Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

Expression of secretory calcium-binding phosphoprotein (scpp) genes in medaka during the formation and replacement of pharyngeal teeth

Authors: Tsuyoshi Morita, Shin Matsumoto, Otto Baba

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Analyses of tooth families and tooth-forming units in medaka with regard to tooth replacement cycles and the localization of odontogenic stem cell niches in the pharyngeal dentition clearly indicate that continuous tooth replacement is maintained. The secretory calcium-binding phosphoprotein (scpp) gene cluster is involved in the formation of mineralized tissues, such as dental and bone tissues, and the genes encoding multiple SCPPs are conserved in fish, amphibians, reptiles, and mammals. In the present study, we examined the expression patterns of several scpp genes in the pharyngeal teeth of medaka to elucidate their roles during tooth formation and replacement.

Methods

Himedaka (Japanese medaka, Oryzias latipes) of both sexes (body length: 28 to 33 mm) were used in this study. Real-time quantitative reverse transcription-polymerase chain reaction (PCR) (qPCR) data were evaluated using one-way analysis of variance for multi-group comparisons, and the significance of differences was determined by Tukey’s comparison test. The expression of scpp genes was examined using in situ hybridization (ISH) with a digoxigenin-labeled, single-stranded antisense probe.

Results

qPCR results showed that several scpp genes were strongly expressed in pharyngeal tissues. ISH analysis revealed specific expression of scpp1, scpp5, and sparc in tooth germ, and scpp5 was continually expressed in the odontoblasts of teeth attached to pedicles, but not in the osteoblasts of pedicles. In addition, many scpp genes were expressed in inner dental epithelium (ide), but not in odontoblasts, and scpp2 consistently showed epithelial-specific expression in the functional teeth. Taken together, these data indicate that specific expression of scpp2 and scpp5 may play a critical role in pharyngeal tooth formation in medaka.

Conclusion

We characterized changes in the expression patterns of scpp genes in medaka during the formation and replacement of pharyngeal teeth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wittbrodt J, Shima A, Schartl M. Medaka - a model organism from the far East. Nat Rev Genet. 2002;3:53–64.PubMed Wittbrodt J, Shima A, Schartl M. Medaka - a model organism from the far East. Nat Rev Genet. 2002;3:53–64.PubMed
2.
go back to reference Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-l T, Takeda H, Morishita S, Kohara Y. The medaka draft genome and insights into vertebrate genome evolution. Nature. 2007;447:714–9.PubMed Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-l T, Takeda H, Morishita S, Kohara Y. The medaka draft genome and insights into vertebrate genome evolution. Nature. 2007;447:714–9.PubMed
3.
go back to reference Atukorala ADS, Inohaya K, Baba O, Tabata MJ, Ratnayake RARK, Abduweli D, Kasugai S, Mitani H, Takano Y. Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth. Arch Histol Cytol. 2010;73:139–48.PubMed Atukorala ADS, Inohaya K, Baba O, Tabata MJ, Ratnayake RARK, Abduweli D, Kasugai S, Mitani H, Takano Y. Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth. Arch Histol Cytol. 2010;73:139–48.PubMed
4.
go back to reference Abduweli D, Baba O, Tabata MJ, Higuchi K, Mitani H, Takano Y. Tooth replacement and putative odontogenic stem cell niches in pharyngeal dentition of medaka (Oryzias latipes). Microscopy (Oxf). 2014;63:141–53.PubMed Abduweli D, Baba O, Tabata MJ, Higuchi K, Mitani H, Takano Y. Tooth replacement and putative odontogenic stem cell niches in pharyngeal dentition of medaka (Oryzias latipes). Microscopy (Oxf). 2014;63:141–53.PubMed
5.
go back to reference Mantoku A, Chatani M, Aono K, Inohaya K, Kudo A. Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement. Dev Biol. 2016;409:370–81.PubMed Mantoku A, Chatani M, Aono K, Inohaya K, Kudo A. Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement. Dev Biol. 2016;409:370–81.PubMed
6.
go back to reference Nemoto Y, Higuchi K, Baba O, Kudo A, Takano Y. Multinucleate osteoclasts in medaka as evidence of active bone remodeling. Bone. 2007;40:399–408.PubMed Nemoto Y, Higuchi K, Baba O, Kudo A, Takano Y. Multinucleate osteoclasts in medaka as evidence of active bone remodeling. Bone. 2007;40:399–408.PubMed
7.
go back to reference Kawasaki K, Suzuki T, Weiss KM. Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth. Proc Natl Acad Sci USA. 2005;102:18063–8.PubMedPubMedCentral Kawasaki K, Suzuki T, Weiss KM. Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth. Proc Natl Acad Sci USA. 2005;102:18063–8.PubMedPubMedCentral
8.
go back to reference Kawasaki K. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Genes Evol. 2009;219:147–57.PubMedPubMedCentral Kawasaki K. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Genes Evol. 2009;219:147–57.PubMedPubMedCentral
9.
go back to reference Kawasaki K, Weiss KM. SCPP gene evolution and the dental mineralization continuum. J Dent Res. 2008;87:520–31.PubMed Kawasaki K, Weiss KM. SCPP gene evolution and the dental mineralization continuum. J Dent Res. 2008;87:520–31.PubMed
10.
go back to reference Takano-Yamamoto T, Takemura T, Kitamura Y, Nomura S. Site-specific expression of RNA for osteonectin, osteocalcin and osteopontin revealed by in situ hybridization in rat periodontal ligament during physiological tooth movement. J Histochem Cytochem. 1994;42:885–96.PubMed Takano-Yamamoto T, Takemura T, Kitamura Y, Nomura S. Site-specific expression of RNA for osteonectin, osteocalcin and osteopontin revealed by in situ hybridization in rat periodontal ligament during physiological tooth movement. J Histochem Cytochem. 1994;42:885–96.PubMed
11.
go back to reference Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Uchida T. Tooth enamel and enameloid in actinopterygian fish. Front Mater Sci Chin. 2009;3(2):174–82. Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Uchida T. Tooth enamel and enameloid in actinopterygian fish. Front Mater Sci Chin. 2009;3(2):174–82.
12.
go back to reference Lv Y, Kawasaki K, Li J, Li Y, Bian C, Huang Y, You X, Shi Q. A genomic survey of SCPP family genes in fishes provides novel insights into the evolution of fish scales. Int J Mol Sci. 2017;18:2432.PubMedPubMedCentral Lv Y, Kawasaki K, Li J, Li Y, Bian C, Huang Y, You X, Shi Q. A genomic survey of SCPP family genes in fishes provides novel insights into the evolution of fish scales. Int J Mol Sci. 2017;18:2432.PubMedPubMedCentral
13.
go back to reference Kawasaki K, Mikami M, Nakatomi M, Braasch I, Batzel P, Postletwait HJ, Sato A, Sasagawa I, Ishiyama M. SCPP genes and their relatives in Gar: rapid expansion of mineralization genes in osteichthyans. J Exp Zool B Mol Dev Evol. 2017;328:645–65.PubMed Kawasaki K, Mikami M, Nakatomi M, Braasch I, Batzel P, Postletwait HJ, Sato A, Sasagawa I, Ishiyama M. SCPP genes and their relatives in Gar: rapid expansion of mineralization genes in osteichthyans. J Exp Zool B Mol Dev Evol. 2017;328:645–65.PubMed
14.
go back to reference Mikami M, Ineno T, Thompson AW, Braasch I, Ishiyama M, Kawasaki K. Convergent losses of SCPP genes and ganoid scales among non-teleost actinopterygians. Gene. 2022;811:146091.PubMed Mikami M, Ineno T, Thompson AW, Braasch I, Ishiyama M, Kawasaki K. Convergent losses of SCPP genes and ganoid scales among non-teleost actinopterygians. Gene. 2022;811:146091.PubMed
15.
go back to reference Kawasaki K, Keating JN, Nakatomi M, Welten M, Mikami M, Sasagawa I, Puttick MN, Donoghue PC, Ishiyama M. Coevolution of enamel, ganoin, enameloid, and their matrix SCPP genes in osteichthyans. iScience. 2021;24:102023.PubMedPubMedCentral Kawasaki K, Keating JN, Nakatomi M, Welten M, Mikami M, Sasagawa I, Puttick MN, Donoghue PC, Ishiyama M. Coevolution of enamel, ganoin, enameloid, and their matrix SCPP genes in osteichthyans. iScience. 2021;24:102023.PubMedPubMedCentral
16.
go back to reference Karagic N, Schneider RF, Meyer A, Hulsey CD. A genomic cluster containing novel and conserved genes is associated with cichlid fish dental developmental convergence. Mol Biol Evol. 2020;37:3165–74.PubMed Karagic N, Schneider RF, Meyer A, Hulsey CD. A genomic cluster containing novel and conserved genes is associated with cichlid fish dental developmental convergence. Mol Biol Evol. 2020;37:3165–74.PubMed
17.
go back to reference Rosa JT, Witten PE, Huysseune A. Cells at the edge: the dentin-bone interface in zebrafish teeth. Front Physiol. 2021;12:723210.PubMedPubMedCentral Rosa JT, Witten PE, Huysseune A. Cells at the edge: the dentin-bone interface in zebrafish teeth. Front Physiol. 2021;12:723210.PubMedPubMedCentral
18.
go back to reference Rangwala SH, Kuznetsov A, Ananiev V, Asztalos A, Borodin E, Evgeniev V, Joukov V, Lotov V, Pannu R, Rudnev D, Shkeda A, Weitz EM, Scneider VA. Accessing NCBI data using the NCBI sequence viewer and Genome Data Viewer (GDV). Genome Res. 2021;31:159–69.PubMedPubMedCentral Rangwala SH, Kuznetsov A, Ananiev V, Asztalos A, Borodin E, Evgeniev V, Joukov V, Lotov V, Pannu R, Rudnev D, Shkeda A, Weitz EM, Scneider VA. Accessing NCBI data using the NCBI sequence viewer and Genome Data Viewer (GDV). Genome Res. 2021;31:159–69.PubMedPubMedCentral
19.
go back to reference Baba O, Ota MS, Terashima T, Tabata MJ, Takano Y. Expression of transcripts for fibroblast growth factor 18 and its possible receptors during postnatal dentin formation in rat molars. Odontology. 2015;103:136–42.PubMed Baba O, Ota MS, Terashima T, Tabata MJ, Takano Y. Expression of transcripts for fibroblast growth factor 18 and its possible receptors during postnatal dentin formation in rat molars. Odontology. 2015;103:136–42.PubMed
20.
go back to reference Lin Q, Fan S, Zhang Y, Xu M, Zhang H, Yang Y, Lee AP, Woltering JM, Ravi V, Gunter HM, Luo W, Gao Z, Lim ZW, Qin G, Schneider RF, Wang X, Xiong P, Li G, Wang K, Min J, Zhang C, Qiu Y, Bai J, He W, Bian C, Zhang X, Shan D, Qu H, Sun Y, Gao Q, Huang L, Shi Q, Meyer A, Venkatesh B. The seahorse genome and the evolution of its specialized morphology. Nature. 2016;540:395–9.PubMedPubMedCentral Lin Q, Fan S, Zhang Y, Xu M, Zhang H, Yang Y, Lee AP, Woltering JM, Ravi V, Gunter HM, Luo W, Gao Z, Lim ZW, Qin G, Schneider RF, Wang X, Xiong P, Li G, Wang K, Min J, Zhang C, Qiu Y, Bai J, He W, Bian C, Zhang X, Shan D, Qu H, Sun Y, Gao Q, Huang L, Shi Q, Meyer A, Venkatesh B. The seahorse genome and the evolution of its specialized morphology. Nature. 2016;540:395–9.PubMedPubMedCentral
21.
