Skip to main content
Top
Published in: BMC Medicine 1/2011

Open Access 01-12-2011 | Research article

Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

Authors: Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Vittoria Colizza, Lorenzo Isella, Corinne Régis, Jean-François Pinton, Nagham Khanafer, Wouter Van den Broeck, Philippe Vanhems

Published in: BMC Medicine | Issue 1/2011

Login to get access

Abstract

Background

The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population.

Methods

We considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID) devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered) model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects.

Results

We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic.

Conclusions

These results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics.
Please see related article BMC Medicine, 2011, 9:88
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson RM, May RM: Infectious Diseases of Humans: dynamics and control. 1991, Oxford University Press Anderson RM, May RM: Infectious Diseases of Humans: dynamics and control. 1991, Oxford University Press
2.
go back to reference Liljeros F, Edling CR, Amaral LA, Stanley HE, Aberg Y: The web of human sexual contacts. Nature. 2001, 411: 907-8. 10.1038/35082140.CrossRefPubMed Liljeros F, Edling CR, Amaral LA, Stanley HE, Aberg Y: The web of human sexual contacts. Nature. 2001, 411: 907-8. 10.1038/35082140.CrossRefPubMed
3.
go back to reference Lloyd AL, May RM: Epidemiology. How viruses spread among computers and people. Science. 2001, 292: 1316-7. 10.1126/science.1061076.CrossRefPubMed Lloyd AL, May RM: Epidemiology. How viruses spread among computers and people. Science. 2001, 292: 1316-7. 10.1126/science.1061076.CrossRefPubMed
4.
go back to reference Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM: Superspreading and the effect of individual variation on disease emergence. Nature. 2005, 438: 355-9. 10.1038/nature04153.CrossRefPubMed Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM: Superspreading and the effect of individual variation on disease emergence. Nature. 2005, 438: 355-9. 10.1038/nature04153.CrossRefPubMed
5.
go back to reference Pastor-Satorras R, Vespignani A: Epidemic spreading in scale-free networks. Phys Rev Lett. 2001, 86: 3200-3. 10.1103/PhysRevLett.86.3200.CrossRefPubMed Pastor-Satorras R, Vespignani A: Epidemic spreading in scale-free networks. Phys Rev Lett. 2001, 86: 3200-3. 10.1103/PhysRevLett.86.3200.CrossRefPubMed
6.
go back to reference Eames KT: Modelling disease spread through random and regular contacts in clustered populations. Theor Popul Biol. 2008, 73: 104-11. 10.1016/j.tpb.2007.09.007.CrossRefPubMed Eames KT: Modelling disease spread through random and regular contacts in clustered populations. Theor Popul Biol. 2008, 73: 104-11. 10.1016/j.tpb.2007.09.007.CrossRefPubMed
8.
go back to reference Smieszek T, Fiebig L, Scholz RW: Models of epidemics: when contact repetition and clustering should be included. Theor Biol Med Model. 2009, 6: 11-10.1186/1742-4682-6-11.CrossRefPubMedPubMedCentral Smieszek T, Fiebig L, Scholz RW: Models of epidemics: when contact repetition and clustering should be included. Theor Biol Med Model. 2009, 6: 11-10.1186/1742-4682-6-11.CrossRefPubMedPubMedCentral
10.
go back to reference Zaric GS: Random vs. nonrandom mixing in network epidemic models. Health Care Manag Sci. 2002, 5: 147-55. 10.1023/A:1014489218178.CrossRefPubMed Zaric GS: Random vs. nonrandom mixing in network epidemic models. Health Care Manag Sci. 2002, 5: 147-55. 10.1023/A:1014489218178.CrossRefPubMed
11.
go back to reference Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5: e74-10.1371/journal.pmed.0050074.CrossRefPubMedPubMedCentral Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5: e74-10.1371/journal.pmed.0050074.CrossRefPubMedPubMedCentral
12.
go back to reference Read JM, Eames KT, Edmunds WJ: Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface. 2008, 5: 1001-7. 10.1098/rsif.2008.0013.CrossRefPubMedPubMedCentral Read JM, Eames KT, Edmunds WJ: Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface. 2008, 5: 1001-7. 10.1098/rsif.2008.0013.CrossRefPubMedPubMedCentral
13.
go back to reference Smieszek T: A mechanistic model of infection: why duration and intensity of contacts should be included in models of disease spread. Theor Biol Med Model. 2009, 6: 25-10.1186/1742-4682-6-25.CrossRefPubMedPubMedCentral Smieszek T: A mechanistic model of infection: why duration and intensity of contacts should be included in models of disease spread. Theor Biol Med Model. 2009, 6: 25-10.1186/1742-4682-6-25.CrossRefPubMedPubMedCentral
14.
go back to reference Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci USA. 2009, 106: 21484-9. 10.1073/pnas.0906910106.CrossRefPubMedPubMedCentral Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci USA. 2009, 106: 21484-9. 10.1073/pnas.0906910106.CrossRefPubMedPubMedCentral
15.
go back to reference Colizza V, Barrat A, Barthélemy M, Vespignani A: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci USA. 2006, 103: 2015-20. 10.1073/pnas.0510525103.CrossRefPubMedPubMedCentral Colizza V, Barrat A, Barthélemy M, Vespignani A: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci USA. 2006, 103: 2015-20. 10.1073/pnas.0510525103.CrossRefPubMedPubMedCentral
16.
go back to reference Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N: Modelling disease outbreaks in realistic urban social networks. Nature. 2004, 429: 180-4. 10.1038/nature02541.CrossRefPubMed Eubank S, Guclu H, Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N: Modelling disease outbreaks in realistic urban social networks. Nature. 2004, 429: 180-4. 10.1038/nature02541.CrossRefPubMed
17.
go back to reference Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature. 2006, 442: 448-52. 10.1038/nature04795.CrossRefPubMed Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature. 2006, 442: 448-52. 10.1038/nature04795.CrossRefPubMed
18.
go back to reference Germann TC, Kadau K, Longini IM, Macken CA: Mitigation strategies for pandemic influenza in the United Statpluriel scénario anglaises. Proc Natl Acad Sci USA. 2006, 103: 5935-40. 10.1073/pnas.0601266103.CrossRefPubMedPubMedCentral Germann TC, Kadau K, Longini IM, Macken CA: Mitigation strategies for pandemic influenza in the United Statpluriel scénario anglaises. Proc Natl Acad Sci USA. 2006, 103: 5935-40. 10.1073/pnas.0601266103.CrossRefPubMedPubMedCentral
19.
go back to reference Hufnagel L, Brockmann D, Geisel T: Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci USA. 2004, 101: 15124-9. 10.1073/pnas.0308344101.CrossRefPubMedPubMedCentral Hufnagel L, Brockmann D, Geisel T: Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci USA. 2004, 101: 15124-9. 10.1073/pnas.0308344101.CrossRefPubMedPubMedCentral
20.
go back to reference Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME: Containing pandemic influenza at the source. Science. 2005, 309: 1083-7. 10.1126/science.1115717.CrossRefPubMed Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME: Containing pandemic influenza at the source. Science. 2005, 309: 1083-7. 10.1126/science.1115717.CrossRefPubMed
21.
22.
go back to reference Riley S: Large-scale spatial-transmission models of infectious disease. Science. 2007, 316: 1298-301. 10.1126/science.1134695.CrossRefPubMed Riley S: Large-scale spatial-transmission models of infectious disease. Science. 2007, 316: 1298-301. 10.1126/science.1134695.CrossRefPubMed
23.
go back to reference Rvachev LA, Longini IM: A mathematical model for the global spread of influenza. Math Biosciences. 1985, 75: 3-22. 10.1016/0025-5564(85)90064-1.CrossRef Rvachev LA, Longini IM: A mathematical model for the global spread of influenza. Math Biosciences. 1985, 75: 3-22. 10.1016/0025-5564(85)90064-1.CrossRef
24.
go back to reference Beutels P, Shkedy Z, Aerts M, Van Damme P: Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect. 2006, 134: 1158-66. 10.1017/S0950268806006418.CrossRefPubMedPubMedCentral Beutels P, Shkedy Z, Aerts M, Van Damme P: Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect. 2006, 134: 1158-66. 10.1017/S0950268806006418.CrossRefPubMedPubMedCentral
25.
go back to reference Edmunds WJ, O'Callaghan CJ, Nokes DJ: Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc Biol Sci. 1997, 264: 949-57. 10.1098/rspb.1997.0131.CrossRefPubMedPubMedCentral Edmunds WJ, O'Callaghan CJ, Nokes DJ: Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc Biol Sci. 1997, 264: 949-57. 10.1098/rspb.1997.0131.CrossRefPubMedPubMedCentral
26.
go back to reference Wallinga J, Teunis P, Kretzschmar M: Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006, 164: 936-44. 10.1093/aje/kwj317.CrossRefPubMed Wallinga J, Teunis P, Kretzschmar M: Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006, 164: 936-44. 10.1093/aje/kwj317.CrossRefPubMed
27.
go back to reference Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ: Using time-use data to parameterize models for the spread of close-contact infectious diseases. Am J Epidemiol. 2008, 168: 1082-90. 10.1093/aje/kwn220.CrossRefPubMed Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ: Using time-use data to parameterize models for the spread of close-contact infectious diseases. Am J Epidemiol. 2008, 168: 1082-90. 10.1093/aje/kwn220.CrossRefPubMed
29.
go back to reference Brockmann D, Hufnagel L, Geisel T: The scaling laws of human travel. Nature. 2006, 439: 462-5. 10.1038/nature04292.CrossRefPubMed Brockmann D, Hufnagel L, Geisel T: The scaling laws of human travel. Nature. 2006, 439: 462-5. 10.1038/nature04292.CrossRefPubMed
30.
go back to reference Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A: Dynamics of person-to-person interactions from distributed RFID sensor networks. PloS One. 2010, 5: e11596-10.1371/journal.pone.0011596.CrossRefPubMedPubMedCentral Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A: Dynamics of person-to-person interactions from distributed RFID sensor networks. PloS One. 2010, 5: e11596-10.1371/journal.pone.0011596.CrossRefPubMedPubMedCentral
31.
go back to reference Kossinets G, Watts DJ: Empirical analysis of an evolving social network. Science. 2006, 311: 88-90. 10.1126/science.1116869.CrossRefPubMed Kossinets G, Watts DJ: Empirical analysis of an evolving social network. Science. 2006, 311: 88-90. 10.1126/science.1116869.CrossRefPubMed
32.
go back to reference O'Neill E, Kostakos V, Kindberg T, Fatah gen. Schiek A, Penn A: Instrumenting the city: developing methods for observing and understanding the digital cityscape. Lecture Notes in Computer Science. 2006, 4206: 315-22. 10.1007/11853565_19.CrossRef O'Neill E, Kostakos V, Kindberg T, Fatah gen. Schiek A, Penn A: Instrumenting the city: developing methods for observing and understanding the digital cityscape. Lecture Notes in Computer Science. 2006, 4206: 315-22. 10.1007/11853565_19.CrossRef
33.
go back to reference Onnela JP, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J, Barabási AL: Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci USA. 2007, 104: 7332-6. 10.1073/pnas.0610245104.CrossRefPubMedPubMedCentral Onnela JP, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J, Barabási AL: Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci USA. 2007, 104: 7332-6. 10.1073/pnas.0610245104.CrossRefPubMedPubMedCentral
34.
go back to reference Pentland A: The Global Information Technology Report 2008-2009. 2009 Pentland A: The Global Information Technology Report 2008-2009. 2009
36.
go back to reference Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, Van den Broeck W: What's in a crowd? Analysis of face-to-face behavioral networks. J Theor Biol. 2010, 271: 166-180.CrossRefPubMed Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, Van den Broeck W: What's in a crowd? Analysis of face-to-face behavioral networks. J Theor Biol. 2010, 271: 166-180.CrossRefPubMed
37.
go back to reference Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH: A high-resolution human contact network for infectious disease transmission. Proc Natl Acad Sci (USA). 2010, 107: 22020-22025. 10.1073/pnas.1009094108.CrossRef Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH: A high-resolution human contact network for infectious disease transmission. Proc Natl Acad Sci (USA). 2010, 107: 22020-22025. 10.1073/pnas.1009094108.CrossRef
38.
go back to reference Lazer D, Pentland A, Adamic L, Aral S, Barabasi AL, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M: Social science. Computational social science. Science. 2009, 323: 721-3. 10.1126/science.1167742.CrossRefPubMedPubMedCentral Lazer D, Pentland A, Adamic L, Aral S, Barabasi AL, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M: Social science. Computational social science. Science. 2009, 323: 721-3. 10.1126/science.1167742.CrossRefPubMedPubMedCentral
39.
go back to reference Barrat A, Barthélemy M, Vespignani A: Dynamical processes on complex networks. 2008, Cambridge University PressCrossRef Barrat A, Barthélemy M, Vespignani A: Dynamical processes on complex networks. 2008, Cambridge University PressCrossRef
40.
go back to reference Diekmann O, Heersterbeek J, Metz J: On the definition and the computation of the basic reproduction number ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990, 28: 365-82.CrossRefPubMed Diekmann O, Heersterbeek J, Metz J: On the definition and the computation of the basic reproduction number ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990, 28: 365-82.CrossRefPubMed
43.
go back to reference Smieszek T, Flebig L, Scholz RW: Models of epidemics: when contact repetition and clustering should be included. Theoretical Biology and Medical Modelling. 2009, 6: 11-10.1186/1742-4682-6-11.CrossRefPubMedPubMedCentral Smieszek T, Flebig L, Scholz RW: Models of epidemics: when contact repetition and clustering should be included. Theoretical Biology and Medical Modelling. 2009, 6: 11-10.1186/1742-4682-6-11.CrossRefPubMedPubMedCentral
44.
go back to reference Polgreen PM, Tassier TL, Pemmaraju SV, Segre AM: Prioritizing healthcare worker vaccinations on the basis of social network analysis. Infect Control Hosp Epidemiol. 2010, 31: 893-900. 10.1086/655466.CrossRefPubMedPubMedCentral Polgreen PM, Tassier TL, Pemmaraju SV, Segre AM: Prioritizing healthcare worker vaccinations on the basis of social network analysis. Infect Control Hosp Epidemiol. 2010, 31: 893-900. 10.1086/655466.CrossRefPubMedPubMedCentral
45.
go back to reference Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, Gesualdo F, Pandolfi E, Ravà L, Rizzo C, Tozzi AE: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One. 2011, 6: e17144-10.1371/journal.pone.0017144.CrossRefPubMedPubMedCentral Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, Gesualdo F, Pandolfi E, Ravà L, Rizzo C, Tozzi AE: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One. 2011, 6: e17144-10.1371/journal.pone.0017144.CrossRefPubMedPubMedCentral
Metadata
Title
Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees
Authors
Juliette Stehlé
Nicolas Voirin
Alain Barrat
Ciro Cattuto
Vittoria Colizza
Lorenzo Isella
Corinne Régis
Jean-François Pinton
Nagham Khanafer
Wouter Van den Broeck
Philippe Vanhems
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2011
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-9-87

Other articles of this Issue 1/2011

BMC Medicine 1/2011 Go to the issue