Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2014

Open Access 01-12-2014 | Original investigation

EphA2-receptor deficiency exacerbates myocardial infarction and reduces survival in hyperglycemic mice

Authors: Augustin DuSablon, Susan Kent, Anita Coburn, Jitka Virag

Published in: Cardiovascular Diabetology | Issue 1/2014

Login to get access

Abstract

Background

We have previously shown that EphrinA1/EphA expression profile changes in response to myocardial infarction (MI), exogenous EphrinA1-Fc administration following MI positively influences wound healing, and that deletion of the EphA2 Receptor (EphA2-R) exacerbates injury and remodeling. To determine whether or not ephrinA1-Fc would be of therapeutic value in the hyperglycemic infarcted heart, it is critical to evaluate how ephrinA1/EphA signaling changes in the hyperglycemic myocardium in response to MI.

Methods

Streptozotocin (STZ)-induced hyperglycemia in wild type (WT) and EphA2-receptor mutant (EphA2-R-M) mice was initiated by an intraperitoneal injection of STZ (150 mg/kg) 10 days before surgery. MI was induced by permanent ligation of the left anterior descending coronary artery and analyses were performed at 4 days post-MI. ANOVAs with Student-Newman Keuls multiple comparison post-hoc analysis illustrated which groups were significantly different, with significance of at least p < 0.05.

Results

Both WT and EphA2-R-M mice responded adversely to STZ, but only hyperglycemic EphA2-R-M mice had lower ejection fraction (EF) and fractional shortening (FS). At 4 days post-MI, we observed greater post-MI mortality in EphA2-R-M mice compared with WT and this was greater still in the EphA2-R-M hyperglycemic mice. Although infarct size was greater in hyperglycemic WT mice vs normoglycemic mice, there was no difference between hyperglycemic EphA2-R-M mice and normoglycemic EphA2-R-M mice. The hypertrophic response that normally occurs in viable myocardium remote to the infarct was noticeably absent in epicardial cardiomyocytes and cardiac dysfunction worsened in hyperglycemic EphA2-R-M hearts post-MI. The characteristic interstitial fibrotic response in the compensating myocardium remote to the infarct also did not occur in hyperglycemic EphA2-R-M mouse hearts to the same extent as that observed in the hyperglycemic WT mouse hearts. Differences in neutrophil and pan-leukocyte infiltration and serum cytokines implicate EphA2-R in modulation of injury and the differences in ephrinA1 and EphA6-R expression in governing this are discussed.

Conclusions

We conclude that EphA2-mutant mice are more prone to hyperglycemia-induced increased injury, decreased survival, and worsened LV remodeling due to impaired wound healing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nesto RW, Zarich S: Acute myocardial infarction in diabetes mellitus: lessons learned from ACE inhibition. Circulation. 1998, 97 (1): 12-15. 10.1161/01.CIR.97.1.12.CrossRefPubMed Nesto RW, Zarich S: Acute myocardial infarction in diabetes mellitus: lessons learned from ACE inhibition. Circulation. 1998, 97 (1): 12-15. 10.1161/01.CIR.97.1.12.CrossRefPubMed
2.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME: Heart Disease and Stroke Statistics–2013 Update: A Report From the American Heart Association. Circulation. 2013, 127 (1): e6-e245. 10.1161/CIR.0b013e31828124ad.CrossRefPubMed Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME: Heart Disease and Stroke Statistics–2013 Update: A Report From the American Heart Association. Circulation. 2013, 127 (1): e6-e245. 10.1161/CIR.0b013e31828124ad.CrossRefPubMed
3.
go back to reference Pasquale EB: Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008, 133 (1): 38-52. 10.1016/j.cell.2008.03.011.CrossRefPubMed Pasquale EB: Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008, 133 (1): 38-52. 10.1016/j.cell.2008.03.011.CrossRefPubMed
4.
go back to reference Kullander K, Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002, 3 (7): 475-486. 10.1038/nrm856.CrossRefPubMed Kullander K, Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002, 3 (7): 475-486. 10.1038/nrm856.CrossRefPubMed
5.
go back to reference Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, Lin C, Chen J: Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene. 2002, 21 (46): 7011-7026. 10.1038/sj.onc.1205679.CrossRefPubMed Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, Lin C, Chen J: Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene. 2002, 21 (46): 7011-7026. 10.1038/sj.onc.1205679.CrossRefPubMed
6.
go back to reference National Institute of Diabetes and Digestive and Kidney Diseases: National Diabetes Statistics, 2007 fact sheet. 2008. 08/28. National Institute of Diabetes and Digestive and Kidney Diseases: National Diabetes Statistics, 2007 fact sheet. 2008. 08/28.
7.
go back to reference Brantley-Sieders D, Schmidt S, Parker M, Chen J: Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr Pharm Des. 2004, 10 (27): 3431-3442. 10.2174/1381612043383160.CrossRefPubMed Brantley-Sieders D, Schmidt S, Parker M, Chen J: Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr Pharm Des. 2004, 10 (27): 3431-3442. 10.2174/1381612043383160.CrossRefPubMed
8.
go back to reference Surawska H, Ma PC, Salgia R: The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004, 15 (6): 419-433. 10.1016/j.cytogfr.2004.09.002.CrossRefPubMed Surawska H, Ma PC, Salgia R: The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004, 15 (6): 419-433. 10.1016/j.cytogfr.2004.09.002.CrossRefPubMed
9.
go back to reference Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM: Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science. 1995, 268 (5210): 567-569. 10.1126/science.7536959.CrossRefPubMed Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM: Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science. 1995, 268 (5210): 567-569. 10.1126/science.7536959.CrossRefPubMed
10.
go back to reference Cheng N, Brantley DM, Chen J: The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev. 2002, 13 (1): 75-85. 10.1016/S1359-6101(01)00031-4.CrossRefPubMed Cheng N, Brantley DM, Chen J: The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev. 2002, 13 (1): 75-85. 10.1016/S1359-6101(01)00031-4.CrossRefPubMed
11.
go back to reference Ivanov AI, Romanovsky AA: Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life. 2006, 58 (7): 389-394. 10.1080/15216540600756004.CrossRefPubMed Ivanov AI, Romanovsky AA: Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life. 2006, 58 (7): 389-394. 10.1080/15216540600756004.CrossRefPubMed
12.
go back to reference Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW: Eph/Ephrin signaling in injury and inflammation. Am J Pathol. 2012, 181 (5): 1493-1503. 10.1016/j.ajpath.2012.06.043.CrossRefPubMed Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW: Eph/Ephrin signaling in injury and inflammation. Am J Pathol. 2012, 181 (5): 1493-1503. 10.1016/j.ajpath.2012.06.043.CrossRefPubMed
13.
go back to reference Dries JL, Kent SD, Virag JA: Intramyocardial administration of chimeric ephrinA1-Fc promotes tissue salvage following myocardial infarction in mice. J Physiol. 2011, 589 (Pt 7): 1725-1740. 10.1113/jphysiol.2010.202366.PubMedCentralCrossRefPubMed Dries JL, Kent SD, Virag JA: Intramyocardial administration of chimeric ephrinA1-Fc promotes tissue salvage following myocardial infarction in mice. J Physiol. 2011, 589 (Pt 7): 1725-1740. 10.1113/jphysiol.2010.202366.PubMedCentralCrossRefPubMed
14.
go back to reference Goichberg P, Bai Y, D'Amario D, Ferreira-Martins J, Fiorini C, Zheng H, Signore S, Del Monte F, Ottolenghi S, D'Alessandro DA, Michler RE, Hosoda T, Anversa P, Kajstura J, Rota M, Leri A: The Ephrin A1-EphA2 System Promotes Cardiac Stem Cell Migration After Infarction. Circ Res. 2011, 108 (9): 1071-1083. 10.1161/CIRCRESAHA.110.239459.PubMedCentralCrossRefPubMed Goichberg P, Bai Y, D'Amario D, Ferreira-Martins J, Fiorini C, Zheng H, Signore S, Del Monte F, Ottolenghi S, D'Alessandro DA, Michler RE, Hosoda T, Anversa P, Kajstura J, Rota M, Leri A: The Ephrin A1-EphA2 System Promotes Cardiac Stem Cell Migration After Infarction. Circ Res. 2011, 108 (9): 1071-1083. 10.1161/CIRCRESAHA.110.239459.PubMedCentralCrossRefPubMed
15.
go back to reference O'Neal WT, Griffin WF, Dries-Devlin JL, Kent SD, Chen J, Willis MS, Virag JA: Ephrin-Eph signaling as a potential therapeutic target for the treatment of myocardial infarction. Med Hypotheses. 2013, 80 (6): 738-744. 10.1016/j.mehy.2013.02.024.CrossRefPubMed O'Neal WT, Griffin WF, Dries-Devlin JL, Kent SD, Chen J, Willis MS, Virag JA: Ephrin-Eph signaling as a potential therapeutic target for the treatment of myocardial infarction. Med Hypotheses. 2013, 80 (6): 738-744. 10.1016/j.mehy.2013.02.024.CrossRefPubMed
16.
go back to reference Virag JA, Lust RM: Coronary artery ligation and intramyocardial injection in a murine model of infarction.J Vis Exp 2011, (52):pii: 2581. doi: 10.3791/258., Virag JA, Lust RM: Coronary artery ligation and intramyocardial injection in a murine model of infarction.J Vis Exp 2011, (52):pii: 2581. doi: 10.3791/258.,
17.
go back to reference Yang XP, Liu YH, Rhaleb NE, Kurihara N, Kim HE, Carretero OA: Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol. 1999, 277 (5 Pt 2): H1967-H1974.PubMed Yang XP, Liu YH, Rhaleb NE, Kurihara N, Kim HE, Carretero OA: Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol. 1999, 277 (5 Pt 2): H1967-H1974.PubMed
18.
go back to reference Beckstead JH: A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J Histochem Cytochem. 1994, 42 (8): 1127-1134. 10.1177/42.8.8027531.CrossRefPubMed Beckstead JH: A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J Histochem Cytochem. 1994, 42 (8): 1127-1134. 10.1177/42.8.8027531.CrossRefPubMed
19.
go back to reference Ismail JA, Poppa V, Kemper LE, Scatena M, Giachelli CM, Coffin JD, Murry CE: Immunohistologic labeling of murine endothelium. Cardiovasc Pathol. 2003, 12 (2): 82-90. 10.1016/S1054-8807(02)00166-7.CrossRefPubMed Ismail JA, Poppa V, Kemper LE, Scatena M, Giachelli CM, Coffin JD, Murry CE: Immunohistologic labeling of murine endothelium. Cardiovasc Pathol. 2003, 12 (2): 82-90. 10.1016/S1054-8807(02)00166-7.CrossRefPubMed
20.
go back to reference Virag JA, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE: Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol. 2007, 171 (5): 1431-1440. 10.2353/ajpath.2007.070003.PubMedCentralCrossRefPubMed Virag JA, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE: Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol. 2007, 171 (5): 1431-1440. 10.2353/ajpath.2007.070003.PubMedCentralCrossRefPubMed
21.
go back to reference Virag JI, Murry CE: Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 2003, 163 (6): 2433-2440. 10.1016/S0002-9440(10)63598-5.PubMedCentralCrossRefPubMed Virag JI, Murry CE: Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 2003, 163 (6): 2433-2440. 10.1016/S0002-9440(10)63598-5.PubMedCentralCrossRefPubMed
22.
go back to reference Virag JA, Dries JL, Easton PR, Friesland AM, DeAntonio JH, Chintalgattu V, Cozzi E, Lehmann BD, Ding JM, Lust RM: Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2. AmJ Physiol Heart Circ Physiol. 2010, 298 (3): H1088-H1095. 10.1152/ajpheart.01280.2008.CrossRef Virag JA, Dries JL, Easton PR, Friesland AM, DeAntonio JH, Chintalgattu V, Cozzi E, Lehmann BD, Ding JM, Lust RM: Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2. AmJ Physiol Heart Circ Physiol. 2010, 298 (3): H1088-H1095. 10.1152/ajpheart.01280.2008.CrossRef
23.
go back to reference Miura T, Miki T: Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008, 103 (6): 501-513. 10.1007/s00395-008-0743-y.CrossRefPubMed Miura T, Miki T: Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008, 103 (6): 501-513. 10.1007/s00395-008-0743-y.CrossRefPubMed
24.
go back to reference Cleutjens JP, Blankesteijn WM, Daemen MJ, Smits JF: The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res. 1999, 44 (2): 232-241. 10.1016/S0008-6363(99)00212-6.CrossRefPubMed Cleutjens JP, Blankesteijn WM, Daemen MJ, Smits JF: The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res. 1999, 44 (2): 232-241. 10.1016/S0008-6363(99)00212-6.CrossRefPubMed
25.
go back to reference Gustafsson AB, Gottlieb RA: Mechanisms of apoptosis in the heart. J Clin Immunol. 2003, 23 (6): 447-459. 10.1023/B:JOCI.0000010421.56035.60.CrossRefPubMed Gustafsson AB, Gottlieb RA: Mechanisms of apoptosis in the heart. J Clin Immunol. 2003, 23 (6): 447-459. 10.1023/B:JOCI.0000010421.56035.60.CrossRefPubMed
26.
go back to reference Folkman J: Angiogenesis research: from laboratory to clinic. Forum (Genova). 1999, 9 (3 Suppl 3): 59-62. Folkman J: Angiogenesis research: from laboratory to clinic. Forum (Genova). 1999, 9 (3 Suppl 3): 59-62.
27.
go back to reference Kutschka I, Kofidis T, Chen IY, von Degenfeld G, Zwierzchoniewska M, Hoyt G, Arai T, Lebl DR, Hendry SL, Sheikh AY, Cooke DT, Connolly A, Blau HM, Gambhir SS, Robbins RC: Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation. 2006, 114 (1 Suppl): I174-I180.PubMed Kutschka I, Kofidis T, Chen IY, von Degenfeld G, Zwierzchoniewska M, Hoyt G, Arai T, Lebl DR, Hendry SL, Sheikh AY, Cooke DT, Connolly A, Blau HM, Gambhir SS, Robbins RC: Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation. 2006, 114 (1 Suppl): I174-I180.PubMed
28.
go back to reference Yau TM, Li G, Weisel RD, Reheman A, Jia ZQ, Mickle DA, Li RK: Vascular endothelial growth factor transgene expression in cell-transplanted hearts. J Thorac Cardiovasc Surg. 2004, 127 (4): 1180-1187. 10.1016/j.jtcvs.2003.09.052.CrossRefPubMed Yau TM, Li G, Weisel RD, Reheman A, Jia ZQ, Mickle DA, Li RK: Vascular endothelial growth factor transgene expression in cell-transplanted hearts. J Thorac Cardiovasc Surg. 2004, 127 (4): 1180-1187. 10.1016/j.jtcvs.2003.09.052.CrossRefPubMed
29.
go back to reference Hwang H, Kloner RA: Improving regenerating potential of the heart after myocardial infarction: factor-based approach. Life Sci. 2010, 86 (13–14): 461-472. 10.1016/j.lfs.2010.01.004.CrossRefPubMed Hwang H, Kloner RA: Improving regenerating potential of the heart after myocardial infarction: factor-based approach. Life Sci. 2010, 86 (13–14): 461-472. 10.1016/j.lfs.2010.01.004.CrossRefPubMed
30.
go back to reference Dorn GW, Diwan A: The rationale for cardiomyocyte resuscitation in myocardial salvage. J Mol Med (Berl). 2008, 86 (10): 1085-1095. 10.1007/s00109-008-0362-y.CrossRef Dorn GW, Diwan A: The rationale for cardiomyocyte resuscitation in myocardial salvage. J Mol Med (Berl). 2008, 86 (10): 1085-1095. 10.1007/s00109-008-0362-y.CrossRef
31.
go back to reference Urbich C, Rossig L, Dimmeler S: Restoration of cardiac function with progenitor cells. Novartis Found Symp. 2006, 274: 214-223. 10.1002/0470029331.ch13. discussion 223–217, 272–216CrossRefPubMed Urbich C, Rossig L, Dimmeler S: Restoration of cardiac function with progenitor cells. Novartis Found Symp. 2006, 274: 214-223. 10.1002/0470029331.ch13. discussion 223–217, 272–216CrossRefPubMed
32.
go back to reference Laflamme MA, Zbinden S, Epstein SE, Murry CE: Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol. 2007, 2: 307-339. 10.1146/annurev.pathol.2.010506.092038.CrossRefPubMed Laflamme MA, Zbinden S, Epstein SE, Murry CE: Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol. 2007, 2: 307-339. 10.1146/annurev.pathol.2.010506.092038.CrossRefPubMed
33.
go back to reference Bartunek J, Vanderheyden M, Hill J, Terzic A: Cells as biologics for cardiac repair in ischaemic heart failure. Heart. 2010, 96 (10): 792-800. 10.1136/hrt.2007.139394.CrossRefPubMed Bartunek J, Vanderheyden M, Hill J, Terzic A: Cells as biologics for cardiac repair in ischaemic heart failure. Heart. 2010, 96 (10): 792-800. 10.1136/hrt.2007.139394.CrossRefPubMed
34.
go back to reference Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005, 54 (6): 1615-1625. 10.2337/diabetes.54.6.1615.CrossRefPubMed Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005, 54 (6): 1615-1625. 10.2337/diabetes.54.6.1615.CrossRefPubMed
36.
go back to reference Yan SF, Ramasamy R, Schmidt AM: The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med. 2009, 11: e9-10.1017/S146239940900101X.PubMedCentralCrossRefPubMed Yan SF, Ramasamy R, Schmidt AM: The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med. 2009, 11: e9-10.1017/S146239940900101X.PubMedCentralCrossRefPubMed
37.
go back to reference Li Z, Zhang T, Dai H, Liu G, Wang H, Sun Y, Zhang Y, Ge Z: Involvement of endoplasmic reticulum stress in myocardial apoptosis of streptozocin-induced diabetic rats. J Clin Biochem Nutr. 2007, 41 (1): 58-67. 10.3164/jcbn.2007008.PubMedCentralCrossRefPubMed Li Z, Zhang T, Dai H, Liu G, Wang H, Sun Y, Zhang Y, Ge Z: Involvement of endoplasmic reticulum stress in myocardial apoptosis of streptozocin-induced diabetic rats. J Clin Biochem Nutr. 2007, 41 (1): 58-67. 10.3164/jcbn.2007008.PubMedCentralCrossRefPubMed
38.
go back to reference Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR: Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy?. Horm Metab Res. 2007, 39 (9): 672-676. 10.1055/s-2007-985823.CrossRefPubMed Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR: Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy?. Horm Metab Res. 2007, 39 (9): 672-676. 10.1055/s-2007-985823.CrossRefPubMed
39.
go back to reference Tian XF, Cui MX, Yang SW, Zhou YJ, Hu DY: Cell death, dysglycemia and myocardial infarction. Biomedical Reports. 2013, 1 (3): 341-346.PubMedCentralPubMed Tian XF, Cui MX, Yang SW, Zhou YJ, Hu DY: Cell death, dysglycemia and myocardial infarction. Biomedical Reports. 2013, 1 (3): 341-346.PubMedCentralPubMed
40.
go back to reference Yang SW, Zhou YJ, Tian XF, Pan GZ, Liu YY, Zhang J, Guo ZF, Chen SY, Gao ST, Du J, Jia DA, Fang Z, Hu B, Han HY, Gao F, Hu DY, Xu YY, Beijing H: Association of dysglycemia and all-cause mortality across the spectrum of coronary artery disease. Mayo Clin Proc. 2013, 88 (9): 930-941. 10.1016/j.mayocp.2013.05.022.CrossRefPubMed Yang SW, Zhou YJ, Tian XF, Pan GZ, Liu YY, Zhang J, Guo ZF, Chen SY, Gao ST, Du J, Jia DA, Fang Z, Hu B, Han HY, Gao F, Hu DY, Xu YY, Beijing H: Association of dysglycemia and all-cause mortality across the spectrum of coronary artery disease. Mayo Clin Proc. 2013, 88 (9): 930-941. 10.1016/j.mayocp.2013.05.022.CrossRefPubMed
41.
go back to reference Lonborg J, Vejlstrup N, Kelbaek H, Nepper-Christensen L, Jorgensen E, Helqvist S, Holmvang L, Saunamaki K, Botker HE, Kim WY, Clemmensen P, Treiman M, Engstrom T: Impact of Acute Hyperglycemia on Myocardial Infarct Size, Area at Risk, and Salvage in Patients With STEMI and the Association With Exenatide Treatment: Results From a Randomized Study. Diabetes. 2014, 63 (7): 2474-2485. 10.2337/db13-1849.CrossRefPubMed Lonborg J, Vejlstrup N, Kelbaek H, Nepper-Christensen L, Jorgensen E, Helqvist S, Holmvang L, Saunamaki K, Botker HE, Kim WY, Clemmensen P, Treiman M, Engstrom T: Impact of Acute Hyperglycemia on Myocardial Infarct Size, Area at Risk, and Salvage in Patients With STEMI and the Association With Exenatide Treatment: Results From a Randomized Study. Diabetes. 2014, 63 (7): 2474-2485. 10.2337/db13-1849.CrossRefPubMed
42.
go back to reference Marfella R, Siniscalchi M, Esposito K, Sellitto A, De Fanis U, Romano C, Portoghese M, Siciliano S, Nappo F, Sasso FC, Mininni N, Cacciapuoti F, Lucivero G, Giunta R, Verza M, Giugliano D: Effects of stress hyperglycemia on acute myocardial infarction: role of inflammatory immune process in functional cardiac outcome. Diabetes Care. 2003, 26 (11): 3129-3135. 10.2337/diacare.26.11.3129.CrossRefPubMed Marfella R, Siniscalchi M, Esposito K, Sellitto A, De Fanis U, Romano C, Portoghese M, Siciliano S, Nappo F, Sasso FC, Mininni N, Cacciapuoti F, Lucivero G, Giunta R, Verza M, Giugliano D: Effects of stress hyperglycemia on acute myocardial infarction: role of inflammatory immune process in functional cardiac outcome. Diabetes Care. 2003, 26 (11): 3129-3135. 10.2337/diacare.26.11.3129.CrossRefPubMed
43.
go back to reference Eguchi M, Kim YH, Kang KW, Shim CY, Jang Y, Dorval T, Kim KJ, Sweeney G: Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PLoS One. 2012, 7 (2): e30450-10.1371/journal.pone.0030450.PubMedCentralCrossRefPubMed Eguchi M, Kim YH, Kang KW, Shim CY, Jang Y, Dorval T, Kim KJ, Sweeney G: Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PLoS One. 2012, 7 (2): e30450-10.1371/journal.pone.0030450.PubMedCentralCrossRefPubMed
44.
go back to reference Connor RJ, Menzel P, Pasquale EB: Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol. 1998, 193 (1): 21-35. 10.1006/dbio.1997.8786.CrossRefPubMed Connor RJ, Menzel P, Pasquale EB: Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol. 1998, 193 (1): 21-35. 10.1006/dbio.1997.8786.CrossRefPubMed
45.
go back to reference Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB: The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene. 2000, 19 (52): 6043-6052. 10.1038/sj.onc.1204004.CrossRefPubMed Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB: The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene. 2000, 19 (52): 6043-6052. 10.1038/sj.onc.1204004.CrossRefPubMed
46.
go back to reference Bovenkamp DE, Greer PA: Degenerate PCR-based cloning method for Eph receptors and analysis of their expression in the developing murine central nervous system and vasculature. DNA Cell Biol. 2001, 20 (4): 203-213. 10.1089/104454901750219080.CrossRefPubMed Bovenkamp DE, Greer PA: Degenerate PCR-based cloning method for Eph receptors and analysis of their expression in the developing murine central nervous system and vasculature. DNA Cell Biol. 2001, 20 (4): 203-213. 10.1089/104454901750219080.CrossRefPubMed
47.
go back to reference Nakamoto M, Bergemann AD: Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech. 2002, 59 (1): 58-67. 10.1002/jemt.10177.CrossRefPubMed Nakamoto M, Bergemann AD: Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech. 2002, 59 (1): 58-67. 10.1002/jemt.10177.CrossRefPubMed
48.
go back to reference Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE: EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene. 2004, 23 (7): 1448-1456. 10.1038/sj.onc.1207247.CrossRefPubMed Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE: EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene. 2004, 23 (7): 1448-1456. 10.1038/sj.onc.1207247.CrossRefPubMed
49.
go back to reference Lin YG, Han LY, Kamat AA, Merritt WM, Landen CN, Deavers MT, Fletcher MS, Urbauer DL, Kinch MS, Sood AK: EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer. 2007, 109 (2): 332-340. 10.1002/cncr.22415.CrossRefPubMed Lin YG, Han LY, Kamat AA, Merritt WM, Landen CN, Deavers MT, Fletcher MS, Urbauer DL, Kinch MS, Sood AK: EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer. 2007, 109 (2): 332-340. 10.1002/cncr.22415.CrossRefPubMed
50.
go back to reference Wykosky J, Debinski W: The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008, 6 (12): 1795-1806. 10.1158/1541-7786.MCR-08-0244.PubMedCentralCrossRefPubMed Wykosky J, Debinski W: The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008, 6 (12): 1795-1806. 10.1158/1541-7786.MCR-08-0244.PubMedCentralCrossRefPubMed
51.
go back to reference Okazaki T, Ni A, Baluk P, Ayeni OA, Kearley J, Coyle AJ, Humbles A, McDonald DM: Capillary defects and exaggerated inflammatory response in the airways of EphA2-deficient mice. Am J Pathol. 2009, 174 (6): 2388-2399. 10.2353/ajpath.2009.080949.PubMedCentralCrossRefPubMed Okazaki T, Ni A, Baluk P, Ayeni OA, Kearley J, Coyle AJ, Humbles A, McDonald DM: Capillary defects and exaggerated inflammatory response in the airways of EphA2-deficient mice. Am J Pathol. 2009, 174 (6): 2388-2399. 10.2353/ajpath.2009.080949.PubMedCentralCrossRefPubMed
52.
go back to reference Funk SD, Yurdagul A, Albert P, Traylor JG, Jin L, Chen J, Orr AW: EphA2 Activation Promotes the Endothelial Cell Inflammatory Response: A Potential Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2012, 32 (3): 686-695. 10.1161/ATVBAHA.111.242792.PubMedCentralCrossRefPubMed Funk SD, Yurdagul A, Albert P, Traylor JG, Jin L, Chen J, Orr AW: EphA2 Activation Promotes the Endothelial Cell Inflammatory Response: A Potential Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2012, 32 (3): 686-695. 10.1161/ATVBAHA.111.242792.PubMedCentralCrossRefPubMed
53.
go back to reference Funk SD, Orr AW: Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol Res. 2013, 67 (1): 42-52. 10.1016/j.phrs.2012.10.008.CrossRefPubMed Funk SD, Orr AW: Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol Res. 2013, 67 (1): 42-52. 10.1016/j.phrs.2012.10.008.CrossRefPubMed
54.
go back to reference Carpenter TC, Schroeder W, Stenmark KR, Schmidt EP: Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. Am J Respir Cell Mol Biol. 2012, 46 (1): 40-47. 10.1165/rcmb.2011-0044OC.PubMedCentralCrossRefPubMed Carpenter TC, Schroeder W, Stenmark KR, Schmidt EP: Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. Am J Respir Cell Mol Biol. 2012, 46 (1): 40-47. 10.1165/rcmb.2011-0044OC.PubMedCentralCrossRefPubMed
55.
go back to reference Zhou N, Zhao WD, Liu DX, Liang Y, Fang WG, Li B, Chen YH: Inactivation of EphA2 promotes tight junction formation and impairs angiogenesis in brain endothelial cells. Microvasc Res. 2011, 82 (2): 113-121. 10.1016/j.mvr.2011.06.005.CrossRefPubMed Zhou N, Zhao WD, Liu DX, Liang Y, Fang WG, Li B, Chen YH: Inactivation of EphA2 promotes tight junction formation and impairs angiogenesis in brain endothelial cells. Microvasc Res. 2011, 82 (2): 113-121. 10.1016/j.mvr.2011.06.005.CrossRefPubMed
56.
go back to reference Thundyil J, Manzanero S, Pavlovski D, Cully TR, Lok KZ, Widiapradja A, Chunduri P, Jo DG, Naruse C, Asano M, Launikonis BS, Sobey CG, Coulthard MG, Arumugam TV: Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS One. 2013, 8 (1): e53528-10.1371/journal.pone.0053528.PubMedCentralCrossRefPubMed Thundyil J, Manzanero S, Pavlovski D, Cully TR, Lok KZ, Widiapradja A, Chunduri P, Jo DG, Naruse C, Asano M, Launikonis BS, Sobey CG, Coulthard MG, Arumugam TV: Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS One. 2013, 8 (1): e53528-10.1371/journal.pone.0053528.PubMedCentralCrossRefPubMed
57.
go back to reference Baldwin C, Chen ZW, Bedirian A, Yokota N, Nasr SH, Rabb H, Lemay S: Upregulation of EphA2 during in vivo and in vitro renal ischemia-reperfusion injury: role of Src kinases. Am J Physiol Renal Physiol. 2006, 291 (5): F960-F971. 10.1152/ajprenal.00020.2006.CrossRefPubMed Baldwin C, Chen ZW, Bedirian A, Yokota N, Nasr SH, Rabb H, Lemay S: Upregulation of EphA2 during in vivo and in vitro renal ischemia-reperfusion injury: role of Src kinases. Am J Physiol Renal Physiol. 2006, 291 (5): F960-F971. 10.1152/ajprenal.00020.2006.CrossRefPubMed
58.
go back to reference Jellinghaus S, Poitz DM, Ende G, Augstein A, Weinert S, Stutz B, Braun-Dullaeus RC, Pasquale EB, Strasser RH: Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells. Biochim Biophys Acta. 2013, 1833 (10): 2201-2211. 10.1016/j.bbamcr.2013.05.017.CrossRefPubMed Jellinghaus S, Poitz DM, Ende G, Augstein A, Weinert S, Stutz B, Braun-Dullaeus RC, Pasquale EB, Strasser RH: Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells. Biochim Biophys Acta. 2013, 1833 (10): 2201-2211. 10.1016/j.bbamcr.2013.05.017.CrossRefPubMed
59.
go back to reference Chan B, Sukhatme VP: Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res. 2009, 123 (5): 745-752. 10.1016/j.thromres.2008.07.010.PubMedCentralCrossRefPubMed Chan B, Sukhatme VP: Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res. 2009, 123 (5): 745-752. 10.1016/j.thromres.2008.07.010.PubMedCentralCrossRefPubMed
60.
go back to reference Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O'Rourke K, Ward PA, Prochownik EV, Marks RM: Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem. 1990, 265 (5): 2973-2978.PubMed Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O'Rourke K, Ward PA, Prochownik EV, Marks RM: Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem. 1990, 265 (5): 2973-2978.PubMed
61.
go back to reference Holzman LB, Marks RM, Dixit VM: A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol. 1990, 10 (11): 5830-5838.PubMedCentralCrossRefPubMed Holzman LB, Marks RM, Dixit VM: A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol. 1990, 10 (11): 5830-5838.PubMedCentralCrossRefPubMed
62.
go back to reference Ivanov AI, Steiner AA, Scheck AC, Romanovsky AA: Expression of Eph receptors and their ligands, ephrins, during lipopolysaccharide fever in rats. Physiol Genomics. 2005, 21 (2): 152-160. 10.1152/physiolgenomics.00043.2004.CrossRefPubMed Ivanov AI, Steiner AA, Scheck AC, Romanovsky AA: Expression of Eph receptors and their ligands, ephrins, during lipopolysaccharide fever in rats. Physiol Genomics. 2005, 21 (2): 152-160. 10.1152/physiolgenomics.00043.2004.CrossRefPubMed
63.
go back to reference Kolattukudy PE, Niu J: Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res. 2012, 110 (1): 174-189. 10.1161/CIRCRESAHA.111.243212.PubMedCentralCrossRefPubMed Kolattukudy PE, Niu J: Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res. 2012, 110 (1): 174-189. 10.1161/CIRCRESAHA.111.243212.PubMedCentralCrossRefPubMed
64.
go back to reference Ren G, Dewald O, Frangogiannis NG: Inflammatory mechanisms in myocardial infarction. Current Drug Targets Inflammation Allergy. 2003, 2 (3): 242-256. 10.2174/1568010033484098.CrossRefPubMed Ren G, Dewald O, Frangogiannis NG: Inflammatory mechanisms in myocardial infarction. Current Drug Targets Inflammation Allergy. 2003, 2 (3): 242-256. 10.2174/1568010033484098.CrossRefPubMed
65.
go back to reference Carter AM: Complement activation: an emerging player in the pathogenesis of cardiovascular disease. Scientifica. 2012, 2012: 402783-10.6064/2012/402783.PubMedCentralCrossRefPubMed Carter AM: Complement activation: an emerging player in the pathogenesis of cardiovascular disease. Scientifica. 2012, 2012: 402783-10.6064/2012/402783.PubMedCentralCrossRefPubMed
66.
go back to reference Busche MN, Stahl GL: Role of the complement components C5 and C3a in a mouse model of myocardial ischemia and reperfusion injury. German Med Sci. 2010, 8: doc20- Busche MN, Stahl GL: Role of the complement components C5 and C3a in a mouse model of myocardial ischemia and reperfusion injury. German Med Sci. 2010, 8: doc20-
67.
go back to reference Goldbergova MP, Parenica J, Jarkovsky J, Kala P, Poloczek M, Manousek J, Kluz K, Kubkova L, Littnerova S, Tesak M, Toman O, Pavek N, Cermakova Z, Tomandl J, Vasku A, Spinar J: The association between levels of tissue inhibitor of metalloproteinase-1 with acute heart failure and left ventricular dysfunction in patients with ST elevation myocardial infarction treated by primary percutaneous coronary intervention. Gen Test Mol Biomark. 2012, 16 (10): 1172-1178. 10.1089/gtmb.2012.0120.CrossRef Goldbergova MP, Parenica J, Jarkovsky J, Kala P, Poloczek M, Manousek J, Kluz K, Kubkova L, Littnerova S, Tesak M, Toman O, Pavek N, Cermakova Z, Tomandl J, Vasku A, Spinar J: The association between levels of tissue inhibitor of metalloproteinase-1 with acute heart failure and left ventricular dysfunction in patients with ST elevation myocardial infarction treated by primary percutaneous coronary intervention. Gen Test Mol Biomark. 2012, 16 (10): 1172-1178. 10.1089/gtmb.2012.0120.CrossRef
68.
go back to reference Abohashem-Aly AA, Meng X, Li J, Sadaria MR, Ao L, Wennergren J, Fullerton DA, Raeburn CD: DITPA, a thyroid hormone analog, reduces infarct size and attenuates the inflammatory response following myocardial ischemia. J Surg Res. 2011, 171 (2): 379-385. 10.1016/j.jss.2011.04.009.CrossRefPubMed Abohashem-Aly AA, Meng X, Li J, Sadaria MR, Ao L, Wennergren J, Fullerton DA, Raeburn CD: DITPA, a thyroid hormone analog, reduces infarct size and attenuates the inflammatory response following myocardial ischemia. J Surg Res. 2011, 171 (2): 379-385. 10.1016/j.jss.2011.04.009.CrossRefPubMed
69.
go back to reference Pixley FJ, Stanley ER: CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004, 14 (11): 628-638. 10.1016/j.tcb.2004.09.016.CrossRefPubMed Pixley FJ, Stanley ER: CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004, 14 (11): 628-638. 10.1016/j.tcb.2004.09.016.CrossRefPubMed
70.
go back to reference Frangogiannis NG, Mendoza LH, Ren G, Akrivakis S, Jackson PL, Michael LH, Smith CW, Entman ML: MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol. 2003, 285 (2): H483-H492.CrossRefPubMed Frangogiannis NG, Mendoza LH, Ren G, Akrivakis S, Jackson PL, Michael LH, Smith CW, Entman ML: MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol. 2003, 285 (2): H483-H492.CrossRefPubMed
71.
go back to reference Iyigun T, Teskin O, Enc Y, Cakmak M, Iyigun M, Keser S, Camur G, Komurcu G, Sargin M, Ozay B, Dagsali S: Does the level of soluble intercellular adhesion molecule 1 predict myocardial injury before cardiac markers increase?. Heart Surg Forum. 2008, 11 (6): E352-E356. 10.1532/HSF98.20081092.CrossRefPubMed Iyigun T, Teskin O, Enc Y, Cakmak M, Iyigun M, Keser S, Camur G, Komurcu G, Sargin M, Ozay B, Dagsali S: Does the level of soluble intercellular adhesion molecule 1 predict myocardial injury before cardiac markers increase?. Heart Surg Forum. 2008, 11 (6): E352-E356. 10.1532/HSF98.20081092.CrossRefPubMed
72.
go back to reference Shai I, Pischon T, Hu FB, Ascherio A, Rifai N, Rimm EB: Soluble intercellular adhesion molecules, soluble vascular cell adhesion molecules, and risk of coronary heart disease. Obesity. 2006, 14 (11): 2099-2106. 10.1038/oby.2006.245.CrossRefPubMed Shai I, Pischon T, Hu FB, Ascherio A, Rifai N, Rimm EB: Soluble intercellular adhesion molecules, soluble vascular cell adhesion molecules, and risk of coronary heart disease. Obesity. 2006, 14 (11): 2099-2106. 10.1038/oby.2006.245.CrossRefPubMed
73.
go back to reference Jehle J, Staudacher I, Wiedmann F, Schweizer P, Becker R, Katus H, Thomas D: Regulation of apoptosis in HL-1 cardiomyocytes by phosphorylation of the receptor tyrosine kinase EphA2 and protection by lithocholic acid. Br J Pharmacol. 2012, 167 (7): 1563-1572. 10.1111/j.1476-5381.2012.02117.x.PubMedCentralCrossRefPubMed Jehle J, Staudacher I, Wiedmann F, Schweizer P, Becker R, Katus H, Thomas D: Regulation of apoptosis in HL-1 cardiomyocytes by phosphorylation of the receptor tyrosine kinase EphA2 and protection by lithocholic acid. Br J Pharmacol. 2012, 167 (7): 1563-1572. 10.1111/j.1476-5381.2012.02117.x.PubMedCentralCrossRefPubMed
74.
go back to reference Shaut CA, Saneyoshi C, Morgan EA, Knosp WM, Sexton DR, Stadler HS: HOXA13 directly regulates EphA6 and EphA7 expression in the genital tubercle vascular endothelia. Dev Dyn. 2007, 236 (4): 951-960. 10.1002/dvdy.21077.CrossRefPubMed Shaut CA, Saneyoshi C, Morgan EA, Knosp WM, Sexton DR, Stadler HS: HOXA13 directly regulates EphA6 and EphA7 expression in the genital tubercle vascular endothelia. Dev Dyn. 2007, 236 (4): 951-960. 10.1002/dvdy.21077.CrossRefPubMed
75.
go back to reference Shaut CA, Keene DR, Sorensen LK, Li DY, Stadler HS: HOXA13 Is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet. 2008, 4 (5): e1000073-10.1371/journal.pgen.1000073.PubMedCentralCrossRefPubMed Shaut CA, Keene DR, Sorensen LK, Li DY, Stadler HS: HOXA13 Is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet. 2008, 4 (5): e1000073-10.1371/journal.pgen.1000073.PubMedCentralCrossRefPubMed
76.
go back to reference O'Neal WT: Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy. Front Physiol. 2014, 5: article 132-10.3389/fphys.2014.00132.CrossRefPubMed O'Neal WT: Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy. Front Physiol. 2014, 5: article 132-10.3389/fphys.2014.00132.CrossRefPubMed
77.
go back to reference Sakamoto A, Sugamoto Y, Tokunaga Y, Yoshimuta T, Hayashi K, Konno T, Kawashiri MA, Takeda Y, Yamagishi M: Expression profiling of the ephrin (EFN) and Eph receptor (EPH) family of genes in atherosclerosis-related human cells. J Int Med Res. 2011, 39 (2): 522-527. 10.1177/147323001103900220.CrossRefPubMed Sakamoto A, Sugamoto Y, Tokunaga Y, Yoshimuta T, Hayashi K, Konno T, Kawashiri MA, Takeda Y, Yamagishi M: Expression profiling of the ephrin (EFN) and Eph receptor (EPH) family of genes in atherosclerosis-related human cells. J Int Med Res. 2011, 39 (2): 522-527. 10.1177/147323001103900220.CrossRefPubMed
78.
go back to reference Yamagishi M, Higashikata T, Ishibashi-Ueda H, Sasaki H, Ogino H, Iihara K, Miyamoto S, Nagaya N, Tomoike H, Sakamoto A: Sustained upregulation of inflammatory chemokine and its receptor in aneurysmal and occlusive atherosclerotic disease: results form tissue analysis with cDNA macroarray and real-time reverse transcriptional polymerase chain reaction methods. Circ J. 2005, 69 (12): 1490-1495. 10.1253/circj.69.1490.CrossRefPubMed Yamagishi M, Higashikata T, Ishibashi-Ueda H, Sasaki H, Ogino H, Iihara K, Miyamoto S, Nagaya N, Tomoike H, Sakamoto A: Sustained upregulation of inflammatory chemokine and its receptor in aneurysmal and occlusive atherosclerotic disease: results form tissue analysis with cDNA macroarray and real-time reverse transcriptional polymerase chain reaction methods. Circ J. 2005, 69 (12): 1490-1495. 10.1253/circj.69.1490.CrossRefPubMed
79.
80.
go back to reference Bouloumie A, Curat CA, Sengenes C, Lolmede K, Miranville A, Busse R: Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care. 2005, 8 (4): 347-354. 10.1097/01.mco.0000172571.41149.52.CrossRefPubMed Bouloumie A, Curat CA, Sengenes C, Lolmede K, Miranville A, Busse R: Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care. 2005, 8 (4): 347-354. 10.1097/01.mco.0000172571.41149.52.CrossRefPubMed
Metadata
Title
EphA2-receptor deficiency exacerbates myocardial infarction and reduces survival in hyperglycemic mice
Authors
Augustin DuSablon
Susan Kent
Anita Coburn
Jitka Virag
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2014
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-014-0114-y

Other articles of this Issue 1/2014

Cardiovascular Diabetology 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.