Skip to main content
Top
Published in: Journal of Gastroenterology 4/2017

01-04-2017 | Original Article—Alimentary Tract

Efficacy and safety of single fecal microbiota transplantation for Japanese patients with mild to moderately active ulcerative colitis

Authors: Atsushi Nishida, Hirotsugu Imaeda, Masashi Ohno, Osamu Inatomi, Shigeki Bamba, Mitsushige Sugimoto, Akira Andoh

Published in: Journal of Gastroenterology | Issue 4/2017

Login to get access

Abstract

Background

The clinical utility of fecal microbiota transplantation (FMT) in patients with ulcerative colitis (UC) is still controversial. We investigated the efficacy and safety of single FMT for patients with mild to moderately active UC in a Japanese population.

Methods

Fifty-seven patients were evaluated for eligibility, and 16 patients were excluded. Forty-one patients with UC refractory to standard medical therapy were treated with single FMT by colonoscopic administration. Changes in the fecal microbiota were assessed by 16S ribosomal DNA based terminal restriction fragment length polymorphism analysis.

Results

At 8 weeks after FMT, no patient achieved clinical remission, and 11 of 41 patients (26.8 %) showed clinical response. The full Mayo score and the Mayo clinical score significantly decreased at week 8 [full Mayo score 5.5 ± 2.4 (mean ± standard deviation) at initiation and 4.6 ± 2.2 at week 8, P < 0.004; Mayo clinical score 4.0 ± 2.0 at initiation and 3.0 ± 1.9 at week 8, P < 0.001], but there were no statistically significant effects on the Mayo endoscopic score. No adverse events occurred after FMT or during the follow-up period of 8 weeks. The proportion of Bifidobacterium was significantly higher in the donor feces used for responders than in the donor feces used for nonresponders. The proportion of Lactobacillales and Clostridium cluster IV were significantly higher in the donor feces used for nonresponders.

Conclusions

Single FMT by colonoscopy was performed safely in all patients, but sufficient clinical efficacy and microbial restoration were not confirmed in patients with mild to moderately active UC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sheehan D, Moran C, Shanahan F. The microbiota in inflammatory bowel disease. J Gastroenterol. 2015;50:495–507.CrossRefPubMed Sheehan D, Moran C, Shanahan F. The microbiota in inflammatory bowel disease. J Gastroenterol. 2015;50:495–507.CrossRefPubMed
2.
go back to reference Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol. 2014;49:785–98.CrossRefPubMedPubMedCentral Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol. 2014;49:785–98.CrossRefPubMedPubMedCentral
3.
go back to reference Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–99.CrossRefPubMedPubMedCentral Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–99.CrossRefPubMedPubMedCentral
4.
go back to reference Li J, Butcher J, Mack D, et al. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:139–53.CrossRefPubMed Li J, Butcher J, Mack D, et al. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:139–53.CrossRefPubMed
5.
go back to reference Takahashi K, Nishida A, Fujimoto T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.CrossRefPubMed Takahashi K, Nishida A, Fujimoto T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.CrossRefPubMed
6.
go back to reference Bernstein CN. Antibiotics, probiotics and prebiotics in IBD. Nestle Nutr Inst Workshop Ser. 2014;79:83–100.CrossRefPubMed Bernstein CN. Antibiotics, probiotics and prebiotics in IBD. Nestle Nutr Inst Workshop Ser. 2014;79:83–100.CrossRefPubMed
7.
go back to reference van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.CrossRefPubMed van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.CrossRefPubMed
8.
go back to reference Cammarota G, Masucci L, Ianiro G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2015;41:835–43.CrossRefPubMed Cammarota G, Masucci L, Ianiro G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2015;41:835–43.CrossRefPubMed
9.
go back to reference Sbahi H, Di Palma JA. Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterol. 2016;3:e000087.CrossRefPubMedPubMedCentral Sbahi H, Di Palma JA. Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterol. 2016;3:e000087.CrossRefPubMedPubMedCentral
10.
go back to reference Kelly CR, Kahn S, Kashyap P, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149:223–37.CrossRefPubMedPubMedCentral Kelly CR, Kahn S, Kashyap P, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149:223–37.CrossRefPubMedPubMedCentral
11.
go back to reference Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102–9.e106.CrossRefPubMed Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102–9.e106.CrossRefPubMed
12.
go back to reference Rossen NG, Fuentes S, van der Spek MJ, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–8.e114.CrossRefPubMed Rossen NG, Fuentes S, van der Spek MJ, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–8.e114.CrossRefPubMed
13.
go back to reference Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2014;8:1569–81.CrossRefPubMedPubMedCentral Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2014;8:1569–81.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Andoh A, Imaeda H, Aomatsu T, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol. 2011;46:479–86.CrossRefPubMed Andoh A, Imaeda H, Aomatsu T, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol. 2011;46:479–86.CrossRefPubMed
17.
go back to reference Nagashima K, Hisada T, Sato M, et al. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl Environ Microbiol. 2003;69:1251–62.CrossRefPubMedPubMedCentral Nagashima K, Hisada T, Sato M, et al. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl Environ Microbiol. 2003;69:1251–62.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–54.e1.CrossRefPubMed Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–54.e1.CrossRefPubMed
20.
go back to reference Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–83.CrossRefPubMed Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–83.CrossRefPubMed
22.
go back to reference Flint HJ, Scott KP, Louis P, et al. The role of the gut microbiota in nutrition and health. Nat Rev Gastrol Hepatol. 2012;9:577–89.CrossRef Flint HJ, Scott KP, Louis P, et al. The role of the gut microbiota in nutrition and health. Nat Rev Gastrol Hepatol. 2012;9:577–89.CrossRef
23.
go back to reference Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190–5.CrossRef Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190–5.CrossRef
24.
go back to reference Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.CrossRefPubMedPubMedCentral Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.CrossRefPubMedPubMedCentral
25.
go back to reference Kassam Z, Lee CH, Yuan Y, et al. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108:500–8.CrossRefPubMed Kassam Z, Lee CH, Yuan Y, et al. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108:500–8.CrossRefPubMed
26.
go back to reference Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.CrossRefPubMed Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.CrossRefPubMed
Metadata
Title
Efficacy and safety of single fecal microbiota transplantation for Japanese patients with mild to moderately active ulcerative colitis
Authors
Atsushi Nishida
Hirotsugu Imaeda
Masashi Ohno
Osamu Inatomi
Shigeki Bamba
Mitsushige Sugimoto
Akira Andoh
Publication date
01-04-2017
Publisher
Springer Japan
Published in
Journal of Gastroenterology / Issue 4/2017
Print ISSN: 0944-1174
Electronic ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-016-1271-4

Other articles of this Issue 4/2017

Journal of Gastroenterology 4/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.