Skip to main content
Top
Published in: Journal of Cachexia, Sarcopenia and Muscle 1/2013

01-03-2013 | Original Article

Effect of including historical height and radius BMD measurement on sarco-osteoporosis prevalence

Authors: Bjoern Buehring, Diane Krueger, Neil Binkley

Published in: Journal of Cachexia, Sarcopenia and Muscle | Issue 1/2013

Login to get access

Abstract

Background

A clinical need exists to improve identification of those who will sustain fragility fractures. Individuals with both osteoporosis (OP) and sarcopenia (SP), so-called “sarco-osteoporosis” (SOP), might be at higher fracture risk than those with OP or SP alone. Approaches to facilitate SOP identification, e.g., use of tallest historical rather than current height and inclusion of radius bone mineral density (BMD) measurement, may be of benefit. This study examined the effect of advancing age on SOP prevalence with and without use of historical tallest height and radius BMD measurement.

Methods

Adults age 60+ underwent dual-energy X-ray absorptiometry (DXA) BMD and total body composition measurement. OP and SP were defined using standard criteria: T-score ≤−2.5 at the lumbar spine or hip and appendicular lean mass (ALM)/current height2 <5.45 kg/m2 (female) and <7.26 kg/m2 (male). Proposed “sensitive” SP criteria used historical tallest height instead of current height, while “sensitive” OP criteria added the 1/3rd radius T-score. The primary outcome was SOP prevalence by decade (60–69, 70–79, 80+).

Results

A total of 304 individuals (146 M/158 F) participated. OP, SP and SOP prevalence were higher in older adults and increased (p < 0.05) with the “sensitive” criteria. SOP prevalence was lower than that of OP or SP and increased (standard/sensitive) criteria from 1.1 % / 4.5 % in the 60–69 years age group to 10.4 % / 21.9 % in the 80+ years age group.

Conclusions

SOP prevalence is higher in older adults. Use of historical tallest height and 1/3rd radius BMD increases SOP prevalence. Future studies need to assess whether having SOP increases fracture risk and whether use of tallest height and/or one-third radius BMD improves fracture risk prediction.
Literature
1.
go back to reference Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34:195–202.PubMedCrossRef Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34:195–202.PubMedCrossRef
2.
go back to reference Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.PubMedCrossRef Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.PubMedCrossRef
3.
go back to reference Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2787–93.PubMedCrossRef Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90:2787–93.PubMedCrossRef
4.
go back to reference Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int. 2005;16:1184–92.PubMedCrossRef Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int. 2005;16:1184–92.PubMedCrossRef
6.
go back to reference Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.PubMedCrossRef Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.PubMedCrossRef
7.
go back to reference Watts NB. The Fracture Risk Assessment Tool (FRAX(R)): applications in clinical practice. J Womens Health (Larchmt). 2011;20:525–31.CrossRef Watts NB. The Fracture Risk Assessment Tool (FRAX(R)): applications in clinical practice. J Womens Health (Larchmt). 2011;20:525–31.CrossRef
8.
go back to reference Cummins NM, Poku EK, Towler MR, O’Driscoll OM, Ralston SH. Clinical risk factors for osteoporosis in Ireland and the UK: a comparison of FRAX and QFractureScores. Calcif Tissue Int. 2011;89:172–7.PubMedCrossRef Cummins NM, Poku EK, Towler MR, O’Driscoll OM, Ralston SH. Clinical risk factors for osteoporosis in Ireland and the UK: a comparison of FRAX and QFractureScores. Calcif Tissue Int. 2011;89:172–7.PubMedCrossRef
9.
go back to reference Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation of validation of QFractureScores. BMJ. 2009;339:b4229.PubMedCrossRef Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation of validation of QFractureScores. BMJ. 2009;339:b4229.PubMedCrossRef
10.
go back to reference Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008;19:1431–44.PubMedCrossRef Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008;19:1431–44.PubMedCrossRef
11.
go back to reference van den Bergh JP, van Geel TA, Lems WF, Geusens PP. Assessment of individual fracture risk: FRAX and beyond. Curr Osteoporos Rep. 2010;8:131–7.PubMedCrossRef van den Bergh JP, van Geel TA, Lems WF, Geusens PP. Assessment of individual fracture risk: FRAX and beyond. Curr Osteoporos Rep. 2010;8:131–7.PubMedCrossRef
12.
13.
14.
go back to reference Siris ES, Brenneman SK, Barrett-Connor E, Miller PD, Sajjan S, Berger ML, et al. The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the national osteoporosis risk assessment (NORA). Osteoporos Int. 2006;17:565–74.PubMedCrossRef Siris ES, Brenneman SK, Barrett-Connor E, Miller PD, Sajjan S, Berger ML, et al. The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the national osteoporosis risk assessment (NORA). Osteoporos Int. 2006;17:565–74.PubMedCrossRef
15.
go back to reference Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4:e7038.PubMedCrossRef Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4:e7038.PubMedCrossRef
16.
go back to reference Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitations and physical disability: the Concord health and ageing in men project. J Am Geriatr Soc. 2010;58:2055–62.PubMedCrossRef Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitations and physical disability: the Concord health and ageing in men project. J Am Geriatr Soc. 2010;58:2055–62.PubMedCrossRef
17.
go back to reference Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55:M221–31.PubMedCrossRef Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55:M221–31.PubMedCrossRef
18.
go back to reference Perera S, Studenski S, Chandler JM, Guralnik JM. Magnitude and patterns of decline in health and function in 1 year affect subsequent 5-year survival. J Gerontol A Biol Sci Med Sci. 2005;60:894–900.PubMedCrossRef Perera S, Studenski S, Chandler JM, Guralnik JM. Magnitude and patterns of decline in health and function in 1 year affect subsequent 5-year survival. J Gerontol A Biol Sci Med Sci. 2005;60:894–900.PubMedCrossRef
19.
go back to reference Frisoli Jr A, Chaves PH, Ingham SJ, Fried LP. Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone. 2011;48:952–7.PubMedCrossRef Frisoli Jr A, Chaves PH, Ingham SJ, Fried LP. Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone. 2011;48:952–7.PubMedCrossRef
20.
go back to reference Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–56.PubMedCrossRef Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–56.PubMedCrossRef
21.
go back to reference Bautmans I, Van Puyvelde K, Mets T. Sarcopenia and functional decline: pathophysiology, prevention and therapy. Acta Clin Belg. 2009;64:303–16.PubMed Bautmans I, Van Puyvelde K, Mets T. Sarcopenia and functional decline: pathophysiology, prevention and therapy. Acta Clin Belg. 2009;64:303–16.PubMed
22.
go back to reference Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.PubMedCrossRef Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.PubMedCrossRef
24.
go back to reference Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–60.PubMed Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–60.PubMed
25.
go back to reference Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J. Prediction of osteoporotic fractures by postural instability and bone density. BMJ. 1993;307:1111–5.PubMedCrossRef Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J. Prediction of osteoporotic fractures by postural instability and bone density. BMJ. 1993;307:1111–5.PubMedCrossRef
26.
go back to reference Nguyen ND, Pongchaiyakul C, Center JR, Eisman JA, Nguyen TV. Identification of high-risk individuals for hip fracture: a 14-year prospective study. J Bone Miner Res. 2005;20:1921–8.PubMedCrossRef Nguyen ND, Pongchaiyakul C, Center JR, Eisman JA, Nguyen TV. Identification of high-risk individuals for hip fracture: a 14-year prospective study. J Bone Miner Res. 2005;20:1921–8.PubMedCrossRef
27.
go back to reference Binkley N, Buehring B. Beyond FRAX it’s time to consider “sarco-osteopenia”. J Clin Densitom. 2009;12:413–6.PubMedCrossRef Binkley N, Buehring B. Beyond FRAX it’s time to consider “sarco-osteopenia”. J Clin Densitom. 2009;12:413–6.PubMedCrossRef
28.
go back to reference Lang T, Koyama A, Li C, Li J, Lu Y, Saeed I, et al. Pelvic body composition measurements by quantitative computed tomography: association with recent hip fracture. Bone. 2008;42:798–805.PubMedCrossRef Lang T, Koyama A, Li C, Li J, Lu Y, Saeed I, et al. Pelvic body composition measurements by quantitative computed tomography: association with recent hip fracture. Bone. 2008;42:798–805.PubMedCrossRef
29.
go back to reference Coin A, Perissinotto E, Enzi G, Zamboni M, Inelmen EM, Frigo AC, et al. Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia. Eur J Clin Nutr. 2008;62:802–9.PubMedCrossRef Coin A, Perissinotto E, Enzi G, Zamboni M, Inelmen EM, Frigo AC, et al. Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia. Eur J Clin Nutr. 2008;62:802–9.PubMedCrossRef
30.
go back to reference Walsh MC, Hunter GR, Livingstone MB. Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int. 2006;17:61–7.PubMedCrossRef Walsh MC, Hunter GR, Livingstone MB. Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int. 2006;17:61–7.PubMedCrossRef
31.
go back to reference Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011;52:71–4.PubMedCrossRef Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011;52:71–4.PubMedCrossRef
32.
go back to reference Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63.PubMedCrossRef Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63.PubMedCrossRef
33.
go back to reference Launer LJ, Barendregt JJ, Harris T. Shift in body mass index distributions due to height loss. Epidemiology. 1995;6:98–9.PubMedCrossRef Launer LJ, Barendregt JJ, Harris T. Shift in body mass index distributions due to height loss. Epidemiology. 1995;6:98–9.PubMedCrossRef
34.
go back to reference Roubenoff R, Wilson PW. Advantage of knee height over height as an index of stature in expression of body composition in adults. Am J Clin Nutr. 1993;57:609–13.PubMed Roubenoff R, Wilson PW. Advantage of knee height over height as an index of stature in expression of body composition in adults. Am J Clin Nutr. 1993;57:609–13.PubMed
35.
go back to reference Visser M, Deeg DJH, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The longitudinal aging study Amsterdam. J Clin Endocrinol Metab. 2003;88:5766–72.PubMedCrossRef Visser M, Deeg DJH, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The longitudinal aging study Amsterdam. J Clin Endocrinol Metab. 2003;88:5766–72.PubMedCrossRef
36.
go back to reference Yu W, Gluer CC, Fuerst T. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int. 1995;57:169–74.PubMedCrossRef Yu W, Gluer CC, Fuerst T. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int. 1995;57:169–74.PubMedCrossRef
37.
go back to reference Rand T, Seidl G, Kainberger F, Resch A, Hittmair K, Schneider B, et al. Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy x-ray absorptiometry (DXA). Calcif Tissue Int. 1997;60:430–3.PubMedCrossRef Rand T, Seidl G, Kainberger F, Resch A, Hittmair K, Schneider B, et al. Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy x-ray absorptiometry (DXA). Calcif Tissue Int. 1997;60:430–3.PubMedCrossRef
38.
go back to reference Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int. 1997;7:564–9.PubMedCrossRef Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int. 1997;7:564–9.PubMedCrossRef
39.
go back to reference Chaganti RK, Parimi N, Lang T, Orwoll E, Stefanick ML, Nevitt M, et al. Bone mineral density and prevalent osteoarthritis of the hip in older men for the Osteoporotic Fractures in Men (MrOS) study group. Osteoporos Int. 2010;21:1307–16.PubMedCrossRef Chaganti RK, Parimi N, Lang T, Orwoll E, Stefanick ML, Nevitt M, et al. Bone mineral density and prevalent osteoarthritis of the hip in older men for the Osteoporotic Fractures in Men (MrOS) study group. Osteoporos Int. 2010;21:1307–16.PubMedCrossRef
