Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Echocardiography | Research article

Glycemic control is associated with atrial structural remodeling in patients with type 2 diabetes

Authors: Qing Wang, Jing Wang, Pei Wang, Liaoyuan Wang, Lanting Jia, Xinyu Ling, Wang Xi, Jie Min, Hua Shen, Jian Xiao, Jinxiang Yuan, Zhinong Wang

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

Diabetes mellitus (DM) has been demonstrated to be a strong risk factor for development and perpetuation of atrial fibrillation (AF). However, how DM and glycemic control affect the pathogenesis of AF has not been sufficiently investigated, especially for the atrial structural remodeling.

Methods

A total of 86 patients undergoing coronary artery bypass graft surgery were enrolled in this study, with atrium sample collected in the operation. The patients were divided into the DM group (n = 40) and the control group (n = 46) accordingly. Demographics, clinical data were collected and compared. Echocardiography, Masson staining and Western blotting were conducted to evaluate atrial structural remodeling.

Results

There was no significant difference between the two groups in baseline characteristics (all P > 0.05). Fast blood glucose and HbA1c of DM group were significantly higher than the control group (P < 0.001). Echocardiography results demonstrated that the left atrium diameter (LAD) and left atrium volume index (LAVI) of DM group was significantly higher than the control group (P < 0.001). Masson staining showed that the collagen volume fraction (CVF), a quantitative indicator of fibrosis, was significantly higher in DM patients (P = 0.03). Western blot results indicated that the Collagen I of DM group was more expressed in the DM group than the control group (P < 0.001). Univariate linear regression revealed that the HbA1c level was significantly associated with both LAD (Y = 1.139X + 25.575, P < 0.001, R2 = 0.291) and CVF (Y = 0.444X + 29.648, P = 0.009, R2 = 0.078).

Conclusions

DM was associated with atrial structural remodeling, including atrium enlargement and atrial fibrosis, which might be attributed to poor glycemic control.
Literature
1.
go back to reference Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet (London, England). 2015;386(9989):154–62.CrossRef Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet (London, England). 2015;386(9989):154–62.CrossRef
2.
go back to reference Mihas C, Mariolis A, Letsas KP, Kantzanou M. Risk of mortality and stroke after atrial fibrillation. Lancet (London, England). 2017;389(10072):906.CrossRef Mihas C, Mariolis A, Letsas KP, Kantzanou M. Risk of mortality and stroke after atrial fibrillation. Lancet (London, England). 2017;389(10072):906.CrossRef
3.
go back to reference GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2015;385(9963):117–71. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2015;385(9963):117–71.
4.
go back to reference Lau DH, Nattel S, Kalman JM, Sanders P. Modifiable risk factors and atrial fibrillation. Circulation. 2017;136(6):583–96.CrossRef Lau DH, Nattel S, Kalman JM, Sanders P. Modifiable risk factors and atrial fibrillation. Circulation. 2017;136(6):583–96.CrossRef
5.
go back to reference Johansen OE, Brustad E, Enger S, Tveit A. Prevalence of abnormal glucose metabolism in atrial fibrillation: a case control study in 75-year old subjects. Cardiovasc Diabetol. 2008;7:28.CrossRef Johansen OE, Brustad E, Enger S, Tveit A. Prevalence of abnormal glucose metabolism in atrial fibrillation: a case control study in 75-year old subjects. Cardiovasc Diabetol. 2008;7:28.CrossRef
6.
go back to reference Grundvold I, Bodegard J, Nilsson PM, Svennblad B, Johansson G, Ostgren CJ, et al. Body weight and risk of atrial fibrillation in 7,169 patients with newly diagnosed type 2 diabetes; an observational study. Cardiovasc Diabetol. 2015;14:5.CrossRef Grundvold I, Bodegard J, Nilsson PM, Svennblad B, Johansson G, Ostgren CJ, et al. Body weight and risk of atrial fibrillation in 7,169 patients with newly diagnosed type 2 diabetes; an observational study. Cardiovasc Diabetol. 2015;14:5.CrossRef
7.
go back to reference NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England). 2016;387(10027):1513–30. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England). 2016;387(10027):1513–30.
8.
go back to reference Benjamin EJ, Levy D, Vaziri SM, Dagostino RB, Belanger AJ, Wolf PA. Independent risk-factors for atrial-fibrillation in a population-based cohort - the Framingham heart-study. JAMA. 1994;271(11):840–4.CrossRef Benjamin EJ, Levy D, Vaziri SM, Dagostino RB, Belanger AJ, Wolf PA. Independent risk-factors for atrial-fibrillation in a population-based cohort - the Framingham heart-study. JAMA. 1994;271(11):840–4.CrossRef
9.
go back to reference Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63(22):2335–45.CrossRef Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63(22):2335–45.CrossRef
10.
go back to reference Goudis CA, Korantzopoulos P, Ntalas IV, Kallergis EM, Liu T, Ketikoglou DG. Diabetes mellitus and atrial fibrillation: pathophysiological mechanisms and potential upstream therapies. Int J Cardiol. 2015;184:617–22.CrossRef Goudis CA, Korantzopoulos P, Ntalas IV, Kallergis EM, Liu T, Ketikoglou DG. Diabetes mellitus and atrial fibrillation: pathophysiological mechanisms and potential upstream therapies. Int J Cardiol. 2015;184:617–22.CrossRef
11.
go back to reference Levitt Katz L, Gidding SS, Bacha F, Hirst K, McKay S, Pyle L, et al. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with type 2 diabetes participating in the TODAY clinical trial. Pediatr Diabetes. 2015;16(1):39–47.CrossRef Levitt Katz L, Gidding SS, Bacha F, Hirst K, McKay S, Pyle L, et al. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with type 2 diabetes participating in the TODAY clinical trial. Pediatr Diabetes. 2015;16(1):39–47.CrossRef
12.
go back to reference Kadappu KK, Boyd A, Eshoo S, Haluska B, Yeo AE, Marwick TH, et al. Changes in left atrial volume in diabetes mellitus: more than diastolic dysfunction? Eur Heart J Cardiovasc Imaging. 2012;13(12):1016–23.CrossRef Kadappu KK, Boyd A, Eshoo S, Haluska B, Yeo AE, Marwick TH, et al. Changes in left atrial volume in diabetes mellitus: more than diastolic dysfunction? Eur Heart J Cardiovasc Imaging. 2012;13(12):1016–23.CrossRef
13.
go back to reference American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–S9.CrossRef American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–S9.CrossRef
14.
go back to reference Demir K, Avci A, Kaya Z, Marakoglu K, Ceylan E, Yilmaz A, et al. Assessment of atrial electromechanical delay and P-wave dispersion in patients with type 2 diabetes mellitus. J Cardiol. 2016;67(3–4):378–83.CrossRef Demir K, Avci A, Kaya Z, Marakoglu K, Ceylan E, Yilmaz A, et al. Assessment of atrial electromechanical delay and P-wave dispersion in patients with type 2 diabetes mellitus. J Cardiol. 2016;67(3–4):378–83.CrossRef
15.
go back to reference Wang Q, Shen H, Min J, Gao Y, Liu K, Xi W, et al. YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis. J Trans Med. 2018;16(1):229.CrossRef Wang Q, Shen H, Min J, Gao Y, Liu K, Xi W, et al. YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis. J Trans Med. 2018;16(1):229.CrossRef
16.
go back to reference Lester SJ, Ryan EW, Schiller NB, Foster E. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999;84(7):829–32.CrossRef Lester SJ, Ryan EW, Schiller NB, Foster E. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999;84(7):829–32.CrossRef
17.
go back to reference Armstrong AC, Gidding SS, Colangelo LA, Kishi S, Liu K, Sidney S, et al. Association of early adult modifiable cardiovascular risk factors with left atrial size over a 20-year follow-up period: the CARDIA study. BMJ open. 2014;4(1):e004001.CrossRef Armstrong AC, Gidding SS, Colangelo LA, Kishi S, Liu K, Sidney S, et al. Association of early adult modifiable cardiovascular risk factors with left atrial size over a 20-year follow-up period: the CARDIA study. BMJ open. 2014;4(1):e004001.CrossRef
18.
go back to reference Huang G, Zhang L, Xie M, Fu M, Huang J, Lv Q. Assessment of left atrial function in diabetes mellitus by left atrial volume tracking method. J Huazhong Univ Sci Technolog Med Sci. 2010;30(6):819–23.CrossRef Huang G, Zhang L, Xie M, Fu M, Huang J, Lv Q. Assessment of left atrial function in diabetes mellitus by left atrial volume tracking method. J Huazhong Univ Sci Technolog Med Sci. 2010;30(6):819–23.CrossRef
19.
go back to reference Zapolski T, Wysokinski A. Left atrium volume index is influenced by aortic stiffness and central pulse pressure in type 2 diabetes mellitus patients: a hemodynamic and echocardiographic study. Med Sci Mon. 2013;19:153–64.CrossRef Zapolski T, Wysokinski A. Left atrium volume index is influenced by aortic stiffness and central pulse pressure in type 2 diabetes mellitus patients: a hemodynamic and echocardiographic study. Med Sci Mon. 2013;19:153–64.CrossRef
20.
go back to reference Di Pino A, Mangiafico S, Urbano F, Scicali R, Scandura S, D'Agate V, et al. HbA1c identifies subjects with Prediabetes and subclinical left ventricular diastolic dysfunction. J Clin Endocrinol Metab. 2017;102(10):3756–64.CrossRef Di Pino A, Mangiafico S, Urbano F, Scicali R, Scandura S, D'Agate V, et al. HbA1c identifies subjects with Prediabetes and subclinical left ventricular diastolic dysfunction. J Clin Endocrinol Metab. 2017;102(10):3756–64.CrossRef
21.
go back to reference Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2017;38(1):53–61.CrossRef Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2017;38(1):53–61.CrossRef
22.
go back to reference Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51(8):802–9.CrossRef Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51(8):802–9.CrossRef
23.
go back to reference Spronk HM, De Jong AM, Verheule S, De Boer HC, Maass AH, Lau DH, et al. Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J. 2017;38(1):38–50.CrossRef Spronk HM, De Jong AM, Verheule S, De Boer HC, Maass AH, Lau DH, et al. Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J. 2017;38(1):38–50.CrossRef
24.
go back to reference Shen H, Wang J, Min J, Xi W, Gao Y, Yin L, et al. Activation of TGF-beta1/alpha-SMA/col I Profibrotic pathway in fibroblasts by Galectin-3 contributes to atrial fibrosis in experimental models and patients. Cell Physiol Biochem. 2018;47(2):851–63.CrossRef Shen H, Wang J, Min J, Xi W, Gao Y, Yin L, et al. Activation of TGF-beta1/alpha-SMA/col I Profibrotic pathway in fibroblasts by Galectin-3 contributes to atrial fibrosis in experimental models and patients. Cell Physiol Biochem. 2018;47(2):851–63.CrossRef
25.
go back to reference Wang Q, Shen H, Min J, Gao Y, Liu K, Xi W, et al. YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis. J Transl Med. 2018;16(1):229.CrossRef Wang Q, Shen H, Min J, Gao Y, Liu K, Xi W, et al. YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis. J Transl Med. 2018;16(1):229.CrossRef
26.
go back to reference Wang Q, Xi W, Yin L, Wang J, Shen H, Gao Y, et al. Human Epicardial adipose tissue cTGF expression is an Independent risk factor for atrial fibrillation and highly associated with atrial fibrosis. Sci Rep. 2018;8(1):3585.CrossRef Wang Q, Xi W, Yin L, Wang J, Shen H, Gao Y, et al. Human Epicardial adipose tissue cTGF expression is an Independent risk factor for atrial fibrillation and highly associated with atrial fibrosis. Sci Rep. 2018;8(1):3585.CrossRef
27.
go back to reference Enomoto H, Aizawa N, Nakamura H, Sakai Y, Iwata Y, Tanaka H, et al. An increased ratio of Glycated albumin to HbA1c is associated with the degree of liver fibrosis in hepatitis B virus-positive patients. Gastroenterol Res Pract. 2014;2014:351396.CrossRef Enomoto H, Aizawa N, Nakamura H, Sakai Y, Iwata Y, Tanaka H, et al. An increased ratio of Glycated albumin to HbA1c is associated with the degree of liver fibrosis in hepatitis B virus-positive patients. Gastroenterol Res Pract. 2014;2014:351396.CrossRef
28.
go back to reference Gao Q, Xu L, Yang Q, Guan TJ. MicroRNA-21 contributes to high glucose-induced fibrosis in peritoneal mesothelial cells in rat models by activation of the Ras-MAPK signaling pathway via Sprouty-1; 2018. Gao Q, Xu L, Yang Q, Guan TJ. MicroRNA-21 contributes to high glucose-induced fibrosis in peritoneal mesothelial cells in rat models by activation of the Ras-MAPK signaling pathway via Sprouty-1; 2018.
29.
go back to reference Li Y, Chung S, Li Z, Overstreet JM, Gagnon L, Grouix B, et al. Fatty acid receptor modulator PBI-4050 inhibits kidney fibrosis and improves glycemic control. J Cellular Physiol. 2018;3(10). Li Y, Chung S, Li Z, Overstreet JM, Gagnon L, Grouix B, et al. Fatty acid receptor modulator PBI-4050 inhibits kidney fibrosis and improves glycemic control. J Cellular Physiol. 2018;3(10).
30.
go back to reference Noda Y, Goshima S, Tanaka K, Osada S, Tomita H, Hara A, et al. Findings in pancreatic MRI associated with pancreatic fibrosis and HbA1c values. J Magn Reson Imaging. 2016;43(3):680–7.CrossRef Noda Y, Goshima S, Tanaka K, Osada S, Tomita H, Hara A, et al. Findings in pancreatic MRI associated with pancreatic fibrosis and HbA1c values. J Magn Reson Imaging. 2016;43(3):680–7.CrossRef
31.
go back to reference Zhang D, Cui Y, Li B, Luo X, Li B, Tang Y. miR-155 regulates high glucose-induced cardiac fibrosis via the TGF-beta signaling pathway.Mol Biosyst 2016;13(1):215–224 Zhang D, Cui Y, Li B, Luo X, Li B, Tang Y. miR-155 regulates high glucose-induced cardiac fibrosis via the TGF-beta signaling pathway.Mol Biosyst 2016;13(1):215–224
32.
go back to reference Liu C, Fu H, Li J, Yang W, Cheng L, Liu T, et al. Hyperglycemia aggravates atrial interstitial fibrosis, ionic remodeling and vulnerability to atrial fibrillation in diabetic rabbits. Anadolu kardiyoloji dergisi. 2012;12(7):543–50.PubMed Liu C, Fu H, Li J, Yang W, Cheng L, Liu T, et al. Hyperglycemia aggravates atrial interstitial fibrosis, ionic remodeling and vulnerability to atrial fibrillation in diabetic rabbits. Anadolu kardiyoloji dergisi. 2012;12(7):543–50.PubMed
33.
go back to reference Benito EM, Carlosena-Remirez A, Guasch E, Prat-Gonzalez S, Perea RJ, Figueras R, et al. Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. Europace. 2017;19(8):1272–9.CrossRef Benito EM, Carlosena-Remirez A, Guasch E, Prat-Gonzalez S, Perea RJ, Figueras R, et al. Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility. Europace. 2017;19(8):1272–9.CrossRef
Metadata
Title
Glycemic control is associated with atrial structural remodeling in patients with type 2 diabetes
Authors
Qing Wang
Jing Wang
Pei Wang
Liaoyuan Wang
Lanting Jia
Xinyu Ling
Wang Xi
Jie Min
Hua Shen
Jian Xiao
Jinxiang Yuan
Zhinong Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1249-2

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue