Skip to main content
Top
Published in: Hereditary Cancer in Clinical Practice 1/2023

Open Access 01-12-2023 | Ependymoma | Case Report

Beyond germline genetic testing - heterozygous pathogenic variants in PMS2 in two children with Osteosarcoma and Ependymoma

Authors: Michaela Kuhlen, Mariola Monika Golas, Tina Schaller, Nicole Stadler, Felicitas Maier, Olaf Witt, Michael C. Frühwald

Published in: Hereditary Cancer in Clinical Practice | Issue 1/2023

Login to get access

Abstract

Background

Lynch syndrome (LS) is not considered part of childhood cancer predisposition syndromes.

Case presentation

Analysis of a pediatric osteosarcoma (OS) displayed hypermutation (16.8), alternative lengthening of telomeres (ALT), loss of PMS2 expression in tumor tissue (retained in non-neoplastic cells), PMS2 loss of heterozygosity (LOH), and high-degree of microsatellite instability (MSI) tested by PCR. A heterozygous duplication c.1076dup p.(Leu359Phefs*6) in exon 10 of NM_000535.6:PMS2 was detected by SNV analysis in peripheral blood, confirming diagnosis of LS in the patient. The tumor molecular features suggest LS-associated development of OS. In a second case, whole-genome sequencing identified a heterozygous SNV c.1 A > T p.? in exon 1 of PMS2 in tumor and germline material of a girl with ependymoma. Tumor analysis displayed evidence for ALT and low mutational burden (0.6), PMS2 expression was retained, MSI was low. Multiplex ligation-dependent probe amplification identified no additional PMS2 variant and germline MSI testing did not reveal increased gMSI ratios in the patient´s lymphocytes. Thus, CMMRD was most closely excluded and our data do not suggest that ependymoma was related to LS in the child.

Conclusions

Our data suggest that the LS cancer spectrum may include childhood cancer. The importance of LS in pediatric cancers necessitates prospective data collection. Comprehensive molecular workup of tumor samples is necessary to explore the causal role of germline genetic variants.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in Pediatric Cancer. N Engl J Med. 2015;373(24):2336–46.CrossRefPubMedPubMedCentral Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in Pediatric Cancer. N Engl J Med. 2015;373(24):2336–46.CrossRefPubMedPubMedCentral
2.
go back to reference Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–7.CrossRefPubMed Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–7.CrossRefPubMed
3.
go back to reference Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173(4):1017–37.CrossRefPubMed Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173(4):1017–37.CrossRefPubMed
4.
go back to reference Mirabello L, Yeager M, Mai PL, Gastier-Foster JM, Gorlick R, Khanna C et al. Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst. 2015;107(7). Mirabello L, Yeager M, Mai PL, Gastier-Foster JM, Gorlick R, Khanna C et al. Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst. 2015;107(7).
5.
go back to reference Mirabello L, Zhu B, Koster R, Karlins E, Dean M, Yeager M et al. Frequency of pathogenic germline variants in Cancer-Susceptibility genes in patients with Osteosarcoma. JAMA Oncol. 2020. Mirabello L, Zhu B, Koster R, Karlins E, Dean M, Yeager M et al. Frequency of pathogenic germline variants in Cancer-Susceptibility genes in patients with Osteosarcoma. JAMA Oncol. 2020.
6.
go back to reference Mullins KJ, Rubio A, Myers SP, Korones DN, Pilcher WH. Malignant ependymomas in a patient with Turcot’s syndrome: case report and management guidelines. Surg Neurol. 1998;49(3):290–4.CrossRefPubMed Mullins KJ, Rubio A, Myers SP, Korones DN, Pilcher WH. Malignant ependymomas in a patient with Turcot’s syndrome: case report and management guidelines. Surg Neurol. 1998;49(3):290–4.CrossRefPubMed
7.
go back to reference Torres CF, Korones DN, Pilcher W. Multiple ependymomas in a patient with Turcot’s syndrome. Med Pediatr Oncol. 1997;28(1):59–61.CrossRefPubMed Torres CF, Korones DN, Pilcher W. Multiple ependymomas in a patient with Turcot’s syndrome. Med Pediatr Oncol. 1997;28(1):59–61.CrossRefPubMed
8.
go back to reference van Tilburg CM, Pfaff E, Pajtler KW, Langenberg KPS, Fiesel P, Jones BC, et al. The Pediatric Precision Oncology INFORM Registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 2021;11(11):2764–79.CrossRefPubMedPubMedCentral van Tilburg CM, Pfaff E, Pajtler KW, Langenberg KPS, Fiesel P, Jones BC, et al. The Pediatric Precision Oncology INFORM Registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 2021;11(11):2764–79.CrossRefPubMedPubMedCentral
9.
go back to reference Ingham D, Diggle CP, Berry I, Bristow CA, Hayward BE, Rahman N, et al. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome. Hum Mutat. 2013;34(6):847–52.CrossRefPubMed Ingham D, Diggle CP, Berry I, Bristow CA, Hayward BE, Rahman N, et al. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome. Hum Mutat. 2013;34(6):847–52.CrossRefPubMed
10.
go back to reference Peltomaki P. Update on Lynch syndrome genomics. Familial cancer. 2016. Peltomaki P. Update on Lynch syndrome genomics. Familial cancer. 2016.
11.
go back to reference Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76(1):1–18.CrossRefPubMedPubMedCentral Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76(1):1–18.CrossRefPubMedPubMedCentral
12.
go back to reference Kratz CP, Smirnov D, Autry R, Jager N, Waszak SM, Grosshennig A, et al. Heterozygous BRCA1 and BRCA2 and Mismatch Repair Gene pathogenic variants in children and adolescents with Cancer. J Natl Cancer Inst. 2022;114(11):1523–32.CrossRefPubMed Kratz CP, Smirnov D, Autry R, Jager N, Waszak SM, Grosshennig A, et al. Heterozygous BRCA1 and BRCA2 and Mismatch Repair Gene pathogenic variants in children and adolescents with Cancer. J Natl Cancer Inst. 2022;114(11):1523–32.CrossRefPubMed
13.
go back to reference Ballinger ML, Goode DL, Ray-Coquard I, James PA, Mitchell G, Niedermayr E, et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 2016;17(9):1261–71.CrossRefPubMed Ballinger ML, Goode DL, Ray-Coquard I, James PA, Mitchell G, Niedermayr E, et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 2016;17(9):1261–71.CrossRefPubMed
14.
go back to reference de Angelis de Carvalho N, Niitsuma BN, Kozak VN, Costa FD, de Macedo MP, Kupper BEC et al. Clinical and molecular Assessment of patients with Lynch Syndrome and Sarcomas Underpinning the Association with MSH2 germline pathogenic variants. Cancers (Basel). 2020;12(7). de Angelis de Carvalho N, Niitsuma BN, Kozak VN, Costa FD, de Macedo MP, Kupper BEC et al. Clinical and molecular Assessment of patients with Lynch Syndrome and Sarcomas Underpinning the Association with MSH2 germline pathogenic variants. Cancers (Basel). 2020;12(7).
15.
go back to reference Guerrini-Rousseau L, Varlet P, Colas C, Andreiuolo F, Bourdeaut F, Dahan K, et al. Constitutional mismatch repair deficiency-associated brain tumors: report from the european C4CMMRD consortium. Neurooncol Adv. 2019;1(1):vdz033.PubMedPubMedCentral Guerrini-Rousseau L, Varlet P, Colas C, Andreiuolo F, Bourdeaut F, Dahan K, et al. Constitutional mismatch repair deficiency-associated brain tumors: report from the european C4CMMRD consortium. Neurooncol Adv. 2019;1(1):vdz033.PubMedPubMedCentral
16.
go back to reference Vasen HF, Sanders EA, Taal BG, Nagengast FM, Griffioen G, Menko FH, et al. The risk of brain tumours in hereditary non-polyposis colorectal cancer (HNPCC). Int J cancer J Int du cancer. 1996;65(4):422–5.CrossRef Vasen HF, Sanders EA, Taal BG, Nagengast FM, Griffioen G, Menko FH, et al. The risk of brain tumours in hereditary non-polyposis colorectal cancer (HNPCC). Int J cancer J Int du cancer. 1996;65(4):422–5.CrossRef
17.
go back to reference Briggs M, Das A, Firth H, Levine A, Sanchez-Ramirez S, Negm L et al. Recurrent posterior fossa group A (PFA) ependymoma in a young child with constitutional mismatch repair deficiency (CMMRD). Neuropathol Appl Neurobiol. 2022:e12862. Briggs M, Das A, Firth H, Levine A, Sanchez-Ramirez S, Negm L et al. Recurrent posterior fossa group A (PFA) ependymoma in a young child with constitutional mismatch repair deficiency (CMMRD). Neuropathol Appl Neurobiol. 2022:e12862.
18.
go back to reference Dominguez-Valentin M, Sampson JR, Seppala TT, Ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective Lynch Syndrome Database. Genet medicine: official J Am Coll Med Genet. 2020;22(1):15–25.CrossRef Dominguez-Valentin M, Sampson JR, Seppala TT, Ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective Lynch Syndrome Database. Genet medicine: official J Am Coll Med Genet. 2020;22(1):15–25.CrossRef
19.
go back to reference Ten Broeke SW, van der Klift HM, Tops CMJ, Aretz S, Bernstein I, Buchanan DD, et al. Cancer Risks for PMS2-Associated Lynch Syndrome. J Clin oncology: official J Am Soc Clin Oncol. 2018;36(29):2961–8.CrossRef Ten Broeke SW, van der Klift HM, Tops CMJ, Aretz S, Bernstein I, Buchanan DD, et al. Cancer Risks for PMS2-Associated Lynch Syndrome. J Clin oncology: official J Am Soc Clin Oncol. 2018;36(29):2961–8.CrossRef
Metadata
Title
Beyond germline genetic testing - heterozygous pathogenic variants in PMS2 in two children with Osteosarcoma and Ependymoma
Authors
Michaela Kuhlen
Mariola Monika Golas
Tina Schaller
Nicole Stadler
Felicitas Maier
Olaf Witt
Michael C. Frühwald
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Hereditary Cancer in Clinical Practice / Issue 1/2023
Electronic ISSN: 1897-4287
DOI
https://doi.org/10.1186/s13053-023-00254-4

Other articles of this Issue 1/2023

Hereditary Cancer in Clinical Practice 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine