Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2019

Open Access 01-12-2019 | Dyspnea | Research article

Associations of AMP and adenosine induced dyspnea sensation to large and small airways dysfunction in asthma

Authors: Claire A. Cox, Ilse M. Boudewijn, Sebastiaan J. Vroegop, Siebrig Schokker, Anne J. Lexmond, Henderik W. Frijlink, Paul Hagedoorn, Judith M. Vonk, Martijn P. Farenhorst, Nick H. T. ten Hacken, Huib A. M. Kerstjens, Maarten van den Berge

Published in: BMC Pulmonary Medicine | Issue 1/2019

Login to get access

Abstract

Background

Bronchial provocation is often used to confirm asthma. Dyspnea sensation, however, associates poorly with the evoked drop in FEV1. Provocation tests only use the large airways parameter FEV1, although dyspnea is associated with both large- and small airways dysfunction. Aim of this study was to explore if adenosine 5′-monophosphate (AMP) and adenosine evoke an equal dyspnea sensation and if dyspnea associates better with large or small airways dysfunction.

Methods

We targeted large airways with AMP and small airways with dry powder adenosine in 59 asthmatic (ex)-smokers with ≥5 packyears, 14 ± 7 days apart. All subjects performed spirometry, impulse oscillometry (IOS), and Borg dyspnea score. In 36 subjects multiple breath nitrogen washout (MBNW) was additionally performed. We analyzed the association of the change (Δ) in Borg score with the change in large and small airways parameters, using univariate and multivariate linear regression analyses. MBNW was analyzed separately.

Results

Provocation with AMP and adenosine evoked similar levels of dyspnea. ΔFEV1 was not significantly associated with ΔBorg after either AMP or adenosine provocation, in both univariate and multivariate analyses. In multivariate linear regression, a decrease in FEF25–75 during adenosine provocation was independently associated with an increase in Borg. In the multivariate analyses for AMP provocation, no significant associations were found between ΔBorg and any large or small airways parameters.

Conclusion

AMP and adenosine induce equally severe dyspnea sensations. Our results suggest that dyspnea induced with dry powder adenosine is related to small airways involvement, while neither large nor small airways dysfunction was associated with AMP-induced dyspnea.

Trail registration

NCT01741285 at www.​clinicaltrials.​gov, first registered Dec 4th, 2012.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cockcroft DW, Davis B. Direct and indirect challenges in the clinical assessment of asthma. Ann Allergy Asthma Immunol. 2009;103:363–9 quiz 369–372, 400.CrossRef Cockcroft DW, Davis B. Direct and indirect challenges in the clinical assessment of asthma. Ann Allergy Asthma Immunol. 2009;103:363–9 quiz 369–372, 400.CrossRef
2.
go back to reference Ottanelli R, Rosi E, Romagnoli I, Ronchi MC, Lanini B, Grazzini M, et al. Perception of bronchoconstriction and bronchial hyper-responsiveness in asthma. Clin Sci (Lond). 2000;98:681–7.CrossRef Ottanelli R, Rosi E, Romagnoli I, Ronchi MC, Lanini B, Grazzini M, et al. Perception of bronchoconstriction and bronchial hyper-responsiveness in asthma. Clin Sci (Lond). 2000;98:681–7.CrossRef
3.
go back to reference Segal LN, Goldring RM, Oppenheimer BW, Stabile A, Reibman J, Rom WN, et al. Disparity between proximal and distal airway reactivity during methacholine challenge. COPD. 2011;8:145–52.CrossRef Segal LN, Goldring RM, Oppenheimer BW, Stabile A, Reibman J, Rom WN, et al. Disparity between proximal and distal airway reactivity during methacholine challenge. COPD. 2011;8:145–52.CrossRef
4.
go back to reference Brand PL, Rijcken B, Schouten JP, Koëter GH, Weiss ST, Postma DS. Perception of airway obstruction in a random population sample. Relationship to airway hyperresponsiveness in the absence of respiratory symptoms. Am Rev Respir Dis. 1992;146:396–401.CrossRef Brand PL, Rijcken B, Schouten JP, Koëter GH, Weiss ST, Postma DS. Perception of airway obstruction in a random population sample. Relationship to airway hyperresponsiveness in the absence of respiratory symptoms. Am Rev Respir Dis. 1992;146:396–401.CrossRef
5.
go back to reference Van Der Wiel E, ten Hacken NHT, Postma DS, Van Den Berge M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. J Allergy Clin Immunol. 2013;131:646–57.CrossRef Van Der Wiel E, ten Hacken NHT, Postma DS, Van Den Berge M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. J Allergy Clin Immunol. 2013;131:646–57.CrossRef
6.
go back to reference Perez T, Chanez P, Dusser D, Devillier P. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction. Respir Med. 2013;107:1667–74.CrossRef Perez T, Chanez P, Dusser D, Devillier P. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction. Respir Med. 2013;107:1667–74.CrossRef
7.
go back to reference Takeda T, Oga T, Niimi A, Matsumoto H, Ito I, Yamaguchi M, et al. Relationship between small airway function and health status, dyspnea and disease control in asthma. Respiration. 2010;80:120–6.CrossRef Takeda T, Oga T, Niimi A, Matsumoto H, Ito I, Yamaguchi M, et al. Relationship between small airway function and health status, dyspnea and disease control in asthma. Respiration. 2010;80:120–6.CrossRef
8.
go back to reference Van Der Wiel E, Postma DS, Van Der Molen T, Schiphof-Godart L, ten Hacken NHT, Van Den Berge M. Effects of small airway dysfunction on the clinical expression of asthma: a focus on asthma symptoms and bronchial hyper-responsiveness. Allergy Eur J Allergy Clin Immunol. 2014;69:1681–8.CrossRef Van Der Wiel E, Postma DS, Van Der Molen T, Schiphof-Godart L, ten Hacken NHT, Van Den Berge M. Effects of small airway dysfunction on the clinical expression of asthma: a focus on asthma symptoms and bronchial hyper-responsiveness. Allergy Eur J Allergy Clin Immunol. 2014;69:1681–8.CrossRef
9.
go back to reference Mansur AH, Manney S, Ayres JG. Methacholine-induced asthma symptoms correlate with impulse oscillometry but not spirometry. Respir Med. 2008;102:42–9.CrossRef Mansur AH, Manney S, Ayres JG. Methacholine-induced asthma symptoms correlate with impulse oscillometry but not spirometry. Respir Med. 2008;102:42–9.CrossRef
10.
go back to reference Boudewijn IM, Telenga ED, Van Der Wiel E, Van Der Molen T, Schiphof L, ten Hacken NHT, et al. Less small airway dysfunction in asymptomatic bronchial hyperresponsiveness than in asthma. Allergy Eur J Allergy Clin Immunol. 2013;68:1419–26.CrossRef Boudewijn IM, Telenga ED, Van Der Wiel E, Van Der Molen T, Schiphof L, ten Hacken NHT, et al. Less small airway dysfunction in asymptomatic bronchial hyperresponsiveness than in asthma. Allergy Eur J Allergy Clin Immunol. 2013;68:1419–26.CrossRef
11.
go back to reference Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 2006;118:551–9 quiz 560-1.CrossRef Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 2006;118:551–9 quiz 560-1.CrossRef
12.
go back to reference Joos GF, O’Connor B, Anderson SD, Chung F, Cockcroft DW, Dahlén B, et al. Indirect airway challenges. Eur Respir J. 2003;21:1050–68.CrossRef Joos GF, O’Connor B, Anderson SD, Chung F, Cockcroft DW, Dahlén B, et al. Indirect airway challenges. Eur Respir J. 2003;21:1050–68.CrossRef
13.
go back to reference Chan W, Cushley MJ, Holgate ST. The effect of inhaled adenosine 5′-monophosphate (AMP) on airway calibre in normal and asthmatic subjects. Clin Sci. 1986;70:65p–6p.CrossRef Chan W, Cushley MJ, Holgate ST. The effect of inhaled adenosine 5′-monophosphate (AMP) on airway calibre in normal and asthmatic subjects. Clin Sci. 1986;70:65p–6p.CrossRef
14.
go back to reference Cockcroft DW. Direct challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138:18S–24S.CrossRef Cockcroft DW. Direct challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138:18S–24S.CrossRef
15.
go back to reference Lexmond AJ, Boudewijn IM, Hagedoorn P, Schokker S, Cox CA, Vonk JM, et al. Bronchial provocation testing can be improved by using dry powder adenosine instead of nebulized AMP. Am J Respir Crit Care Med. 2017;197:391-4. Lexmond AJ, Boudewijn IM, Hagedoorn P, Schokker S, Cox CA, Vonk JM, et al. Bronchial provocation testing can be improved by using dry powder adenosine instead of nebulized AMP. Am J Respir Crit Care Med. 2017;197:391-4.
16.
go back to reference Sverrild A, Porsbjerg C, Backer V. The use of inhaled mannitol in the diagnosis and management of asthma. Expert Opin Pharmacother. 2012;13:115–23.CrossRef Sverrild A, Porsbjerg C, Backer V. The use of inhaled mannitol in the diagnosis and management of asthma. Expert Opin Pharmacother. 2012;13:115–23.CrossRef
17.
go back to reference Brannan JD, Anderson SD, Perry CP, Freed-Martens R, Lassig AR, Charlton B, et al. The safety and efficacy of inhaled dry powder mannitol as a bronchial provocation test for airway hyperresponsiveness: a phase 3 comparison study with hypertonic (4.5%) saline. Respir Res. 2005;6:1–12.CrossRef Brannan JD, Anderson SD, Perry CP, Freed-Martens R, Lassig AR, Charlton B, et al. The safety and efficacy of inhaled dry powder mannitol as a bronchial provocation test for airway hyperresponsiveness: a phase 3 comparison study with hypertonic (4.5%) saline. Respir Res. 2005;6:1–12.CrossRef
18.
go back to reference Lexmond AJ, Hagedoorn P, Frijlink HW, de Boer AH. Challenging the two-minute tidal breathing challenge test. J Aerosol Med Pulm Drug Deliv. 2013;26:380–6.CrossRef Lexmond AJ, Hagedoorn P, Frijlink HW, de Boer AH. Challenging the two-minute tidal breathing challenge test. J Aerosol Med Pulm Drug Deliv. 2013;26:380–6.CrossRef
19.
go back to reference Cohen J, Postma DS, Douma WR, Vonk JM, De B a H, ten Hacken NHT. Particle size matters: diagnostics and treatment of small airways involvement in asthma. Eur Respir J. 2011;37:532–40.CrossRef Cohen J, Postma DS, Douma WR, Vonk JM, De B a H, ten Hacken NHT. Particle size matters: diagnostics and treatment of small airways involvement in asthma. Eur Respir J. 2011;37:532–40.CrossRef
20.
go back to reference Lexmond AJ, Hagedoorn P, van der Wiel E, ten Hacken NHT, Frijlink HW, de Boer AH. Adenosine dry powder inhalation for bronchial challenge testing, part 1: inhaler and formulation development and in vitro performance testing. Eur J Pharm Biopharm. 2014;86:105–14.CrossRef Lexmond AJ, Hagedoorn P, van der Wiel E, ten Hacken NHT, Frijlink HW, de Boer AH. Adenosine dry powder inhalation for bronchial challenge testing, part 1: inhaler and formulation development and in vitro performance testing. Eur J Pharm Biopharm. 2014;86:105–14.CrossRef
21.
go back to reference Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of β 2 -agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–504.CrossRef Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of β 2 -agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–504.CrossRef
22.
go back to reference Cox CA, Boudewijn IM, Vroegop SJ, Schokker S, Lexmond AJ, Frijlink HW, et al. Extrafine compared to non-extrafine particle inhaled corticosteroids in smokers and ex-smokers with asthma. Respir Med. 2017;130:35–42.CrossRef Cox CA, Boudewijn IM, Vroegop SJ, Schokker S, Lexmond AJ, Frijlink HW, et al. Extrafine compared to non-extrafine particle inhaled corticosteroids in smokers and ex-smokers with asthma. Respir Med. 2017;130:35–42.CrossRef
23.
go back to reference Lexmond AJ, van der Wiel E, Hagedoorn P, Bult W, Frijlink HW, ten Hacken NHT, et al. Adenosine dry powder inhalation for bronchial challenge testing, part 2: proof of concept in asthmatic subjects. Eur J Pharm Biopharm. 2014;88:148–52.CrossRef Lexmond AJ, van der Wiel E, Hagedoorn P, Bult W, Frijlink HW, ten Hacken NHT, et al. Adenosine dry powder inhalation for bronchial challenge testing, part 2: proof of concept in asthmatic subjects. Eur J Pharm Biopharm. 2014;88:148–52.CrossRef
24.
25.
go back to reference Kendrick KR, Baxi SC, Smith RM. Usefulness of the modified 0-10 Borg scale in assessing the degree of dyspnea in patients with COPD and asthma. J Emerg Nurs. 2000;26:216–22.CrossRef Kendrick KR, Baxi SC, Smith RM. Usefulness of the modified 0-10 Borg scale in assessing the degree of dyspnea in patients with COPD and asthma. J Emerg Nurs. 2000;26:216–22.CrossRef
26.
go back to reference Caruso M, Holgate ST, Polosa R. Adenosine signalling in airways. Curr Opin Pharmacol Elsevier. 2006;6:251–6.CrossRef Caruso M, Holgate ST, Polosa R. Adenosine signalling in airways. Curr Opin Pharmacol Elsevier. 2006;6:251–6.CrossRef
27.
go back to reference Burki NK, Alam M, Lee L-Y. The pulmonary effects of intravenous adenosine in asthmatic subjects. Respir Res. 2006;7:139.CrossRef Burki NK, Alam M, Lee L-Y. The pulmonary effects of intravenous adenosine in asthmatic subjects. Respir Res. 2006;7:139.CrossRef
28.
go back to reference Eckle T, Koeppen M, Eltzschig HK. Role of extracellular adenosine in acute lung injury. Physiology. 2009;24:298–306.CrossRef Eckle T, Koeppen M, Eltzschig HK. Role of extracellular adenosine in acute lung injury. Physiology. 2009;24:298–306.CrossRef
29.
go back to reference Paintal AS. Sensations from J receptors. Am J Phys. 1995;10:238-43. Paintal AS. Sensations from J receptors. Am J Phys. 1995;10:238-43.
30.
go back to reference Widdicombe J. Reflexes from the lungs and airways: historical perspective. J Appl Physiol. 2006;101:628–34.CrossRef Widdicombe J. Reflexes from the lungs and airways: historical perspective. J Appl Physiol. 2006;101:628–34.CrossRef
31.
go back to reference Kleis S, Chanez P, Delvaux M, Louis R. Perception of dyspnea in mild smoking asthmatics. Respir Med. 2007;101:1426–30.CrossRef Kleis S, Chanez P, Delvaux M, Louis R. Perception of dyspnea in mild smoking asthmatics. Respir Med. 2007;101:1426–30.CrossRef
Metadata
Title
Associations of AMP and adenosine induced dyspnea sensation to large and small airways dysfunction in asthma
Authors
Claire A. Cox
Ilse M. Boudewijn
Sebastiaan J. Vroegop
Siebrig Schokker
Anne J. Lexmond
Henderik W. Frijlink
Paul Hagedoorn
Judith M. Vonk
Martijn P. Farenhorst
Nick H. T. ten Hacken
Huib A. M. Kerstjens
Maarten van den Berge
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2019
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-019-0783-0

Other articles of this Issue 1/2019

BMC Pulmonary Medicine 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.