go back to reference Qu M, Liu Y, Zhang Y, Wan S, Ravi V, Qin G, Jiang H, Wang X, Zhang H, Zhang B, Gao Z, Huysseune A, Zhang Z, Zhang H, Chen Z, Yu H, Wu Y, Tang L, Li C, Zhong J, Ma L, Wang F, Zheng H, Yin J, Witten PE, Meyer A, Venkatesh B, Lin Q. Seadragon genome analysis provides insights into its phenotype and sex determination locus. Sci Adv. 2021;7(34):5196. Qu M, Liu Y, Zhang Y, Wan S, Ravi V, Qin G, Jiang H, Wang X, Zhang H, Zhang B, Gao Z, Huysseune A, Zhang Z, Zhang H, Chen Z, Yu H, Wu Y, Tang L, Li C, Zhong J, Ma L, Wang F, Zheng H, Yin J, Witten PE, Meyer A, Venkatesh B, Lin Q. Seadragon genome analysis provides insights into its phenotype and sex determination locus. Sci Adv. 2021;7(34):5196.
22.
go back to reference Baba O, Qin C, Brunn JC, Jones JE, Wygant JN, McIntyre BW, Butler WT. Detection of dentin sialoprotein in rat periodontium. Eur J Oral Sci. 2004;112:163–70.PubMed Baba O, Qin C, Brunn JC, Jones JE, Wygant JN, McIntyre BW, Butler WT. Detection of dentin sialoprotein in rat periodontium. Eur J Oral Sci. 2004;112:163–70.PubMed
23.
go back to reference Balic A, Mina M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone. 2011;48:927–37.PubMed Balic A, Mina M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone. 2011;48:927–37.PubMed
24.
go back to reference Nishio C, Wazen R, Kuroda S, Moffatt P, Nanci A. Expression pattern of odontogenic ameloblast-associated and amelotin during formation and regeneration of the junctional epithelium. Eur Cell Mater. 2010;20:393–402.PubMed Nishio C, Wazen R, Kuroda S, Moffatt P, Nanci A. Expression pattern of odontogenic ameloblast-associated and amelotin during formation and regeneration of the junctional epithelium. Eur Cell Mater. 2010;20:393–402.PubMed
25.
go back to reference Lee HK, Park SJ, Oh HJ, Kim JW, Bae HS, Park JC. Expression pattern, subcellular localization, and functional implications of ODAM in ameloblasts, odontoblasts, osteoblasts, and various cancer cells. Gene Expr Patterns. 2012;12:102–8.PubMed Lee HK, Park SJ, Oh HJ, Kim JW, Bae HS, Park JC. Expression pattern, subcellular localization, and functional implications of ODAM in ameloblasts, odontoblasts, osteoblasts, and various cancer cells. Gene Expr Patterns. 2012;12:102–8.PubMed
26.
go back to reference Lee HK, Lee DS, Ryoo HM, Park JT, Park SJ, Bae HS, Cho MI, Park JC. The odontogenic ameloblast-associated protein (ODAM) cooperates with RUNX2 and modulates enamel mineralization via regulation of MMP-20. JCell Biochem. 2010;111:755–67. Lee HK, Lee DS, Ryoo HM, Park JT, Park SJ, Bae HS, Cho MI, Park JC. The odontogenic ameloblast-associated protein (ODAM) cooperates with RUNX2 and modulates enamel mineralization via regulation of MMP-20. JCell Biochem. 2010;111:755–67.
27.
go back to reference Moffatt P, Smith CE, St-Arnaud R, Nanci A. Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia. J Cell Biochem. 2008;103:941–56.PubMed Moffatt P, Smith CE, St-Arnaud R, Nanci A. Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia. J Cell Biochem. 2008;103:941–56.PubMed
28.
go back to reference Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, Jiang C, Sun L, Wang R, Zhang Y, Zhou T, Zeng Q, Fu Q, Gao S, Li N, Koren S, Jiang Y, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun F, Li C, Wang X, Chen A, Jin Y, Yuan Z, Yang Y, Tan S, Peatman E, Lu J, Qin Z, Dunham R, Li Z, Sonstegard T, Feng J, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu H, Armbruster J, Xie Y, Kirby ML, Tian Y, Flanagan ME, Mu W, Waldbieser GC. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun. 2016;7:11757.PubMedPubMedCentral Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, Jiang C, Sun L, Wang R, Zhang Y, Zhou T, Zeng Q, Fu Q, Gao S, Li N, Koren S, Jiang Y, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun F, Li C, Wang X, Chen A, Jin Y, Yuan Z, Yang Y, Tan S, Peatman E, Lu J, Qin Z, Dunham R, Li Z, Sonstegard T, Feng J, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu H, Armbruster J, Xie Y, Kirby ML, Tian Y, Flanagan ME, Mu W, Waldbieser GC. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun. 2016;7:11757.PubMedPubMedCentral
29.
go back to reference Bergen DJM, Tong Q, Shukla A, Newham E, Zethof J, Lundberg M, Ryan R, Youlten SE, Frysz M, Croucher PI, Flik G, Richardson RJ, Kemp JP, Hammond CL, Metz JR. Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol. 2022;20:21.PubMedPubMedCentral Bergen DJM, Tong Q, Shukla A, Newham E, Zethof J, Lundberg M, Ryan R, Youlten SE, Frysz M, Croucher PI, Flik G, Richardson RJ, Kemp JP, Hammond CL, Metz JR. Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease. BMC Biol. 2022;20:21.PubMedPubMedCentral
30.
go back to reference Jono S, Peinado C, Giachelli CM. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem. 2000;275:20197–203.PubMed Jono S, Peinado C, Giachelli CM. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem. 2000;275:20197–203.PubMed
31.
go back to reference Tanabe N, Wheal BD, Kwon J, Chen HH, Shugg R, Sims SM, Goldberg HA, Dixon SJ. Osteopontin signals through calcium and nuclear factor of activated T cells (NFAT) in osteoclasts: a novel RGD-dependent pathway promoting cell survival. J Biol Chem. 2011;286:39871–81.PubMedPubMedCentral Tanabe N, Wheal BD, Kwon J, Chen HH, Shugg R, Sims SM, Goldberg HA, Dixon SJ. Osteopontin signals through calcium and nuclear factor of activated T cells (NFAT) in osteoclasts: a novel RGD-dependent pathway promoting cell survival. J Biol Chem. 2011;286:39871–81.PubMedPubMedCentral
32.
go back to reference Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin - a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA. 1990;87:4473–5.PubMedPubMedCentral Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin - a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA. 1990;87:4473–5.PubMedPubMedCentral
33.
go back to reference Rosset EM, Bradshaw AD. SPARC/osteonectin in mineralized tissue. Matrix Biol. 2016;52:78–87.PubMed Rosset EM, Bradshaw AD. SPARC/osteonectin in mineralized tissue. Matrix Biol. 2016;52:78–87.PubMed
34.
go back to reference Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E. Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest. 2000;105:915–23.PubMedPubMedCentral Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E. Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest. 2000;105:915–23.PubMedPubMedCentral
35.
go back to reference Weigele J, Franz-Odendaal TA, Hilbig R. Expression of SPARC and the osteopontin-like protein OP-L during skeletal development in the cichlid fish Oreochromis mossambicus. Dev Dyn. 2015;244:955–72.PubMed Weigele J, Franz-Odendaal TA, Hilbig R. Expression of SPARC and the osteopontin-like protein OP-L during skeletal development in the cichlid fish Oreochromis mossambicus. Dev Dyn. 2015;244:955–72.PubMed
36.
go back to reference Enault S, Muñoz D, Simion P, Ventéo S, Sire JY, Marcellini S, Debiais-Thibaud M. Evolution of dental tissue mineralization: an analysis of the jawed vertebrate SPARC and SPARC-L families. BMC Evol Biol. 2018;18:127.PubMedPubMedCentral Enault S, Muñoz D, Simion P, Ventéo S, Sire JY, Marcellini S, Debiais-Thibaud M. Evolution of dental tissue mineralization: an analysis of the jawed vertebrate SPARC and SPARC-L families. BMC Evol Biol. 2018;18:127.PubMedPubMedCentral
37.
go back to reference Chaweewannakorn W, Ariyoshi W, Okinaga T, Morikawa K, Saeki K, Maki K, Nishihara T. Ameloblastin and enamelin prevent osteoclast formation by suppressing RANKL expression via MAPK signaling pathway. Biochem Biophys Res Commun. 2017;485:621–6.PubMed Chaweewannakorn W, Ariyoshi W, Okinaga T, Morikawa K, Saeki K, Maki K, Nishihara T. Ameloblastin and enamelin prevent osteoclast formation by suppressing RANKL expression via MAPK signaling pathway. Biochem Biophys Res Commun. 2017;485:621–6.PubMed
38.
go back to reference Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, Millán JL, NocitiJr FH, Somerman MJ. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone. 2018;107:196–207.PubMed Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, Millán JL, NocitiJr FH, Somerman MJ. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone. 2018;107:196–207.PubMed
39.
go back to reference Chan HL, Giannobile WV, Eber RM, Simmer JP, Hu JC. Characterization of periodontal structures of enamelin null mice. J Periodontol. 2013;7:7. Chan HL, Giannobile WV, Eber RM, Simmer JP, Hu JC. Characterization of periodontal structures of enamelin null mice. J Periodontol. 2013;7:7.
40.
go back to reference Miyazaki T, Kanatani N, Rokutana S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T. Inhibition of terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol. 2008;71:131–46.PubMed Miyazaki T, Kanatani N, Rokutana S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T. Inhibition of terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol. 2008;71:131–46.PubMed
41.
go back to reference Yu T, Graf M, Renn J, Schartl M, Larionova D, Huysseune A, Witten PE, Winkler C. A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka. Development. 2017;144:265–71.PubMed Yu T, Graf M, Renn J, Schartl M, Larionova D, Huysseune A, Witten PE, Winkler C. A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka. Development. 2017;144:265–71.PubMed
42.
go back to reference Kague E, Witten PE, Soenens M, Campos CL, Lubiana T, Fisher S, Hammond C, Brown KR, Passos-Bueno MR, Huysseune A. Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev Biol. 2018;435:176–84.PubMed Kague E, Witten PE, Soenens M, Campos CL, Lubiana T, Fisher S, Hammond C, Brown KR, Passos-Bueno MR, Huysseune A. Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev Biol. 2018;435:176–84.PubMed
43.
go back to reference Zhang H, Jiang Y, Qin C, Liu Y, Ho SP, Feng JQ. Essential role of osterix for tooth root but not crown dentin formation. J Bone Miner Res. 2015;30:742–6.PubMed Zhang H, Jiang Y, Qin C, Liu Y, Ho SP, Feng JQ. Essential role of osterix for tooth root but not crown dentin formation. J Bone Miner Res. 2015;30:742–6.PubMed
44.
go back to reference Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn. 2006;235:1167–80.PubMedPubMedCentral Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn. 2006;235:1167–80.PubMedPubMedCentral
45.
go back to reference Hughes DR, Bassett JR, Moffat LA. Structure and origin of the tooth pedicel (the so-called bone of attachment) and dental-ridge bone in the mandibles of the sea breams Acanthopagrus austrMis, Pagrus auratus and Rhabdosargus sarba (Sparidae, Perciformes, Teleostei). Anat Embryol. 1994;189:51–69. Hughes DR, Bassett JR, Moffat LA. Structure and origin of the tooth pedicel (the so-called bone of attachment) and dental-ridge bone in the mandibles of the sea breams Acanthopagrus austrMis, Pagrus auratus and Rhabdosargus sarba (Sparidae, Perciformes, Teleostei). Anat Embryol. 1994;189:51–69.
Metadata
Title
Expression of secretory calcium-binding phosphoprotein (scpp) genes in medaka during the formation and replacement of pharyngeal teeth
Authors
Tsuyoshi Morita
Shin Matsumoto
Otto Baba
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03498-7

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue