Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2017

Open Access 01-12-2017 | Research

Elevated circulating fasting glucagon-like peptide-1 in surgical patients with aortic valve disease and diabetes

Authors: Camilla Krizhanovskii, Stelia Ntika, Christian Olsson, Per Eriksson, Anders Franco-Cereceda

Published in: Diabetology & Metabolic Syndrome | Issue 1/2017

Login to get access

Abstract

Background

Diabetes is a risk factor for peripheral, coronary, and cerebrovascular disease. In contrast, results also indicate that patients with diabetes have reduced prevalence of aortic aneurysms, although the mechanisms remain largely unknown. We hypothesize that altered endogenous secretion of the intestinal hormone glucagon-like peptide-1 (GLP-1)—previously shown to protect from aneurysm formation, and governing many of the mechanisms thought to be involved in aneurysm formation—may provide insights into the mechanisms underlying the inverse relationship of diabetes and aneurysm.

Methods

We undertook a case–control study to characterize circulating plasma GLP-1 levels in diabetic and non-diabetic surgical patients with aortic valve disease, and with or without ascending aortic dilation. The cohort included patients with a bicuspid aortic valve (BAV), a common congenital disorder associated with ascending aortic aneurysm, as well as patients with a tricuspid aortic valve (TAV).

Results

In our patient group, diabetes was characterized by a significant increase in fasting plasma GLP-1 levels. Further, we show that aortic dilation in these patients was associated with a significant increase in fasting plasma GLP-1, although a significant increase in the intact and bioactive peptide could not be detected in BAV patients with aortic dilation.

Conclusion

A subgroup of diabetic patients with aortic valve pathology have increased fasting plasma GLP-1 levels, which may be of importance for the low prevalence of aortic dilation in this patient group. Further, in TAV patients, GLP-1 secretion and plasma levels of intact GLP-1 are upregulated in association with aortic dilation, possibly indicating a compensatory mechanism.
Appendix
Available only for authorised users
Literature
1.
go back to reference De Rango P, Farchioni L, Fiorucci B, Lenti M. Diabetes and abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2014;47:243–61.CrossRefPubMed De Rango P, Farchioni L, Fiorucci B, Lenti M. Diabetes and abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2014;47:243–61.CrossRefPubMed
2.
go back to reference Takagi H, Umemoto T, Group A. Negative association of diabetes with thoracic aortic dissection and aneurysm. Angiology. 2017;68:216–24.CrossRefPubMed Takagi H, Umemoto T, Group A. Negative association of diabetes with thoracic aortic dissection and aneurysm. Angiology. 2017;68:216–24.CrossRefPubMed
3.
go back to reference Jimenez-Trujillo I, Gonzalez-Pascual M, Jimenez-Garcia R, et al. Type 2 diabetes mellitus and thoracic aortic aneurysm and dissection: an observational population-based study in Spain from 2001 to 2012. Medicine (Baltimore). 2016;95:e3618.CrossRef Jimenez-Trujillo I, Gonzalez-Pascual M, Jimenez-Garcia R, et al. Type 2 diabetes mellitus and thoracic aortic aneurysm and dissection: an observational population-based study in Spain from 2001 to 2012. Medicine (Baltimore). 2016;95:e3618.CrossRef
4.
5.
go back to reference Maleki S, Bjorck HM, Paloschi V, et al. Aneurysm Development in patients with bicuspid aortic valve (BAV): possible connection to repair deficiency? Aorta (Stamford). 2013;1:13–22.CrossRef Maleki S, Bjorck HM, Paloschi V, et al. Aneurysm Development in patients with bicuspid aortic valve (BAV): possible connection to repair deficiency? Aorta (Stamford). 2013;1:13–22.CrossRef
6.
7.
go back to reference Muscelli E, Mari A, Casolaro A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008;57:1340–8.CrossRefPubMed Muscelli E, Mari A, Casolaro A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008;57:1340–8.CrossRefPubMed
8.
go back to reference Rask E, Olsson T, Soderberg S, et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care. 2001;24:1640–5.CrossRefPubMed Rask E, Olsson T, Soderberg S, et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care. 2001;24:1640–5.CrossRefPubMed
9.
go back to reference Ahren B, Carr RD, Deacon CF. Incretin hormone secretion over the day. Vitam Horm. 2010;84:203–20.CrossRefPubMed Ahren B, Carr RD, Deacon CF. Incretin hormone secretion over the day. Vitam Horm. 2010;84:203–20.CrossRefPubMed
10.
go back to reference Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008;57:678–87.CrossRefPubMed Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008;57:678–87.CrossRefPubMed
12.
go back to reference Meier JJ, Nauck MA. Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005;21:91–117.CrossRefPubMed Meier JJ, Nauck MA. Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005;21:91–117.CrossRefPubMed
13.
go back to reference Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A. Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013;48:322–32.CrossRefPubMed Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A. Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013;48:322–32.CrossRefPubMed
14.
go back to reference Kappe C, Zhang Q, Nystrom T, Sjoholm A. Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells. Diabetol Metab Syndr. 2014;6:70.CrossRefPubMedPubMedCentral Kappe C, Zhang Q, Nystrom T, Sjoholm A. Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells. Diabetol Metab Syndr. 2014;6:70.CrossRefPubMedPubMedCentral
15.
go back to reference Wu T, Thazhath SS, Bound MJ, Jones KL, Horowitz M, Rayner CK. Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes: stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity? Diabetes Res Clin Pract. 2014;106:e3–6.CrossRefPubMed Wu T, Thazhath SS, Bound MJ, Jones KL, Horowitz M, Rayner CK. Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes: stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity? Diabetes Res Clin Pract. 2014;106:e3–6.CrossRefPubMed
16.
go back to reference Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology. 2011;152:4610–9.CrossRefPubMed Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology. 2011;152:4610–9.CrossRefPubMed
17.
go back to reference Burgmaier M, Liberman A, Mollmann J, et al. Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe(-)/(-) mice. Atherosclerosis. 2013;231:427–35.CrossRefPubMed Burgmaier M, Liberman A, Mollmann J, et al. Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe(-)/(-) mice. Atherosclerosis. 2013;231:427–35.CrossRefPubMed
18.
go back to reference Matsubara J, Sugiyama S, Sugamura K, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol. 2012;59:265–76.CrossRefPubMed Matsubara J, Sugiyama S, Sugamura K, et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol. 2012;59:265–76.CrossRefPubMed
19.
go back to reference Yu J, Morimoto K, Bao W, Yu Z, Okita Y, Okada K. Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats. Surg Today. 2016;46:1099–107.CrossRefPubMed Yu J, Morimoto K, Bao W, Yu Z, Okita Y, Okada K. Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats. Surg Today. 2016;46:1099–107.CrossRefPubMed
20.
go back to reference Batchuluun B, Inoguchi T, Sonoda N, et al. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014;232:156–64.CrossRefPubMed Batchuluun B, Inoguchi T, Sonoda N, et al. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014;232:156–64.CrossRefPubMed
21.
go back to reference Mathieu P, Bosse Y, Huggins GS, et al. The pathology and pathobiology of bicuspid aortic valve: state of the art and novel research perspectives. J Pathol Clin Res. 2015;1:195–206.CrossRefPubMedPubMedCentral Mathieu P, Bosse Y, Huggins GS, et al. The pathology and pathobiology of bicuspid aortic valve: state of the art and novel research perspectives. J Pathol Clin Res. 2015;1:195–206.CrossRefPubMedPubMedCentral
22.
go back to reference Robinson E, Tate M, Lockhart S, et al. Metabolically-inactive glucagon-like peptide-1(9-36)amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovasc Diabetol. 2016;15:65.CrossRefPubMedPubMedCentral Robinson E, Tate M, Lockhart S, et al. Metabolically-inactive glucagon-like peptide-1(9-36)amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovasc Diabetol. 2016;15:65.CrossRefPubMedPubMedCentral
23.
go back to reference Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol. 2014;307:H477–92.CrossRefPubMedPubMedCentral Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol. 2014;307:H477–92.CrossRefPubMedPubMedCentral
25.
go back to reference Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36:232–40.CrossRefPubMed Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36:232–40.CrossRefPubMed
26.
go back to reference Vilsboll T, Agerso H, Krarup T, Holst JJ. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003;88:220–4.CrossRefPubMed Vilsboll T, Agerso H, Krarup T, Holst JJ. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003;88:220–4.CrossRefPubMed
27.
go back to reference Kuhre RE, Holst JJ, Kappe C. The regulation of function, growth and survival of GLP-1-producing L-cells. Clin Sci (Lond). 2016;130:79–91.CrossRef Kuhre RE, Holst JJ, Kappe C. The regulation of function, growth and survival of GLP-1-producing L-cells. Clin Sci (Lond). 2016;130:79–91.CrossRef
28.
go back to reference Lindgren O, Carr RD, Deacon CF, et al. Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab. 2011;96:2519–24.CrossRefPubMed Lindgren O, Carr RD, Deacon CF, et al. Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab. 2011;96:2519–24.CrossRefPubMed
Metadata
Title
Elevated circulating fasting glucagon-like peptide-1 in surgical patients with aortic valve disease and diabetes
Authors
Camilla Krizhanovskii
Stelia Ntika
Christian Olsson
Per Eriksson
Anders Franco-Cereceda
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2017
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-017-0279-0

Other articles of this Issue 1/2017

Diabetology & Metabolic Syndrome 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.