40.
41.
go back to reference Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.PubMedCrossRef Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.PubMedCrossRef
42.
go back to reference Krueger D, Checovich M, Vallarta-Ast N, Gemar D, Clodfelter R, Binkley N. Comparison of GE Healthcare Lunar Prodigy and Lunar iDXA densitometers. J Clin Densitom. 2009;9:233.CrossRef Krueger D, Checovich M, Vallarta-Ast N, Gemar D, Clodfelter R, Binkley N. Comparison of GE Healthcare Lunar Prodigy and Lunar iDXA densitometers. J Clin Densitom. 2009;9:233.CrossRef
43.
go back to reference Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans D, Lewiecki EM, et al. Official positions of the International Society for Clinical Densitometry and Executive summary of the 2007 ISCD position development conference. J Clin Densitom. 2008;11:75–91.PubMedCrossRef Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans D, Lewiecki EM, et al. Official positions of the International Society for Clinical Densitometry and Executive summary of the 2007 ISCD position development conference. J Clin Densitom. 2008;11:75–91.PubMedCrossRef
44.
go back to reference Anonymous. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO technical report series. 1994;843:1–129. Anonymous. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO technical report series. 1994;843:1–129.
45.
go back to reference Karkkainen M, Rikkonen T, Kroger H, Sirola J, Tupurainen M, Salovaara K, et al. Association between functional capacity tests and fractures: An eight-year prospective population-based cohort study. Osteoporos Int. 2008;19:1203–10.PubMedCrossRef Karkkainen M, Rikkonen T, Kroger H, Sirola J, Tupurainen M, Salovaara K, et al. Association between functional capacity tests and fractures: An eight-year prospective population-based cohort study. Osteoporos Int. 2008;19:1203–10.PubMedCrossRef
46.
go back to reference Lang TF, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: The health, aging, and body composition study. J Bone Miner Res. 2010;25:513–9.PubMedCrossRef Lang TF, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: The health, aging, and body composition study. J Bone Miner Res. 2010;25:513–9.PubMedCrossRef
47.
go back to reference Herran A, Amado JA, Garcia-Unzueta MT, Vazquez-Barquero JL, Perera L, Gonzalez-Marcias J. Increased bone remodeling in first-episode major depressive disorder. Psychosom Med. 2000;62:779–82.PubMed Herran A, Amado JA, Garcia-Unzueta MT, Vazquez-Barquero JL, Perera L, Gonzalez-Marcias J. Increased bone remodeling in first-episode major depressive disorder. Psychosom Med. 2000;62:779–82.PubMed
48.
go back to reference Peeters G, van Schoor NM, Lips P. Fall risk: the clinical relevance of falls and how to integrate fall risk with fracture risk. Best Pract Res Clin Rheumatol. 2009;23:797–804.PubMedCrossRef Peeters G, van Schoor NM, Lips P. Fall risk: the clinical relevance of falls and how to integrate fall risk with fracture risk. Best Pract Res Clin Rheumatol. 2009;23:797–804.PubMedCrossRef
49.
go back to reference Lloyd BD, Williamson DA, Singh NA, Hansen RD, Diamond TH, Finnegan TP, et al. Recurrent and injurious falls in the year following hip fracture: a prospective study of incidence and risk factors from the Sarcopenia and Hip Fracture study. J Gerontol A Biol Sci Med Sci. 2009;64:599–609.PubMedCrossRef Lloyd BD, Williamson DA, Singh NA, Hansen RD, Diamond TH, Finnegan TP, et al. Recurrent and injurious falls in the year following hip fracture: a prospective study of incidence and risk factors from the Sarcopenia and Hip Fracture study. J Gerontol A Biol Sci Med Sci. 2009;64:599–609.PubMedCrossRef
50.
go back to reference Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN, et al. Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res. 2006;21:324–31.PubMedCrossRef Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN, et al. Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res. 2006;21:324–31.PubMedCrossRef
51.
go back to reference Takata S, Yasui N. Disuse osteoporosis. J Med Invest. 2001;48:147–56.PubMed Takata S, Yasui N. Disuse osteoporosis. J Med Invest. 2001;48:147–56.PubMed
52.
go back to reference Ferretti JL, Cointry GR, Capozza RF, Frost HM. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev. 2003;124:269–79.PubMedCrossRef Ferretti JL, Cointry GR, Capozza RF, Frost HM. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev. 2003;124:269–79.PubMedCrossRef
53.
go back to reference Frost HM. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec. 2001;262:398–419.PubMedCrossRef Frost HM. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec. 2001;262:398–419.PubMedCrossRef
54.
go back to reference Hans DB, Kanis JA, Baim S, Bilezikian JP, Binkley N, Cauley JA, et al. Joint Official Positions of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX((R)). Executive Summary of the 2010 Position Development Conference on Interpretation and use of FRAX(R) in clinical practice. J Clin Densitom. 2011;14:171–80.PubMedCrossRef Hans DB, Kanis JA, Baim S, Bilezikian JP, Binkley N, Cauley JA, et al. Joint Official Positions of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX((R)). Executive Summary of the 2010 Position Development Conference on Interpretation and use of FRAX(R) in clinical practice. J Clin Densitom. 2011;14:171–80.PubMedCrossRef
55.
go back to reference Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22:2395–411.PubMedCrossRef Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22:2395–411.PubMedCrossRef
56.
go back to reference Kanis JA, McCloskey EV, Johansson H, Oden A, Strom O, Borgstrom F. Development and use of FRAX in osteoporosis. Osteoporos Int. 2010;21:S407–13.PubMedCrossRef Kanis JA, McCloskey EV, Johansson H, Oden A, Strom O, Borgstrom F. Development and use of FRAX in osteoporosis. Osteoporos Int. 2010;21:S407–13.PubMedCrossRef
57.
go back to reference Jones G, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA. A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol. 1995;22:932–6.PubMed Jones G, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA. A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol. 1995;22:932–6.PubMed
58.
go back to reference Muraki S, Yamamoto S, Ishibashi H, Horiuchi T, Hosoi T, Orimo H, et al. Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int. 2004;15:724–8.PubMedCrossRef Muraki S, Yamamoto S, Ishibashi H, Horiuchi T, Hosoi T, Orimo H, et al. Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int. 2004;15:724–8.PubMedCrossRef
59.
go back to reference Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD. Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ. 1993;307:172–3.PubMedCrossRef Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD. Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ. 1993;307:172–3.PubMedCrossRef
60.
go back to reference Binkley N, Krueger D, Vallarta-Ast N. An overlying fat panniculus affects femur bone mass measurement. J Clin Densitom. 2003;6:199–204.PubMedCrossRef Binkley N, Krueger D, Vallarta-Ast N. An overlying fat panniculus affects femur bone mass measurement. J Clin Densitom. 2003;6:199–204.PubMedCrossRef
61.
go back to reference Hauache OM, Vieira JGH, Alonso G, Martins LRF, Brandao C. Increased hip bone mineral density in a woman with gluteal silicon implant. J Clin Densitom. 2000;3:391–3.PubMedCrossRef Hauache OM, Vieira JGH, Alonso G, Martins LRF, Brandao C. Increased hip bone mineral density in a woman with gluteal silicon implant. J Clin Densitom. 2000;3:391–3.PubMedCrossRef
62.
go back to reference Gorber SC, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes Rev. 2007;8:307–26.PubMedCrossRef Gorber SC, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes Rev. 2007;8:307–26.PubMedCrossRef
63.
go back to reference Engstrom JL, Paterson SA, Doherty A, Trabulsi M, Speer KL. Accuracy of self-reported height and weight in women: an integrative review of the literature. J Midwifery Womens Health. 2003;48:338–45.PubMedCrossRef Engstrom JL, Paterson SA, Doherty A, Trabulsi M, Speer KL. Accuracy of self-reported height and weight in women: an integrative review of the literature. J Midwifery Womens Health. 2003;48:338–45.PubMedCrossRef
64.
go back to reference Bennani L, Allali F, Rostom S, Hmamouchi I, Khazzani H, El Mansouri L, et al. Relationship between historical height loss and vertebral fractures in postmenopausal women. Clin Rheumatol. 2009;28:1283–9.PubMedCrossRef Bennani L, Allali F, Rostom S, Hmamouchi I, Khazzani H, El Mansouri L, et al. Relationship between historical height loss and vertebral fractures in postmenopausal women. Clin Rheumatol. 2009;28:1283–9.PubMedCrossRef
65.
go back to reference Siminoski K, Warshawski RS, Jen H, Lee K. The accuracy of historical height loss for the detection of vertebral fractures in postmenopausal women. Osteoporos Int. 2006;17:290–6.PubMedCrossRef Siminoski K, Warshawski RS, Jen H, Lee K. The accuracy of historical height loss for the detection of vertebral fractures in postmenopausal women. Osteoporos Int. 2006;17:290–6.PubMedCrossRef
66.
go back to reference von Haehling S, Morley JE, Coats AJ, Anker SD. Ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle. J Cachexia Sarcopenia Muscle. 2010;1:7–8.CrossRef von Haehling S, Morley JE, Coats AJ, Anker SD. Ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle. J Cachexia Sarcopenia Muscle. 2010;1:7–8.CrossRef
Metadata
Title
Effect of including historical height and radius BMD measurement on sarco-osteoporosis prevalence
Authors
Bjoern Buehring
Diane Krueger
Neil Binkley
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Journal of Cachexia, Sarcopenia and Muscle / Issue 1/2013
Print ISSN: 2190-5991
Electronic ISSN: 2190-6009
DOI
https://doi.org/10.1007/s13539-012-0080-8

Other articles of this Issue 1/2013

Journal of Cachexia, Sarcopenia and Muscle 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine