Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

A mathematical model for incorporating biofeedback into human postural control

Authors: Tulga Ersal, Kathleen H Sienko

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1) to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2) to validate this new model using multidirectional perturbation experimental results.

Methods

Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP) to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values.

Results

The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP.

Conclusions

The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional torque to the postural controller without a need for sensory reweighting. This novel approach is scalable and applicable to a wide range of movement conditions within the fields of balance and balance rehabilitation. The model confirms experimental results that increased display resolution does not necessarily lead to reduced body sway. To our knowledge, this is the first theoretical confirmation that a spatial display resolution of 180° can be as effective as a spatial resolution of 22.5°.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bach-y-Rita P, Tyler ME: Tongue man–machine interface. In Studies in health technology and informatics. 70th edition. Edited by: Westwood JD, Hoffman HM, Mogel GT, Stredney D, Robb RA. Amsterdam: IOS Press; 2000:17-19. Bach-y-Rita P, Tyler ME: Tongue man–machine interface. In Studies in health technology and informatics. 70th edition. Edited by: Westwood JD, Hoffman HM, Mogel GT, Stredney D, Robb RA. Amsterdam: IOS Press; 2000:17-19.
2.
go back to reference Tyler M, Danilov Y, Bach-Y-Rita P: Closing an open-loop control system: vestibular substitution through the tongue. J Integr Neurosci 2003, 2: 159-164. 10.1142/S0219635203000263CrossRefPubMed Tyler M, Danilov Y, Bach-Y-Rita P: Closing an open-loop control system: vestibular substitution through the tongue. J Integr Neurosci 2003, 2: 159-164. 10.1142/S0219635203000263CrossRefPubMed
3.
go back to reference Danilov YP, Tyler ME, Skinner KL, Hogle RA, Bach-y-Rita P: Efficacy of electrotactile vestibular substitution in patients with peripheral and central vestibular loss. J Vestibular Res-Equilib Orientation 2007, 17: 119-130. Danilov YP, Tyler ME, Skinner KL, Hogle RA, Bach-y-Rita P: Efficacy of electrotactile vestibular substitution in patients with peripheral and central vestibular loss. J Vestibular Res-Equilib Orientation 2007, 17: 119-130.
4.
go back to reference Vuillerme N, Chenu O, Pinsault N, Fleury A, Demongeot J, Payan Y: Can a plantar pressure-based tongue-placed electrotactile biofeedback improve postural control under altered vestibular and neck proprioceptive conditions? Neuroscience 2008, 155: 291-296. 10.1016/j.neuroscience.2008.05.018CrossRefPubMed Vuillerme N, Chenu O, Pinsault N, Fleury A, Demongeot J, Payan Y: Can a plantar pressure-based tongue-placed electrotactile biofeedback improve postural control under altered vestibular and neck proprioceptive conditions? Neuroscience 2008, 155: 291-296. 10.1016/j.neuroscience.2008.05.018CrossRefPubMed
5.
go back to reference Uneri A, Polat S: Vestibular rehabilitation with electrotactile vestibular substitution: Early effects. Eur Arch Otorhinolaryngol 2009, 266: 1199-1203. 10.1007/s00405-008-0886-3CrossRefPubMed Uneri A, Polat S: Vestibular rehabilitation with electrotactile vestibular substitution: Early effects. Eur Arch Otorhinolaryngol 2009, 266: 1199-1203. 10.1007/s00405-008-0886-3CrossRefPubMed
6.
go back to reference Wood SJ, Black FO, MacDougall HG, Moore ST: Electrotactile feedback of sway position improves postural performance during galvanic vestibular stimulation. Basic Clin Aspects Vertigo Dizziness 2009, 1164: 492-498. Wood SJ, Black FO, MacDougall HG, Moore ST: Electrotactile feedback of sway position improves postural performance during galvanic vestibular stimulation. Basic Clin Aspects Vertigo Dizziness 2009, 1164: 492-498.
7.
go back to reference Wall C, Weinberg MS, Schmidt PB, Krebs DE: Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans Biomed Eng 2001, 48: 1153-1161. 10.1109/10.951518CrossRefPubMed Wall C, Weinberg MS, Schmidt PB, Krebs DE: Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans Biomed Eng 2001, 48: 1153-1161. 10.1109/10.951518CrossRefPubMed
8.
go back to reference Kentala E, Vivas J, Wall C: Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol 2003, 112: 404-409.CrossRefPubMed Kentala E, Vivas J, Wall C: Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol 2003, 112: 404-409.CrossRefPubMed
9.
go back to reference Nagel SK, Carl C, Kringe T, Martin R, Konig P: Beyond sensory substitution–learning the sixth sense. J Neural Eng 2005, 2: R13-R26. 10.1088/1741-2560/2/4/R02CrossRefPubMed Nagel SK, Carl C, Kringe T, Martin R, Konig P: Beyond sensory substitution–learning the sixth sense. J Neural Eng 2005, 2: R13-R26. 10.1088/1741-2560/2/4/R02CrossRefPubMed
10.
go back to reference Wall C, Kentala E: Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits. J Vestibular Res-Equilib Orientation 2005, 15: 313-325. Wall C, Kentala E: Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits. J Vestibular Res-Equilib Orientation 2005, 15: 313-325.
11.
go back to reference Peterka RJ, Wall C, Kentala E: Determining the effectiveness of a vibrotactile balance prosthesis. J Vestibular Res-Equilib Orientation 2006, 16: 45-56. Peterka RJ, Wall C, Kentala E: Determining the effectiveness of a vibrotactile balance prosthesis. J Vestibular Res-Equilib Orientation 2006, 16: 45-56.
12.
go back to reference Asseman F, Bronstein AM, Gresty MA: Using vibrotactile feedback of instability to trigger a forward compensatory stepping response. J Neurol 2007, 254: 1555-1561. 10.1007/s00415-007-0587-7CrossRefPubMed Asseman F, Bronstein AM, Gresty MA: Using vibrotactile feedback of instability to trigger a forward compensatory stepping response. J Neurol 2007, 254: 1555-1561. 10.1007/s00415-007-0587-7CrossRefPubMed
13.
go back to reference Dozza M, Wall C, Peterka RJ, Chiari L, Horak FB: Effects of practicing tandem gait with and without vibrotactile biofeedback in subjects with unilateral vestibular loss. J Vestibular Res-Equilib Orientation 2007, 17: 195-204. Dozza M, Wall C, Peterka RJ, Chiari L, Horak FB: Effects of practicing tandem gait with and without vibrotactile biofeedback in subjects with unilateral vestibular loss. J Vestibular Res-Equilib Orientation 2007, 17: 195-204.
14.
go back to reference Sienko KH, Balkwill MD, Oddsson LIE, Wall C: Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. J Vestib Res 2008, 18: 273-285.PubMed Sienko KH, Balkwill MD, Oddsson LIE, Wall C: Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. J Vestib Res 2008, 18: 273-285.PubMed
15.
go back to reference Goebel JA, Sinks BC, Parker BE, Richardson NT, Olowin AB, Cholewiak RW: Effectiveness of head-mounted vibrotactile stimulation in subjects with bilateral vestibular loss: A phase 1 clinical trial. Otol Neurotol 2009, 30: 210-216. 10.1097/MAO.0b013e318194f84dCrossRefPubMed Goebel JA, Sinks BC, Parker BE, Richardson NT, Olowin AB, Cholewiak RW: Effectiveness of head-mounted vibrotactile stimulation in subjects with bilateral vestibular loss: A phase 1 clinical trial. Otol Neurotol 2009, 30: 210-216. 10.1097/MAO.0b013e318194f84dCrossRefPubMed
16.
go back to reference Goodworth AD, Wall C III, Peterka RJ: Influence of feedback parameters on performance of a vibrotactile balance prosthesis. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 397-408.PubMedCentralCrossRefPubMed Goodworth AD, Wall C III, Peterka RJ: Influence of feedback parameters on performance of a vibrotactile balance prosthesis. IEEE Trans Neural Syst Rehabil Eng 2009, 17: 397-408.PubMedCentralCrossRefPubMed
17.
go back to reference Horak FB, Dozza M, Peterka R, Chiari L, Wall C: Vibrotactile biofeedback improves tandem gait in patients with unilateral vestibular loss. Basic Clin Aspects Vertigo Dizziness 2009, 1164: 279-281. Horak FB, Dozza M, Peterka R, Chiari L, Wall C: Vibrotactile biofeedback improves tandem gait in patients with unilateral vestibular loss. Basic Clin Aspects Vertigo Dizziness 2009, 1164: 279-281.
18.
go back to reference Sienko KH, Vichare VV, Balkwill MD, Wall C: Assessment of vibrotactile feedback on postural stability during pseudorandom multidirectional platform motion. IEEE Trans Biomed Eng 2010, 57: 944-952.CrossRefPubMed Sienko KH, Vichare VV, Balkwill MD, Wall C: Assessment of vibrotactile feedback on postural stability during pseudorandom multidirectional platform motion. IEEE Trans Biomed Eng 2010, 57: 944-952.CrossRefPubMed
19.
go back to reference Haggerty S, Jiang L-T, Galeki A, Sienko KH: Effects of vibrotactile feedback on response time and postural stability in older adults. Gait Posture 2012, 35: 523-528. 10.1016/j.gaitpost.2011.10.359PubMedCentralCrossRefPubMed Haggerty S, Jiang L-T, Galeki A, Sienko KH: Effects of vibrotactile feedback on response time and postural stability in older adults. Gait Posture 2012, 35: 523-528. 10.1016/j.gaitpost.2011.10.359PubMedCentralCrossRefPubMed
20.
go back to reference Dozza M, Chiari L, Horak FB: Audio-biofeedback improves balance in patients with bilateral vestibular loss. Arch Phys Med Rehabil 2005, 86: 1401-1403. 10.1016/j.apmr.2004.12.036CrossRefPubMed Dozza M, Chiari L, Horak FB: Audio-biofeedback improves balance in patients with bilateral vestibular loss. Arch Phys Med Rehabil 2005, 86: 1401-1403. 10.1016/j.apmr.2004.12.036CrossRefPubMed
21.
go back to reference Hegeman J, Honegger F, Kupper M, Allum JHJ: The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback. J Vestibular Res-Equilib Orientation 2005, 15: 109-117. Hegeman J, Honegger F, Kupper M, Allum JHJ: The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback. J Vestibular Res-Equilib Orientation 2005, 15: 109-117.
22.
go back to reference Chiari L, Dozza M, Cappello A, Horak FB, Macellari V, Giansanti D: Audio-biofeedback for balance improvement: an accelerometry-based system. IEEE Trans Biomed Eng 2005, 52: 2108-2111. 10.1109/TBME.2005.857673CrossRefPubMed Chiari L, Dozza M, Cappello A, Horak FB, Macellari V, Giansanti D: Audio-biofeedback for balance improvement: an accelerometry-based system. IEEE Trans Biomed Eng 2005, 52: 2108-2111. 10.1109/TBME.2005.857673CrossRefPubMed
23.
go back to reference Ernst A, Singbartl F, Basta D, Seidl RO, Todt I, Eisenschenk A: Short-term rehabilitation of patients with posttraumatic otolith disorders by auditory feedback training: A pilot study. J Vestibular Res-Equilib Orientation 2007, 17: 137-144. Ernst A, Singbartl F, Basta D, Seidl RO, Todt I, Eisenschenk A: Short-term rehabilitation of patients with posttraumatic otolith disorders by auditory feedback training: A pilot study. J Vestibular Res-Equilib Orientation 2007, 17: 137-144.
24.
go back to reference Basta D, Singbartl F, Todt I, Clarke A, Ernst A: Vestibular rehabilitation by auditory feedback in otolith disorders. Gait Posture 2008, 28: 397-404. 10.1016/j.gaitpost.2008.01.006CrossRefPubMed Basta D, Singbartl F, Todt I, Clarke A, Ernst A: Vestibular rehabilitation by auditory feedback in otolith disorders. Gait Posture 2008, 28: 397-404. 10.1016/j.gaitpost.2008.01.006CrossRefPubMed
25.
go back to reference Dozza M, Horak FB, Chiari L: Auditory biofeedback substitutes for loss of sensory information in maintaining stance. Exp Brain Res 2007, 178: 37-48. 10.1007/s00221-006-0709-yCrossRefPubMed Dozza M, Horak FB, Chiari L: Auditory biofeedback substitutes for loss of sensory information in maintaining stance. Exp Brain Res 2007, 178: 37-48. 10.1007/s00221-006-0709-yCrossRefPubMed
26.
go back to reference Davis JR, Carpenter MG, Tschanz R, Meyes S, Debrunner D, Burger J, Allum JHJ: Trunk sway reductions in young and older adults using multi-modal biofeedback. Gait Posture 2010, 31: 465-472. 10.1016/j.gaitpost.2010.02.002CrossRefPubMed Davis JR, Carpenter MG, Tschanz R, Meyes S, Debrunner D, Burger J, Allum JHJ: Trunk sway reductions in young and older adults using multi-modal biofeedback. Gait Posture 2010, 31: 465-472. 10.1016/j.gaitpost.2010.02.002CrossRefPubMed
28.
go back to reference Sienko KH, Balkwill MD, Wall C: How critical is spatial resolution of biofeedback for effective postural control? J Neuroeng Rehabil 2012, 9: 53. 10.1186/1743-0003-9-53PubMedCentralCrossRefPubMed Sienko KH, Balkwill MD, Wall C: How critical is spatial resolution of biofeedback for effective postural control? J Neuroeng Rehabil 2012, 9: 53. 10.1186/1743-0003-9-53PubMedCentralCrossRefPubMed
29.
go back to reference Peterka RJ: Sensorimotor integration in human postural control. J Neurophysiol 2002, 88: 1097-1118.PubMed Peterka RJ: Sensorimotor integration in human postural control. J Neurophysiol 2002, 88: 1097-1118.PubMed
30.
go back to reference Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K: Stiffness control of balance in quiet standing. J Neurophysiol 1998, 80: 1211-1221.PubMed Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K: Stiffness control of balance in quiet standing. J Neurophysiol 1998, 80: 1211-1221.PubMed
31.
go back to reference Johansson R, Magnusson M, Akesson M: Identification of human postural dynamics. IEEE Trans Biomed Eng 1988, 35: 858-869. 10.1109/10.7293CrossRefPubMed Johansson R, Magnusson M, Akesson M: Identification of human postural dynamics. IEEE Trans Biomed Eng 1988, 35: 858-869. 10.1109/10.7293CrossRefPubMed
32.
go back to reference Barin K: Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biol Cybern 1989, 61: 37-50.CrossRefPubMed Barin K: Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biol Cybern 1989, 61: 37-50.CrossRefPubMed
33.
go back to reference Kuo AD: An optimal-control model for analyzing human postural balance. IEEE Trans Biomed Eng 1995, 42: 87-101. 10.1109/10.362914CrossRefPubMed Kuo AD: An optimal-control model for analyzing human postural balance. IEEE Trans Biomed Eng 1995, 42: 87-101. 10.1109/10.362914CrossRefPubMed
34.
go back to reference van der Kooij H, Jacobs R, Koopman B, Grootenboer H: A multisensory integration model of human stance control. Biol Cybern 1999, 80: 299-308. 10.1007/s004220050527CrossRefPubMed van der Kooij H, Jacobs R, Koopman B, Grootenboer H: A multisensory integration model of human stance control. Biol Cybern 1999, 80: 299-308. 10.1007/s004220050527CrossRefPubMed
35.
go back to reference Winter DA: A.B.C. (anatomy, biomechanics and control) of balance during standing and walking. Waterloo, Ontario, Canada: Waterloo Biomechanics; 1995. Winter DA: A.B.C. (anatomy, biomechanics and control) of balance during standing and walking. Waterloo, Ontario, Canada: Waterloo Biomechanics; 1995.
36.
go back to reference Gu MJ, Schultz AB, Shepard NT, Alexander NB: Postural control in young and elderly adults when stance is perturbed: Dynamics. J Biomech 1996, 29: 319-329. 10.1016/0021-9290(95)00052-6CrossRefPubMed Gu MJ, Schultz AB, Shepard NT, Alexander NB: Postural control in young and elderly adults when stance is perturbed: Dynamics. J Biomech 1996, 29: 319-329. 10.1016/0021-9290(95)00052-6CrossRefPubMed
37.
go back to reference Tanaka ML, Ross SD, Nussbaum MA: Mathematical modeling and simulation of seated stability. J Biomech 43: 906-912. Tanaka ML, Ross SD, Nussbaum MA: Mathematical modeling and simulation of seated stability. J Biomech 43: 906-912.
38.
go back to reference Pandy MG, Lin YC, Kim HJ: Muscle coordination of mediolateral balance in normal walking. J Biomech 2010, 43: 2055-2064. 10.1016/j.jbiomech.2010.04.010CrossRefPubMed Pandy MG, Lin YC, Kim HJ: Muscle coordination of mediolateral balance in normal walking. J Biomech 2010, 43: 2055-2064. 10.1016/j.jbiomech.2010.04.010CrossRefPubMed
39.
go back to reference Matjačić Z, Voigt M, Popović D, Sinkjær T: Functional postural responses after perturbations in multiple directions in a standing man: A principle of decoupled control. J Biomech 2001, 34: 187-196. 10.1016/S0021-9290(00)00182-2CrossRefPubMed Matjačić Z, Voigt M, Popović D, Sinkjær T: Functional postural responses after perturbations in multiple directions in a standing man: A principle of decoupled control. J Biomech 2001, 34: 187-196. 10.1016/S0021-9290(00)00182-2CrossRefPubMed
40.
go back to reference Greenwood DT: Principles of dynamics. Upper Saddle River, NJ: Prentice-Hall; 1988. Greenwood DT: Principles of dynamics. Upper Saddle River, NJ: Prentice-Hall; 1988.
41.
go back to reference Qu XD, Nussbaum MA: Evaluation of the roles of passive and active control of balance using a balance control model. J Biomech 2009, 42: 1850-1855. 10.1016/j.jbiomech.2009.05.036CrossRefPubMed Qu XD, Nussbaum MA: Evaluation of the roles of passive and active control of balance using a balance control model. J Biomech 2009, 42: 1850-1855. 10.1016/j.jbiomech.2009.05.036CrossRefPubMed
42.
go back to reference Oddsson LIE, Wall C, McPartland MD, Krebs DE, Tucker CA: Recovery from perturbations during paced walking. Gait Posture 2004, 19: 24-34. 10.1016/S0966-6362(03)00008-0CrossRefPubMed Oddsson LIE, Wall C, McPartland MD, Krebs DE, Tucker CA: Recovery from perturbations during paced walking. Gait Posture 2004, 19: 24-34. 10.1016/S0966-6362(03)00008-0CrossRefPubMed
43.
go back to reference Wall C 3rd, Oddsson LI, Patronik N, Sienko KH, Kentala E: Recovery trajectories of vestibulopathic subjects after perturbations during locomotion. J Vestibular Res 2002-2003,12(5-6):239-253. Wall C 3rd, Oddsson LI, Patronik N, Sienko KH, Kentala E: Recovery trajectories of vestibulopathic subjects after perturbations during locomotion. J Vestibular Res 2002-2003,12(5-6):239-253.
44.
go back to reference Woodson WE, Tillman B, Tillman P: Human factors design handbook. New York, NY: McGraw-Hill; 1992. Woodson WE, Tillman B, Tillman P: Human factors design handbook. New York, NY: McGraw-Hill; 1992.
45.
go back to reference Drillis R, Contini R: Body segment parameters. Office of Vocational Rehabilitation, New York, NY; 1966:1166-03. Drillis R, Contini R: Body segment parameters. Office of Vocational Rehabilitation, New York, NY; 1966:1166-03.
46.
go back to reference Dean JC, Kuo AD, Alexander NB: Age-related changes in maximal hip strength and movement speed. J Gerontology Ser a-Biol Sci Med Sci 2004, 59: 286-292. 10.1093/gerona/59.3.M286CrossRef Dean JC, Kuo AD, Alexander NB: Age-related changes in maximal hip strength and movement speed. J Gerontology Ser a-Biol Sci Med Sci 2004, 59: 286-292. 10.1093/gerona/59.3.M286CrossRef
47.
go back to reference Kipp K, Harris C, Sabick MB: Lower extremity biomechanics during weightlifting exercise vary across joint and load. J Strength Cond Res 2011, 25: 1229-1234. 10.1519/JSC.0b013e3181da780bCrossRefPubMed Kipp K, Harris C, Sabick MB: Lower extremity biomechanics during weightlifting exercise vary across joint and load. J Strength Cond Res 2011, 25: 1229-1234. 10.1519/JSC.0b013e3181da780bCrossRefPubMed
48.
go back to reference Hahn D, Olvermann M, Richtberg J, Seiberl W, Schwirtz A: Knee and ankle joint torque-angle relationships of multi-joint leg extension. J Biomech 2011, 44: 2059-2065. 10.1016/j.jbiomech.2011.05.011CrossRefPubMed Hahn D, Olvermann M, Richtberg J, Seiberl W, Schwirtz A: Knee and ankle joint torque-angle relationships of multi-joint leg extension. J Biomech 2011, 44: 2059-2065. 10.1016/j.jbiomech.2011.05.011CrossRefPubMed
49.
go back to reference Park S, Horak FB, Kuo AD: Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 2004, 154: 417-427. 10.1007/s00221-003-1674-3CrossRefPubMed Park S, Horak FB, Kuo AD: Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 2004, 154: 417-427. 10.1007/s00221-003-1674-3CrossRefPubMed
Metadata
Title
A mathematical model for incorporating biofeedback into human postural control
Authors
Tulga Ersal
Kathleen H Sienko
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-14

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue