Skip to main content
Top
Published in: Comparative Hepatology 1/2004

Open Access 01-01-2004 | Proceedings

Effects of acetaminophen on hepatic microcirculation in mice

Authors: Yoshiya Ito, Nancy W Machen, Edward R Abril, Robert S McCuskey

Published in: Comparative Hepatology | Special Issue 1/2004

Login to get access

Excerpt

Acetaminophen (APAP) intoxication from overdosing can result in severe hepatic damage, which is characterized by hemorrhagic centrilobular necrosis and by towering the levels of transaminase. The APAP-induced hepatic necrosis is preceded by centrilobular microvascular congestion thought to be due to collapse of the sinusoidal wall and the infiltration of blood elements into the space of Disse [1]. These findings suggest that, in addition to direct hepatocellular damage, sinusoidal endothelial cells (SECs) participate in liver injury elicited by APAP overdose. As a result, the present study was conducted to examine changes in hepatic microcirculation after APAP administration using in vivo microscopic methods. …
Literature
1.
go back to reference Walker RM, Racz WJ, McElligott TF: Scanning electron microscopic examination of acetaminophen-induced hepatotoxicity and congestion in mice. Am J Pathol. 1983, 113: 321-330.PubMedCentralPubMed Walker RM, Racz WJ, McElligott TF: Scanning electron microscopic examination of acetaminophen-induced hepatotoxicity and congestion in mice. Am J Pathol. 1983, 113: 321-330.PubMedCentralPubMed
2.
go back to reference McCuskey RS: Microscopic methods for studying the microvasculature of internal organs. In: Physical Techniques in Biology and Medicine Microvascular Technology. Edited by: Baker CH, Nastuk WF. 1986, New York, Academic Press, 247-264. McCuskey RS: Microscopic methods for studying the microvasculature of internal organs. In: Physical Techniques in Biology and Medicine Microvascular Technology. Edited by: Baker CH, Nastuk WF. 1986, New York, Academic Press, 247-264.
3.
go back to reference Smedsr–d B, Pertoft H, Gustafson S, Laurent T: Scavenger functions of the liver endothelial cell. Biochem J. 1990, 266: 313-327.CrossRef Smedsr–d B, Pertoft H, Gustafson S, Laurent T: Scavenger functions of the liver endothelial cell. Biochem J. 1990, 266: 313-327.CrossRef
4.
go back to reference DeLeve LD, Wang X, Kaplowitz N, Shulman HM, Bart JA, van der Hoek A: Sinusoidal endothelial cells as a target for acetaminophen toxicity. Biochem Pharmacol. 1997, 53: 1339-1345. 10.1016/S0006-2952(97)00048-8.CrossRefPubMed DeLeve LD, Wang X, Kaplowitz N, Shulman HM, Bart JA, van der Hoek A: Sinusoidal endothelial cells as a target for acetaminophen toxicity. Biochem Pharmacol. 1997, 53: 1339-1345. 10.1016/S0006-2952(97)00048-8.CrossRefPubMed
5.
go back to reference Laskin DL, Gardner CR, Price VF, Jollow DJ: Modulation of macrophages functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology. 1995, 21: 1045-1050. 10.1016/0270-9139(95)90253-8.CrossRefPubMed Laskin DL, Gardner CR, Price VF, Jollow DJ: Modulation of macrophages functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology. 1995, 21: 1045-1050. 10.1016/0270-9139(95)90253-8.CrossRefPubMed
6.
go back to reference Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI: Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 1995, 133: 43-52. 10.1006/taap.1995.1125.CrossRefPubMed Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI: Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 1995, 133: 43-52. 10.1006/taap.1995.1125.CrossRefPubMed
7.
go back to reference Michael SL, Mayeux PR, Bucci TJ, Warbritton AR, Irwin LK, Pumford NR, Hinson JA: Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric oxide. 2001, 5: 432-441. 10.1006/niox.2001.0385.CrossRefPubMed Michael SL, Mayeux PR, Bucci TJ, Warbritton AR, Irwin LK, Pumford NR, Hinson JA: Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric oxide. 2001, 5: 432-441. 10.1006/niox.2001.0385.CrossRefPubMed
8.
go back to reference Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H: Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci. 2001, 62: 212-200. 10.1093/toxsci/62.2.212.CrossRefPubMed Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H: Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci. 2001, 62: 212-200. 10.1093/toxsci/62.2.212.CrossRefPubMed
Metadata
Title
Effects of acetaminophen on hepatic microcirculation in mice
Authors
Yoshiya Ito
Nancy W Machen
Edward R Abril
Robert S McCuskey
Publication date
01-01-2004
Publisher
BioMed Central
Published in
Comparative Hepatology / Issue Special Issue 1/2004
Electronic ISSN: 1476-5926
DOI
https://doi.org/10.1186/1476-5926-2-S1-S33

Other articles of this Special Issue 1/2004

Comparative Hepatology 1/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine