Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Low-cost evaluation and real-time feedback of static and dynamic weight bearing asymmetry in patients undergoing in-patient physiotherapy rehabilitation for neurological conditions

Authors: Joanna Foo, Kade Paterson, Gavin Williams, Ross Clark

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Weight bearing asymmetry is common in patients with neurological conditions, and recent advances in gaming technology have produced force platforms that are suitable for use in a clinical setting. The aim of this research is to determine whether commercially-available Wii Balance Boards with customized software providing real-time feedback could be used in a clinical setting to evaluate and improve weight-bearing asymmetry in people with various neurological conditions.

Methods

Twenty participants (age = 43.25 ± 19.37 years) receiving physiotherapy as a result of a neurological condition performed three trials each of two tasks (static standing and sit-to-stand) with and without visual feedback. Vertical forces were measured using available Wii Balance Boards coupled with customized software that displayed visual feedback in real-time. Primary outcome measures included weight-bearing asymmetry as a percentage of body mass, peak force symmetry index, and a visual analogue scale score rating self-perceived level of asymmetry.

Results

Weight-bearing asymmetry during the static balance task was significantly reduced (Z = −2.912, p = 0.004, ES = 0.65) with visual feedback. There was no significant difference (Z = −0.336, p = 0.737) with visual feedback for the dynamic task, however subgroup analysis indicated that those with higher weight-bearing asymmetry responded the most to feedback. Correlation analysis revealed little or no relationship between participant perception of weight-bearing asymmetry and the results for the static or dynamic balance task (Spearman’s rho: ρ = 0.138, p = 0.561 and ρ = 0.018, ρ =0.940 respectively).

Conclusions

These findings suggest that weight-bearing asymmetry can be reduced during static tasks in patients with neurological conditions using inexpensive commercially-available Wii Balance Boards coupled with customized visual feedback software. Further research is needed to determine whether real-time visual feedback is appropriate for reducing dynamic weight-bearing asymmetry, whether improvements result in improved physical function, and how cognitive and physical impairments influence the patient’s ability to respond to treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anker LC, Weerdesteyn V, van Nes IJW, Nienhuis B, Straatman H, Geurts ACH: The relation between postural stability and weight distribution in healthy subjects. Gait Posture 2008, 27: 471-477.CrossRefPubMed Anker LC, Weerdesteyn V, van Nes IJW, Nienhuis B, Straatman H, Geurts ACH: The relation between postural stability and weight distribution in healthy subjects. Gait Posture 2008, 27: 471-477.CrossRefPubMed
3.
go back to reference Hill K, Schwarz J, Flicker L, Carroll S: Falls among healthy, community-dwelling, older women: a prospective study of frequency, circumstances, consequences and prediction accuracy. Aust N Z J Public Health 1999, 23: 41-48.CrossRefPubMed Hill K, Schwarz J, Flicker L, Carroll S: Falls among healthy, community-dwelling, older women: a prospective study of frequency, circumstances, consequences and prediction accuracy. Aust N Z J Public Health 1999, 23: 41-48.CrossRefPubMed
4.
go back to reference Di Fabio RP, Kurszewski WM, Jorgenson EE, Kunz RC: Footlift asymmetry during obstacle avoidance in high-risk elderly. J Am Geriatr Soc 2004, 52: 2088-2093.CrossRefPubMed Di Fabio RP, Kurszewski WM, Jorgenson EE, Kunz RC: Footlift asymmetry during obstacle avoidance in high-risk elderly. J Am Geriatr Soc 2004, 52: 2088-2093.CrossRefPubMed
5.
go back to reference Paterson K, Hill K, Lythgo N: Stride dynamics, gait variability and prospective falls risk in active community dwelling older women. Gait Posture 2011, 33: 251-255.CrossRefPubMed Paterson K, Hill K, Lythgo N: Stride dynamics, gait variability and prospective falls risk in active community dwelling older women. Gait Posture 2011, 33: 251-255.CrossRefPubMed
6.
go back to reference Stevens JA: Falls among older adults–risk factors and prevention strategies. J Safety Res 2005, 36: 409-411.CrossRefPubMed Stevens JA: Falls among older adults–risk factors and prevention strategies. J Safety Res 2005, 36: 409-411.CrossRefPubMed
7.
go back to reference Magaziner J, Hawkes W, Hebel JR, Zimmerman SI, Fox KM, Dolan M, Felsenthal G, Kenzora J: Recovery From Hip Fracture in Eight Areas of Function. J Gerontol A Biol Sci Med Sci 2000, 55: M498-M507.CrossRefPubMed Magaziner J, Hawkes W, Hebel JR, Zimmerman SI, Fox KM, Dolan M, Felsenthal G, Kenzora J: Recovery From Hip Fracture in Eight Areas of Function. J Gerontol A Biol Sci Med Sci 2000, 55: M498-M507.CrossRefPubMed
9.
go back to reference Tyson SF, Desouza LH: A clinical model for the assessment of posture and balance in people with stroke. Disabil Rehabil 2003, 25: 120-126.CrossRefPubMed Tyson SF, Desouza LH: A clinical model for the assessment of posture and balance in people with stroke. Disabil Rehabil 2003, 25: 120-126.CrossRefPubMed
10.
go back to reference Geurts A, de Haart M, van Nes I, Duysens J: A review of standing balance recovery from stroke. Gait Posture 2005, 22: 267-281.CrossRefPubMed Geurts A, de Haart M, van Nes I, Duysens J: A review of standing balance recovery from stroke. Gait Posture 2005, 22: 267-281.CrossRefPubMed
11.
go back to reference Engardt M: Long-term effects of auditory feedback training on relearned symmetrical body weight distribution in stroke patients. A follow-up study. Scandinavian J Rehabil Med 1994, 26: 65-69. Engardt M: Long-term effects of auditory feedback training on relearned symmetrical body weight distribution in stroke patients. A follow-up study. Scandinavian J Rehabil Med 1994, 26: 65-69.
12.
go back to reference Briere A, Lauziere S, Gravel D, Nadeau S: Perception of Weight-Bearing Distribution During Sit-to-Stand Tasks in Hemiparetic and Healthy Individuals. Stroke 2010, 41: 1704-1708.CrossRefPubMed Briere A, Lauziere S, Gravel D, Nadeau S: Perception of Weight-Bearing Distribution During Sit-to-Stand Tasks in Hemiparetic and Healthy Individuals. Stroke 2010, 41: 1704-1708.CrossRefPubMed
13.
go back to reference Sackley CM, Lincoln NB: Single blind randomized controlled trial of visual feedback after stroke: Effects on stance symmetry and function. Disabil Rehabil 1997, 19: 536-546.CrossRefPubMed Sackley CM, Lincoln NB: Single blind randomized controlled trial of visual feedback after stroke: Effects on stance symmetry and function. Disabil Rehabil 1997, 19: 536-546.CrossRefPubMed
14.
go back to reference Frykberg G, Lindmark B, Lanshammar H, Borg J: Correlation between clinical assessment and force plate measurement of postural control after stroke. J Rehabil Med 2007, 39: 448-453.CrossRefPubMed Frykberg G, Lindmark B, Lanshammar H, Borg J: Correlation between clinical assessment and force plate measurement of postural control after stroke. J Rehabil Med 2007, 39: 448-453.CrossRefPubMed
15.
go back to reference Engardt M, Olsson E: Body weight-bearing while rising and sitting down in patients with stroke. Scand J Rehabil Med 1992, 24: 67-74.PubMed Engardt M, Olsson E: Body weight-bearing while rising and sitting down in patients with stroke. Scand J Rehabil Med 1992, 24: 67-74.PubMed
16.
go back to reference Bohannon RW, Waldron RM: Weightbearing during comfortable stance in patients with stroke: accuracy and reliability of measurements. Aust J Physiother 1991, 37: 19-22.CrossRefPubMed Bohannon RW, Waldron RM: Weightbearing during comfortable stance in patients with stroke: accuracy and reliability of measurements. Aust J Physiother 1991, 37: 19-22.CrossRefPubMed
17.
go back to reference Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M: Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31: 307-310.CrossRefPubMed Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M: Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31: 307-310.CrossRefPubMed
18.
go back to reference McGough R, Paterson K, Bradshaw E, Bryant AL, Clark RA: Improving lower limb weight distribution asymmetry during the squat using Nintendo Wii Balance Boards and real-time feedback. J Strength Cond 2012, 26: 47-52.CrossRef McGough R, Paterson K, Bradshaw E, Bryant AL, Clark RA: Improving lower limb weight distribution asymmetry during the squat using Nintendo Wii Balance Boards and real-time feedback. J Strength Cond 2012, 26: 47-52.CrossRef
19.
go back to reference Clark RA, McGough R, Paterson K: Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 2011, 34: 288-291.CrossRefPubMed Clark RA, McGough R, Paterson K: Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 2011, 34: 288-291.CrossRefPubMed
20.
go back to reference Gil-Gomez J-A, Llorens R, Alcaniz M, Colomer C: Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil 2011, 8: 30.PubMedCentralCrossRefPubMed Gil-Gomez J-A, Llorens R, Alcaniz M, Colomer C: Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil 2011, 8: 30.PubMedCentralCrossRefPubMed
21.
go back to reference Cheng P-T, Liaw M-Y, Wong M-K, Tang F-T, Lee M-Y, Lin P-S: The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil 1998, 79: 1043-1046.CrossRefPubMed Cheng P-T, Liaw M-Y, Wong M-K, Tang F-T, Lee M-Y, Lin P-S: The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil 1998, 79: 1043-1046.CrossRefPubMed
22.
go back to reference Cheng P-T, Chen C-L, Wang C-M, Hong W-H: Leg Muscle Activation Patterns of Sit-to-Stand Movement in Stroke Patients. Am J Phys Med Rehabil 2004, 83: 10-16.CrossRefPubMed Cheng P-T, Chen C-L, Wang C-M, Hong W-H: Leg Muscle Activation Patterns of Sit-to-Stand Movement in Stroke Patients. Am J Phys Med Rehabil 2004, 83: 10-16.CrossRefPubMed
23.
go back to reference Carver T, Nadeau S, Leroux A: Relation between physical exertion and postural stability in hemiparetic participants secondary to stroke. Gait Posture 2011, 33: 615-619.CrossRefPubMed Carver T, Nadeau S, Leroux A: Relation between physical exertion and postural stability in hemiparetic participants secondary to stroke. Gait Posture 2011, 33: 615-619.CrossRefPubMed
24.
go back to reference Herzog W, Nigg B, Read L, Olsson E: Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 1989, 21: 110-114.CrossRefPubMed Herzog W, Nigg B, Read L, Olsson E: Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 1989, 21: 110-114.CrossRefPubMed
26.
go back to reference Chen IC, Cheng PT, Chen CL, Chen SC, Chung CY, Yeh TH: Effects of Balance Training on Hemiplegic Stroke Patients. Chang Gung Med J 2002, 25: 583-590.PubMed Chen IC, Cheng PT, Chen CL, Chen SC, Chung CY, Yeh TH: Effects of Balance Training on Hemiplegic Stroke Patients. Chang Gung Med J 2002, 25: 583-590.PubMed
27.
go back to reference Cheng P-T, Wang C-M, Chung C-Y, Chen C-L: Effects of visual feedback rhythmic weight-shift training on hemiplegic stroke patients. Clin Rehabil 2004, 18: 747-753.CrossRefPubMed Cheng P-T, Wang C-M, Chung C-Y, Chen C-L: Effects of visual feedback rhythmic weight-shift training on hemiplegic stroke patients. Clin Rehabil 2004, 18: 747-753.CrossRefPubMed
Metadata
Title
Low-cost evaluation and real-time feedback of static and dynamic weight bearing asymmetry in patients undergoing in-patient physiotherapy rehabilitation for neurological conditions
Authors
Joanna Foo
Kade Paterson
Gavin Williams
Ross Clark
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-74

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue