholich, K. (2009). Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. Cellular Signalling, 21, 293–300.PubMed Maeurer, C., Holland, S., Pierre, S., Potstada, W., & Scholich, K. (2009). Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. Cellular Signalling, 21, 293–300.PubMed
Metadata
Title
Extracellular and intracellular sphingosine-1-phosphate in cancer
Authors
Jessie W. Yester
Etsegenet Tizazu
Kuzhuvelil B. Harikumar
Tomasz Kordula
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9305-0

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine