Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

Enhanced in vitro antibacterial effect against Enterococcus faecalis by using both low-dose cetylpyridinium chloride and silver ions

Authors: Silei Lv, Wei Fan, Bing Fan

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Enterococcus faecalis (E. faecalis) is frequently isolated from root canals with failed root canal treatments. Due to the strong ability of E. faecalis to resist many often-used antimicrobials, coping with E. faecalis infections remains a challenge. The aim of this study was to investigate the synergistic antibacterial effect of low-dose cetylpyridinium chloride (CPC) and silver ions (Ag+) against E. faecalis in vitro.

Methods

The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and the fractional inhibitory concentration index (FICI) were used to confirm the existence of the synergic antibacterial activity between low-dose CPC and Ag+. Colony-forming unit (CFU) counting, time-killing curve and dynamic growth curve were used to evaluate the antimicrobial effects of CPC and Ag+ combinations against planktonic E. faecalis. Four weeks biofilms were treated with drug-contained gels to determine the antimicrobial effect on biofilm-resident E.faecalis, and the integrity of E.faecalis and its biofilms were observed by FE-SEM. CCK-8 assays was used to test the cytotoxicity of CPC and Ag+ combinations on MC3T3-E1 cells.

Results

The results confirmed the synergistic antibacterial effect of low-dose CPC and Ag+ against both planktonic and 4-week biofilm E. faecalis. After the addition of CPC, the sensitivity of both planktonic and biofilm-resident E. faecalis to Ag+ improved, and the combination showed good biocompatibility on MC3T3-E1 cells.

Conclusions

Low-dose CPC enhanced the antibacterial ability of Ag+ against both planktonic and biofilm E.faecalis with good biocompatibility. It may be developed into a novel and potent antibacterial agent against E.faecalis, with low toxicity for root canal disinfection or other related medical applications.
Literature
1.
go back to reference Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A. Effectiveness of chitosan-propolis nanoparticle against Enterococcus faecalis biofilms in the root canal. BMC Oral Health. 2020;20(1):339.PubMedPubMedCentralCrossRef Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A. Effectiveness of chitosan-propolis nanoparticle against Enterococcus faecalis biofilms in the root canal. BMC Oral Health. 2020;20(1):339.PubMedPubMedCentralCrossRef
2.
go back to reference Araujo HC, Arias LS, Caldeirao ACM, Assumpcao LCF, Morceli MG, de Souza Neto FN, de Camargo ER, Oliveira SHP, Pessan JP, Monteiro DR. Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. J Fungi (Basel) 2020, 6(4). Araujo HC, Arias LS, Caldeirao ACM, Assumpcao LCF, Morceli MG, de Souza Neto FN, de Camargo ER, Oliveira SHP, Pessan JP, Monteiro DR. Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. J Fungi (Basel) 2020, 6(4).
3.
go back to reference Dai X, Ma R, Jiang W, Deng Z, Chen L, Liang Y, Shao L, Zhao W. Enterococcus faecalis-Induced Macrophage Necroptosis promotes refractory apical periodontitis. Microbiol Spectr. 2022;10(4):e0104522.PubMedCrossRef Dai X, Ma R, Jiang W, Deng Z, Chen L, Liang Y, Shao L, Zhao W. Enterococcus faecalis-Induced Macrophage Necroptosis promotes refractory apical periodontitis. Microbiol Spectr. 2022;10(4):e0104522.PubMedCrossRef
4.
go back to reference Voit M, Trampuz A, Gonzalez Moreno M. In Vitro Evaluation of Five Newly Isolated Bacteriophages against E. faecalis Biofilm for Their Potential Use against Post-Treatment Apical Periodontitis. Pharmaceutics 2022, 14(9). Voit M, Trampuz A, Gonzalez Moreno M. In Vitro Evaluation of Five Newly Isolated Bacteriophages against E. faecalis Biofilm for Their Potential Use against Post-Treatment Apical Periodontitis. Pharmaceutics 2022, 14(9).
5.
go back to reference Ran SJ, Jiang W, Zhu CL, Liang JP. Exploration of the mechanisms of biofilm formation by Enterococcus faecalis in glucose starvation environments. Aust Dent J. 2015;60(2):143–53.PubMedCrossRef Ran SJ, Jiang W, Zhu CL, Liang JP. Exploration of the mechanisms of biofilm formation by Enterococcus faecalis in glucose starvation environments. Aust Dent J. 2015;60(2):143–53.PubMedCrossRef
6.
go back to reference Paria P, Chakraborty HJ, Behera BK. Identification of novel salt tolerance-associated proteins from the secretome of Enterococcus faecalis. World J Microbiol Biotechnol. 2022;38(10):177.PubMedCrossRef Paria P, Chakraborty HJ, Behera BK. Identification of novel salt tolerance-associated proteins from the secretome of Enterococcus faecalis. World J Microbiol Biotechnol. 2022;38(10):177.PubMedCrossRef
7.
go back to reference Salem AS, Tompkins GR, Cathro PR. Alkaline tolerance and biofilm formation of Root Canal isolates of Enterococcus faecalis: an in Vitro Study. J Endod. 2022;48(4):542–547e544.PubMedCrossRef Salem AS, Tompkins GR, Cathro PR. Alkaline tolerance and biofilm formation of Root Canal isolates of Enterococcus faecalis: an in Vitro Study. J Endod. 2022;48(4):542–547e544.PubMedCrossRef
8.
go back to reference Alghamdi F, Shakir M. The influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: a systematic review. Cureus. 2020;12(3):e7257.PubMedPubMedCentral Alghamdi F, Shakir M. The influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: a systematic review. Cureus. 2020;12(3):e7257.PubMedPubMedCentral
9.
go back to reference Montelongo-Peralta LZ, Leon-Buitimea A, Palma-Nicolas JP, Gonzalez-Christen J, Morones-Ramirez JR. Antibacterial activity of combinatorial treatments composed of transition-metal/antibiotics against Mycobacterium tuberculosis. Sci Rep. 2019;9(1):5471.PubMedPubMedCentralCrossRef Montelongo-Peralta LZ, Leon-Buitimea A, Palma-Nicolas JP, Gonzalez-Christen J, Morones-Ramirez JR. Antibacterial activity of combinatorial treatments composed of transition-metal/antibiotics against Mycobacterium tuberculosis. Sci Rep. 2019;9(1):5471.PubMedPubMedCentralCrossRef
10.
go back to reference Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJD, Hoyos-Nogues M, Gil FJ, Perez RA. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater. 2021;6(12):4470–90.PubMedPubMedCentralCrossRef Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJD, Hoyos-Nogues M, Gil FJ, Perez RA. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater. 2021;6(12):4470–90.PubMedPubMedCentralCrossRef
11.
go back to reference Gao SS, Zhao IS, Duffin S, Duangthip D, Lo ECM, Chu CH. Revitalising Silver Nitrate for Caries Management. Int J Environ Res Public Health 2018, 15(1). Gao SS, Zhao IS, Duffin S, Duangthip D, Lo ECM, Chu CH. Revitalising Silver Nitrate for Caries Management. Int J Environ Res Public Health 2018, 15(1).
12.
go back to reference Agreles MAA, Cavalcanti IDL, Cavalcanti IMF. Synergism between metallic nanoparticles and antibiotics. Appl Microbiol Biotechnol. 2022;106(11):3973–84.PubMedCrossRef Agreles MAA, Cavalcanti IDL, Cavalcanti IMF. Synergism between metallic nanoparticles and antibiotics. Appl Microbiol Biotechnol. 2022;106(11):3973–84.PubMedCrossRef
13.
go back to reference Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257–67.PubMedCrossRef Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257–67.PubMedCrossRef
14.
go back to reference Li YC, Kuan YH, Lee SS, Huang FM, Chang YC. Cytotoxicity and genotoxicity of chlorhexidine on macrophages in vitro. Environ Toxicol. 2014;29(4):452–8.PubMedCrossRef Li YC, Kuan YH, Lee SS, Huang FM, Chang YC. Cytotoxicity and genotoxicity of chlorhexidine on macrophages in vitro. Environ Toxicol. 2014;29(4):452–8.PubMedCrossRef
15.
go back to reference Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15(1):65.CrossRef Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15(1):65.CrossRef
16.
go back to reference Cui J, Sun Q, Duan M, Liu D, Fan W. Establishment and characterization of silver-resistant Enterococcus faecalis. Folia Microbiol (Praha). 2020;65(4):721–33.PubMedCrossRef Cui J, Sun Q, Duan M, Liu D, Fan W. Establishment and characterization of silver-resistant Enterococcus faecalis. Folia Microbiol (Praha). 2020;65(4):721–33.PubMedCrossRef
17.
go back to reference Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J, Zheng X, Chang ZM, Wang Z, Dong WF, et al. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int J Nanomedicine. 2018;13:7697–709.PubMedPubMedCentralCrossRef Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J, Zheng X, Chang ZM, Wang Z, Dong WF, et al. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int J Nanomedicine. 2018;13:7697–709.PubMedPubMedCentralCrossRef
18.
go back to reference Fan W, Duan M, Sun Q, Fan B. Simvastatin enhanced antimicrobial effect of Ag(+) against E. faecalis infection of dentine through PLGA co-delivery submicron particles. J Biomater Sci Polym Ed. 2020;31(18):2331–46.PubMedCrossRef Fan W, Duan M, Sun Q, Fan B. Simvastatin enhanced antimicrobial effect of Ag(+) against E. faecalis infection of dentine through PLGA co-delivery submicron particles. J Biomater Sci Polym Ed. 2020;31(18):2331–46.PubMedCrossRef
19.
go back to reference Lu MM, Wang QJ, Chang ZM, Wang Z, Zheng X, Shao D, Dong WF, Zhou YM. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. Int J Nanomedicine. 2017;12:3577–89.PubMedPubMedCentralCrossRef Lu MM, Wang QJ, Chang ZM, Wang Z, Zheng X, Shao D, Dong WF, Zhou YM. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. Int J Nanomedicine. 2017;12:3577–89.PubMedPubMedCentralCrossRef
20.
go back to reference Vieira APM, Arias LS, de Souza Neto FN, Kubo AM, Lima BHR, de Camargo ER, Pessan JP, Delbem ACB, Monteiro DR. Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf B Biointerfaces. 2019;174:224–31.PubMedCrossRef Vieira APM, Arias LS, de Souza Neto FN, Kubo AM, Lima BHR, de Camargo ER, Pessan JP, Delbem ACB, Monteiro DR. Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf B Biointerfaces. 2019;174:224–31.PubMedCrossRef
21.
go back to reference Bergamini S, Bellei E, Generali L, Tomasi A, Bertoldi C. A Proteomic Analysis of Discolored Tooth Surfaces after the Use of 0.12% Chlorhexidine (CHX) Mouthwash and CHX Provided with an Anti-Discoloration System (ADS). Mater (Basel) 2021, 14(15). Bergamini S, Bellei E, Generali L, Tomasi A, Bertoldi C. A Proteomic Analysis of Discolored Tooth Surfaces after the Use of 0.12% Chlorhexidine (CHX) Mouthwash and CHX Provided with an Anti-Discoloration System (ADS). Mater (Basel) 2021, 14(15).
22.
go back to reference Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral Bacteria - is there cause for concern? Front Microbiol. 2019;10:587.PubMedPubMedCentralCrossRef Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral Bacteria - is there cause for concern? Front Microbiol. 2019;10:587.PubMedPubMedCentralCrossRef
23.
go back to reference Fromm-Dornieden C, Rembe JD, Schafer N, Bohm J, Stuermer EK. Cetylpyridinium chloride and miramistin as antiseptic substances in chronic wound management - prospects and limitations. J Med Microbiol. 2015;64(Pt 4):407–14.PubMedCrossRef Fromm-Dornieden C, Rembe JD, Schafer N, Bohm J, Stuermer EK. Cetylpyridinium chloride and miramistin as antiseptic substances in chronic wound management - prospects and limitations. J Med Microbiol. 2015;64(Pt 4):407–14.PubMedCrossRef
24.
go back to reference Yamamoto M, Inokoshi M, Tamura M, Shimizubata M, Nozaki K, Takahashi R, Yoshihara K, Minakuchi S. Development of 4-META/MMA-TBB resin with added benzalkonium chloride or cetylpyridinium chloride as antimicrobial restorative materials for root caries. J Mech Behav Biomed Mater. 2021;124:104838.PubMedCrossRef Yamamoto M, Inokoshi M, Tamura M, Shimizubata M, Nozaki K, Takahashi R, Yoshihara K, Minakuchi S. Development of 4-META/MMA-TBB resin with added benzalkonium chloride or cetylpyridinium chloride as antimicrobial restorative materials for root caries. J Mech Behav Biomed Mater. 2021;124:104838.PubMedCrossRef
25.
go back to reference Mao X, Auer DL, Buchalla W, Hiller KA, Maisch T, Hellwig E, Al-Ahmad A, Cieplik F. Cetylpyridinium Chloride: Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance. Antimicrob Agents Chemother 2020, 64(8). Mao X, Auer DL, Buchalla W, Hiller KA, Maisch T, Hellwig E, Al-Ahmad A, Cieplik F. Cetylpyridinium Chloride: Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance. Antimicrob Agents Chemother 2020, 64(8).
26.
go back to reference Guerra F, Pasqualotto D, Rinaldo F, Mazur M, Corridore D, Nofroni I, Ottolenghi L, Nardi GM. Therapeutic efficacy of chlorhexidine-based mouthwashes and its adverse events: performance-related evaluation of mouthwashes added with Anti-Discoloration System and cetylpyridinium chloride. Int J Dent Hyg. 2019;17(3):229–36.PubMedCrossRef Guerra F, Pasqualotto D, Rinaldo F, Mazur M, Corridore D, Nofroni I, Ottolenghi L, Nardi GM. Therapeutic efficacy of chlorhexidine-based mouthwashes and its adverse events: performance-related evaluation of mouthwashes added with Anti-Discoloration System and cetylpyridinium chloride. Int J Dent Hyg. 2019;17(3):229–36.PubMedCrossRef
27.
go back to reference Kitagawa H, Izutani N, Kitagawa R, Maezono H, Yamaguchi M, Imazato S. Evolution of resistance to cationic biocides in Streptococcus mutans and Enterococcus faecalis. J Dent. 2016;47:18–22.PubMedCrossRef Kitagawa H, Izutani N, Kitagawa R, Maezono H, Yamaguchi M, Imazato S. Evolution of resistance to cationic biocides in Streptococcus mutans and Enterococcus faecalis. J Dent. 2016;47:18–22.PubMedCrossRef
28.
go back to reference Costa X, Laguna E, Herrera D, Serrano J, Alonso B, Sanz M. Efficacy of a new mouth rinse formulation based on 0.07% cetylpyridinium chloride in the control of plaque and gingivitis: a 6-month randomized clinical trial. J Clin Periodontol. 2013;40(11):1007–15.PubMedCrossRef Costa X, Laguna E, Herrera D, Serrano J, Alonso B, Sanz M. Efficacy of a new mouth rinse formulation based on 0.07% cetylpyridinium chloride in the control of plaque and gingivitis: a 6-month randomized clinical trial. J Clin Periodontol. 2013;40(11):1007–15.PubMedCrossRef
29.
go back to reference Miranda SLF, Damaceno JT, Faveri M, Figueiredo LC, Soares GMS, Feres M, Bueno-Silva B. In Vitro Antimicrobial Effect of Cetylpyridinium Chloride on Complex Multispecies Subgingival Biofilm. Braz Dent J. 2020;31(2):103–8.PubMedCrossRef Miranda SLF, Damaceno JT, Faveri M, Figueiredo LC, Soares GMS, Feres M, Bueno-Silva B. In Vitro Antimicrobial Effect of Cetylpyridinium Chloride on Complex Multispecies Subgingival Biofilm. Braz Dent J. 2020;31(2):103–8.PubMedCrossRef
30.
go back to reference Funk B, Kirmayer D, Sahar-Heft S, Gati I, Friedman M, Steinberg D. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health. 2019;19(1):190.PubMedPubMedCentralCrossRef Funk B, Kirmayer D, Sahar-Heft S, Gati I, Friedman M, Steinberg D. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health. 2019;19(1):190.PubMedPubMedCentralCrossRef
31.
go back to reference Kitagawa H, Kitagawa R, Tsuboi R, Hirose N, Thongthai P, Sakai H, Ueda M, Ono S, Sasaki JI, Ooya T, et al. Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects. Dent Mater. 2021;37(8):1248–59.PubMedCrossRef Kitagawa H, Kitagawa R, Tsuboi R, Hirose N, Thongthai P, Sakai H, Ueda M, Ono S, Sasaki JI, Ooya T, et al. Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects. Dent Mater. 2021;37(8):1248–59.PubMedCrossRef
32.
go back to reference Wu X, Fan W, Fan B. Synergistic effects of silver ions and metformin against enterococcus faecalis under high-glucose conditions in vitro. BMC Microbiol. 2021;21(1):261.PubMedPubMedCentralCrossRef Wu X, Fan W, Fan B. Synergistic effects of silver ions and metformin against enterococcus faecalis under high-glucose conditions in vitro. BMC Microbiol. 2021;21(1):261.PubMedPubMedCentralCrossRef
33.
go back to reference Wu G, Yang Q, Long M, Guo L, Li B, Meng Y, Zhang A, Wang H, Liu S, Zou L. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J Antibiot (Tokyo). 2015;68(11):661–5.PubMedCrossRef Wu G, Yang Q, Long M, Guo L, Li B, Meng Y, Zhang A, Wang H, Liu S, Zou L. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J Antibiot (Tokyo). 2015;68(11):661–5.PubMedCrossRef
34.
go back to reference Cunningham-Oakes E, Soren O, Moussa C, Rathor G, Liu Y, Coates A, Hu Y. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol. 2015;6:1195.PubMedPubMedCentralCrossRef Cunningham-Oakes E, Soren O, Moussa C, Rathor G, Liu Y, Coates A, Hu Y. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol. 2015;6:1195.PubMedPubMedCentralCrossRef
35.
go back to reference Fan W, Sun Q, Li Y, Tay FR, Fan B. Synergistic mechanism of Ag(+)-Zn(2+) in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. J Nanobiotechnol. 2018;16(1):10.CrossRef Fan W, Sun Q, Li Y, Tay FR, Fan B. Synergistic mechanism of Ag(+)-Zn(2+) in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. J Nanobiotechnol. 2018;16(1):10.CrossRef
36.
go back to reference Tang J, Diao P, Shu X, Li L, Xiong L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. BioMed research international 2019, 2019:7039802. Tang J, Diao P, Shu X, Li L, Xiong L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. BioMed research international 2019, 2019:7039802.
37.
go back to reference Fan W, Li Y, Sun Q, Ma T, Fan B. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti- Enterococcus faecalis and mineralization properties. J Nanobiotechnol. 2016;14(1):72.CrossRef Fan W, Li Y, Sun Q, Ma T, Fan B. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti- Enterococcus faecalis and mineralization properties. J Nanobiotechnol. 2016;14(1):72.CrossRef
38.
go back to reference Ali NH, Amin M, Ng SF. Sodium carboxymethyl cellulose hydrogels containing reduced graphene oxide (rGO) as a functional antibiofilm wound dressing. J Biomater Sci Polym Ed. 2019;30(8):629–45.PubMedCrossRef Ali NH, Amin M, Ng SF. Sodium carboxymethyl cellulose hydrogels containing reduced graphene oxide (rGO) as a functional antibiofilm wound dressing. J Biomater Sci Polym Ed. 2019;30(8):629–45.PubMedCrossRef
39.
go back to reference Ali IAA, Neelakantan P. Antibiofilm activity of phytochemicals against Enterococcus faecalis: a literature review. Phytother Res. 2022;36(7):2824–38.PubMedCrossRef Ali IAA, Neelakantan P. Antibiofilm activity of phytochemicals against Enterococcus faecalis: a literature review. Phytother Res. 2022;36(7):2824–38.PubMedCrossRef
40.
go back to reference Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control. 2020;9(1):162.PubMedPubMedCentralCrossRef Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control. 2020;9(1):162.PubMedPubMedCentralCrossRef
41.
go back to reference Rolain JM, Baquero F. The refusal of the Society to accept antibiotic toxicity: missing opportunities for therapy of severe infections. Clin Microbiol infection: official publication Eur Soc Clin Microbiol Infect Dis. 2016;22(5):423–7.CrossRef Rolain JM, Baquero F. The refusal of the Society to accept antibiotic toxicity: missing opportunities for therapy of severe infections. Clin Microbiol infection: official publication Eur Soc Clin Microbiol Infect Dis. 2016;22(5):423–7.CrossRef
42.
go back to reference Thomas N, Dong D, Richter K, Ramezanpour M, Vreugde S, Thierry B, Wormald PJ, Prestidge CA. Quatsomes for the treatment of Staphylococcus aureus biofilm. J Mater Chem B. 2015;3(14):2770–7.PubMedCrossRef Thomas N, Dong D, Richter K, Ramezanpour M, Vreugde S, Thierry B, Wormald PJ, Prestidge CA. Quatsomes for the treatment of Staphylococcus aureus biofilm. J Mater Chem B. 2015;3(14):2770–7.PubMedCrossRef
43.
go back to reference Yegin Y, Oh JK, Akbulut M, Taylor T. Cetylpyridinium chloride produces increased zeta-potential on Salmonella Typhimurium cells, a mechanism of the pathogen’s inactivation. NPJ Sci food. 2019;3:21.PubMedPubMedCentralCrossRef Yegin Y, Oh JK, Akbulut M, Taylor T. Cetylpyridinium chloride produces increased zeta-potential on Salmonella Typhimurium cells, a mechanism of the pathogen’s inactivation. NPJ Sci food. 2019;3:21.PubMedPubMedCentralCrossRef
44.
go back to reference Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, Bentley K, White DA, Rodrigues PDS, Murphy RC, et al. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res. 2022;63(6):100208.PubMedPubMedCentralCrossRef Saud Z, Tyrrell VJ, Zaragkoulias A, Protty MB, Statkute E, Rubina A, Bentley K, White DA, Rodrigues PDS, Murphy RC, et al. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J Lipid Res. 2022;63(6):100208.PubMedPubMedCentralCrossRef
45.
go back to reference Verspecht T, Rodriguez Herrero E, Khodaparast L, Khodaparast L, Boon N, Bernaerts K, Quirynen M, Teughels W. Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro. Sci Rep. 2019;9(1):8326.PubMedPubMedCentralCrossRef Verspecht T, Rodriguez Herrero E, Khodaparast L, Khodaparast L, Boon N, Bernaerts K, Quirynen M, Teughels W. Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro. Sci Rep. 2019;9(1):8326.PubMedPubMedCentralCrossRef
46.
go back to reference Kedziora A, Speruda M, Krzyzewska E, Rybka J, Lukowiak A, Bugla-Ploskonska G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int J Mol Sci 2018, 19(2). Kedziora A, Speruda M, Krzyzewska E, Rybka J, Lukowiak A, Bugla-Ploskonska G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int J Mol Sci 2018, 19(2).
47.
go back to reference Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013;26(4):609–21.PubMedCrossRef Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013;26(4):609–21.PubMedCrossRef
48.
go back to reference Kang F, Alvarez PJ, Zhu D. Microbial extracellular polymeric substances reduce ag + to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol. 2014;48(1):316–22.PubMedCrossRef Kang F, Alvarez PJ, Zhu D. Microbial extracellular polymeric substances reduce ag + to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol. 2014;48(1):316–22.PubMedCrossRef
Metadata
Title
Enhanced in vitro antibacterial effect against Enterococcus faecalis by using both low-dose cetylpyridinium chloride and silver ions
Authors
Silei Lv
Wei Fan
Bing Fan
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02972-6

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue