Skip to main content
Top
Published in: BMC Public Health 1/2014

Open Access 01-12-2014 | Research article

Estimating contact rates at a mass gathering by using video analysis: a proof-of-concept project

Authors: Jeanette J Rainey, Anil Cheriyadat, Richard J Radke, Julie Suzuki Crumly, Daniel B Koch

Published in: BMC Public Health | Issue 1/2014

Login to get access

Abstract

Background

Current approaches for estimating social mixing patterns and infectious disease transmission at mass gatherings have been limited by various constraints, including low participation rates for volunteer-based research projects and challenges in quantifying spatially and temporally accurate person-to-person interactions. We developed a proof-of-concept project to assess the use of automated video analysis for estimating contact rates of attendees of the GameFest 2013 event at Rensselaer Polytechnic Institute (RPI) in Troy, New York.

Methods

Video tracking and analysis algorithms were used to estimate the number and duration of contacts for 5 attendees during a 3-minute clip from the RPI video. Attendees were considered to have a contact event if the distance between them and another person was ≤1 meter. Contact duration was estimated in seconds. We also simulated 50 attendees assuming random mixing using a geo-spatially accurate representation of the same GameFest location.

Results

The 5 attendees had an overall median of 2 contact events during the 3-minute video clip (range: 0–6). Contact events varied from less than 5 seconds to the full duration of the 3-minute clip. The random mixing simulation was visualized and presented as a contrasting example.

Conclusion

We were able to estimate the number and duration of contacts for 5 GameFest attendees from a 3-minute video clip that can be compared to a random mixing simulation model at the same location. The next phase will involve scaling the system for simultaneous analysis of mixing patterns from hours-long videos and comparing our results with other approaches for collecting contact data from mass gathering attendees.
Appendix
Available only for authorised users
Literature
2.
go back to reference Collignon PJ, Carnie JA: Infection control and pandemic influenza. Med J Aust. 2006, 185 (10 Suppl): S54-S57.PubMed Collignon PJ, Carnie JA: Infection control and pandemic influenza. Med J Aust. 2006, 185 (10 Suppl): S54-S57.PubMed
3.
go back to reference Rashid H, Haworth E, Shafi S, Memish ZA, Booy R: Pandemic influenza: mass gatherings and mass infection. Lancet Infect Dis. 2008, 8: 526-527. 10.1016/S1473-3099(08)70186-5.CrossRefPubMed Rashid H, Haworth E, Shafi S, Memish ZA, Booy R: Pandemic influenza: mass gatherings and mass infection. Lancet Infect Dis. 2008, 8: 526-527. 10.1016/S1473-3099(08)70186-5.CrossRefPubMed
4.
go back to reference Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G, Memish ZA, Barbeschi M, Khan AS: Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet Infect Dis. 2012, 12: 66-74. 10.1016/S1473-3099(11)70246-8.CrossRefPubMed Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G, Memish ZA, Barbeschi M, Khan AS: Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet Infect Dis. 2012, 12: 66-74. 10.1016/S1473-3099(11)70246-8.CrossRefPubMed
5.
go back to reference Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, Isella L, Régis C, Pinton JF, Khanafer N, Van den Broeck W, Vanhems P: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 2011, 9: 1-15. 10.1186/1741-7015-9-1.CrossRef Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, Isella L, Régis C, Pinton JF, Khanafer N, Van den Broeck W, Vanhems P: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 2011, 9: 1-15. 10.1186/1741-7015-9-1.CrossRef
6.
go back to reference Smieszek T, Barclay VC, Seeni I, Rainey JJ, Gao H, Uzicanin A, Salathé M: How should social mixing be measured: comparing web-based survey and sensor-based methods. BMC Infect Dis. 2014, 14: 136-10.1186/1471-2334-14-136.CrossRefPubMedPubMedCentral Smieszek T, Barclay VC, Seeni I, Rainey JJ, Gao H, Uzicanin A, Salathé M: How should social mixing be measured: comparing web-based survey and sensor-based methods. BMC Infect Dis. 2014, 14: 136-10.1186/1471-2334-14-136.CrossRefPubMedPubMedCentral
7.
go back to reference Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DA: Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiol Infect. 2012, 140: 2117-2130. 10.1017/S0950268812000842.CrossRefPubMedPubMedCentral Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DA: Close encounters of the infectious kind: methods to measure social mixing behaviour. Epidemiol Infect. 2012, 140: 2117-2130. 10.1017/S0950268812000842.CrossRefPubMedPubMedCentral
8.
go back to reference Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A: Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. PLoS One. 2010, 7: e11596-CrossRef Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A: Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. PLoS One. 2010, 7: e11596-CrossRef
9.
go back to reference Javed O, Rasheed Z, Shafique K, Shah M: Tracking across multiple cameras with disjoint views. Proc on 9th Int Conference Comput Vision. 2003, 2: 952-957. France, 13-16CrossRef Javed O, Rasheed Z, Shafique K, Shah M: Tracking across multiple cameras with disjoint views. Proc on 9th Int Conference Comput Vision. 2003, 2: 952-957. France, 13-16CrossRef
10.
go back to reference Cheriyadat AM, Radke RJ: Detecting dominant motion in dense crowds. J Special Topics Signal Process. 2008, 2: 568-581.CrossRef Cheriyadat AM, Radke RJ: Detecting dominant motion in dense crowds. J Special Topics Signal Process. 2008, 2: 568-581.CrossRef
11.
go back to reference Cheriyadat AM, Bhaduri BL, Radke RJ: Detecting Multiple Moving Objects in Crowded Environments With Coherent Motion Regions. Proc. On IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 2008, Alaska, 1-8. 23-28 June Cheriyadat AM, Bhaduri BL, Radke RJ: Detecting Multiple Moving Objects in Crowded Environments With Coherent Motion Regions. Proc. On IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 2008, Alaska, 1-8. 23-28 June
12.
go back to reference Ali S, Shah M: Floor fields for tracking in high density crowd scenes. Proc 10th Eur Conference Comput Vision. 2008, 2: 1-14. France Ali S, Shah M: Floor fields for tracking in high density crowd scenes. Proc 10th Eur Conference Comput Vision. 2008, 2: 1-14. France
13.
go back to reference Yan X, Cheriyadat A, Shah SK: Hierarchical Group Structures in Multi-Person Tracking. Proc. of the 22nd IEEE International Conference on Pattern Recognition, Stockholm, Sweden. 2014, 24-28. Yan X, Cheriyadat A, Shah SK: Hierarchical Group Structures in Multi-Person Tracking. Proc. of the 22nd IEEE International Conference on Pattern Recognition, Stockholm, Sweden. 2014, 24-28.
14.
go back to reference Wu Z, Radke RJ: Real-Time Airport Security Checkpoint Surveillance Using a Camera Network. Workshop on Camera Networks and Wide Area Scene Analysis, in Conjunction With CVPR. 2011 Wu Z, Radke RJ: Real-Time Airport Security Checkpoint Surveillance Using a Camera Network. Workshop on Camera Networks and Wide Area Scene Analysis, in Conjunction With CVPR. 2011
15.
go back to reference Koch DB, Payne PW: An Incident Management Preparedness and Coordination Toolkit. Proc. of the 2012 IEEE Global Humanitarian Technology Conference, Seattle, Washington. 2012, 31-35.CrossRef Koch DB, Payne PW: An Incident Management Preparedness and Coordination Toolkit. Proc. of the 2012 IEEE Global Humanitarian Technology Conference, Seattle, Washington. 2012, 31-35.CrossRef
16.
go back to reference Chowell G, Nishiura H, Viboud C: Modeling rapidly disseminating infectious disease during mass gatherings. BMC Med. 2012, 10: 159-10.1186/1741-7015-10-159.CrossRefPubMedPubMedCentral Chowell G, Nishiura H, Viboud C: Modeling rapidly disseminating infectious disease during mass gatherings. BMC Med. 2012, 10: 159-10.1186/1741-7015-10-159.CrossRefPubMedPubMedCentral
17.
go back to reference Johansson A, Batty M, Hayashi K, Al Bar O, Marcozzi D, Memish ZA: Crowd and environmental management during mass gatherings. Lancet Infect Dis. 2012, 12: 150-156. 10.1016/S1473-3099(11)70287-0.CrossRefPubMed Johansson A, Batty M, Hayashi K, Al Bar O, Marcozzi D, Memish ZA: Crowd and environmental management during mass gatherings. Lancet Infect Dis. 2012, 12: 150-156. 10.1016/S1473-3099(11)70287-0.CrossRefPubMed
18.
go back to reference Monto AS: Interrupting the transmission of respiratory tract infections: theory and practice. Clin Infect Dis. 1999, 28: 200-204. 10.1086/515113.CrossRefPubMed Monto AS: Interrupting the transmission of respiratory tract infections: theory and practice. Clin Infect Dis. 1999, 28: 200-204. 10.1086/515113.CrossRefPubMed
19.
go back to reference Kwok KO1, Cowling BJ1, Wei VW1, Wu KM1, Read JM2, Lessler J3, Cummings DA3, Peiris JS4, Riley S5: Social contacts and the locations in which they occur as risk factors for influenza infection. Proc Biol Sci. 2014, 22 (1789): 281-doi:10.1098/rspb.2014.0709 Kwok KO1, Cowling BJ1, Wei VW1, Wu KM1, Read JM2, Lessler J3, Cummings DA3, Peiris JS4, Riley S5: Social contacts and the locations in which they occur as risk factors for influenza infection. Proc Biol Sci. 2014, 22 (1789): 281-doi:10.1098/rspb.2014.0709
20.
go back to reference Shrestha SS, Swerdlow DL, Borse RH, Prabhu VS, Finelli L, Atkins CY, Owusu-Edusei K, Bell B, Mead PS, Biggerstaff M, Brammer L, Davidson H, Jernigan D, Jhung MA, Kamimoto LA, Merlin TL, Nowell M, Redd SC, Reed C, Schuchat A, Meltzer MI: Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009-April 2010). Clin Infect Dis. 2011, 52 (Suppl 1): S75-S82.CrossRefPubMed Shrestha SS, Swerdlow DL, Borse RH, Prabhu VS, Finelli L, Atkins CY, Owusu-Edusei K, Bell B, Mead PS, Biggerstaff M, Brammer L, Davidson H, Jernigan D, Jhung MA, Kamimoto LA, Merlin TL, Nowell M, Redd SC, Reed C, Schuchat A, Meltzer MI: Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009-April 2010). Clin Infect Dis. 2011, 52 (Suppl 1): S75-S82.CrossRefPubMed
21.
go back to reference Reed C1, Katz JM, Hancock K, Balish A, Fry AM, H1N1 Serosurvey Working Group: Prevalence of seropositivity to pandemic influenza A/H1N1 virus in the United States following the 2009 pandemic. PLoS One. 2012, 7 (10): e48187-10.1371/journal.pone.0048187.CrossRefPubMedPubMedCentral Reed C1, Katz JM, Hancock K, Balish A, Fry AM, H1N1 Serosurvey Working Group: Prevalence of seropositivity to pandemic influenza A/H1N1 virus in the United States following the 2009 pandemic. PLoS One. 2012, 7 (10): e48187-10.1371/journal.pone.0048187.CrossRefPubMedPubMedCentral
22.
go back to reference Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, Lui F, Dong L, DeVos JR, Gargiuollo PM: Cross-reactive antibody responses to 2009 pandemic H1N1 influenza virus. N Engl J Med. 2009, 361: 1945-1952. 10.1056/NEJMoa0906453.CrossRefPubMed Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, Lui F, Dong L, DeVos JR, Gargiuollo PM: Cross-reactive antibody responses to 2009 pandemic H1N1 influenza virus. N Engl J Med. 2009, 361: 1945-1952. 10.1056/NEJMoa0906453.CrossRefPubMed
23.
go back to reference Haritaoglu I, Harwood D, David LS: Real-time surveillance of people and their activities. IEEE Tansac Pattern Analysis Machine Intell. 2000, 22: 809-10.1109/34.868683.CrossRef Haritaoglu I, Harwood D, David LS: Real-time surveillance of people and their activities. IEEE Tansac Pattern Analysis Machine Intell. 2000, 22: 809-10.1109/34.868683.CrossRef
24.
go back to reference Barclay VC, Smieszek T, He J, Cao G, Rainey JJ, Gao H, Uzicanin A, Salathé M: Positive network assortativity of influenza vaccination at a high school: implications for outbreak risk and herd immunity. PLoS One. 2014, 9: e87042-10.1371/journal.pone.0087042.CrossRefPubMedPubMedCentral Barclay VC, Smieszek T, He J, Cao G, Rainey JJ, Gao H, Uzicanin A, Salathé M: Positive network assortativity of influenza vaccination at a high school: implications for outbreak risk and herd immunity. PLoS One. 2014, 9: e87042-10.1371/journal.pone.0087042.CrossRefPubMedPubMedCentral
25.
go back to reference Ishola DA, Phin N: Could influenza transmission be reduced by restricting mass gatherings? Towards an evidence-based policy framework. J Epidemiol Glob Health. 2011, 1: 33-60. 10.1016/j.jegh.2011.06.004.CrossRefPubMed Ishola DA, Phin N: Could influenza transmission be reduced by restricting mass gatherings? Towards an evidence-based policy framework. J Epidemiol Glob Health. 2011, 1: 33-60. 10.1016/j.jegh.2011.06.004.CrossRefPubMed
26.
go back to reference Shi P, Keskinocak P, Swann JL, Lee BY: The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model. BMC Public Health. 2010, 10: 778-10.1186/1471-2458-10-778.CrossRefPubMedPubMedCentral Shi P, Keskinocak P, Swann JL, Lee BY: The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model. BMC Public Health. 2010, 10: 778-10.1186/1471-2458-10-778.CrossRefPubMedPubMedCentral
27.
go back to reference Khan K, McNabb SJ, Memish ZA, Eckhardt R, Hu W, Kossowsky D, Sears J, Arino J, Johansson A, Barbeschi M, McCloskey B, Henry B, Cetron M, Brownstein JS: Infectious disease surveillance and modeling across geographic frontiers and scientific specialties. Lancet Infect Dis. 2012, 12: 222-230. 10.1016/S1473-3099(11)70313-9.CrossRefPubMed Khan K, McNabb SJ, Memish ZA, Eckhardt R, Hu W, Kossowsky D, Sears J, Arino J, Johansson A, Barbeschi M, McCloskey B, Henry B, Cetron M, Brownstein JS: Infectious disease surveillance and modeling across geographic frontiers and scientific specialties. Lancet Infect Dis. 2012, 12: 222-230. 10.1016/S1473-3099(11)70313-9.CrossRefPubMed
Metadata
Title
Estimating contact rates at a mass gathering by using video analysis: a proof-of-concept project
Authors
Jeanette J Rainey
Anil Cheriyadat
Richard J Radke
Julie Suzuki Crumly
Daniel B Koch
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2014
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-14-1101

Other articles of this Issue 1/2014

BMC Public Health 1/2014 Go to the issue