Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2018

01-06-2018 | Research Article

Arterial input function in a dedicated slice for cerebral perfusion measurements in humans

Authors: Elias Kellner, Irina Mader, Marco Reisert, Horst Urbach, Valerij Gennadevic Kiselev

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2018

Login to get access

Abstract

Object

We aimed to modify our previously published method for arterial input function measurements for evaluation of cerebral perfusion (dynamic susceptibility contrast MRI) such that it can be applied in humans in a clinical setting.

Materials and methods

Similarly to our previous work, a conventional measurement sequence for dynamic susceptibility contrast MRI is extended with an additional measurement slice at the neck. Measurement parameters at this slice were optimized for the blood signal (short echo time, background suppression, magnitude and phase images). Phase-based evaluation of the signal in the carotid arteries is used to obtain quantitative arterial input functions.

Results

In all pilot measurements, quantitative arterial input functions were obtained. The resulting absolute perfusion parameters agree well with literature values (gray and white matter mean values of 46 and 24 mL/100 g/min, respectively, for cerebral blood flow and 3.0% and 1.6%, respectively, for cerebral blood volume).

Conclusions

The proposed method has the potential to quantify arterial input functions in the carotid arteries from a direct measurement without any additional normalization.
Literature
1.
go back to reference Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36(5):715–725CrossRefPubMed Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36(5):715–725CrossRefPubMed
1.
go back to reference Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–735 Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–735
3.
go back to reference Conturo TE, Barker PB, Mathews VP, Monsein LH, Bryan RN (1992) MR imaging of cerebral perfusion by phase-angle reconstruction of bolus paramagnetic-induced frequency shifts. Magn Reson Med 27(2):375–390CrossRefPubMed Conturo TE, Barker PB, Mathews VP, Monsein LH, Bryan RN (1992) MR imaging of cerebral perfusion by phase-angle reconstruction of bolus paramagnetic-induced frequency shifts. Magn Reson Med 27(2):375–390CrossRefPubMed
4.
go back to reference Akbudak E, Conturo TE (1996) Arterial input functions from MR phase imaging. Magn Reson Med 36(6):809–815CrossRefPubMed Akbudak E, Conturo TE (1996) Arterial input functions from MR phase imaging. Magn Reson Med 36(6):809–815CrossRefPubMed
5.
go back to reference van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076CrossRefPubMed van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076CrossRefPubMed
6.
go back to reference Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52(4):789–797CrossRefPubMed Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52(4):789–797CrossRefPubMed
7.
go back to reference Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55(3):524–531CrossRefPubMed Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55(3):524–531CrossRefPubMed
8.
go back to reference Kotys MS, Akbudak E, Markham J, Conturo TE (2007) Precision, signal-to-noise ratio, and dose optimization of magnitude and phase arterial input functions in dynamic susceptibility contrast MRI. J Magn Reson Imaging 25(3):598–611CrossRefPubMed Kotys MS, Akbudak E, Markham J, Conturo TE (2007) Precision, signal-to-noise ratio, and dose optimization of magnitude and phase arterial input functions in dynamic susceptibility contrast MRI. J Magn Reson Imaging 25(3):598–611CrossRefPubMed
9.
go back to reference Bleeker EJW, van Buchem MA, van Osch MJP (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29(4):840–852CrossRefPubMed Bleeker EJW, van Buchem MA, van Osch MJP (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29(4):840–852CrossRefPubMed
10.
go back to reference Kellner E, Mader I, Mix M, Splitthoff DN, Reisert M, Foerster K, Nguyen-Thanh T, Gall P, Kiselev VG (2013) Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn Reson Med 69(3):771–780CrossRefPubMed Kellner E, Mader I, Mix M, Splitthoff DN, Reisert M, Foerster K, Nguyen-Thanh T, Gall P, Kiselev VG (2013) Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn Reson Med 69(3):771–780CrossRefPubMed
11.
go back to reference Bleeker EJW, van Buchem MA, Webb AG, van Osch MJP (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64(2):358–368CrossRefPubMed Bleeker EJW, van Buchem MA, Webb AG, van Osch MJP (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64(2):358–368CrossRefPubMed
12.
go back to reference Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, Amsterdam Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, Amsterdam
13.
go back to reference Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23(2):311–323CrossRefPubMed Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23(2):311–323CrossRefPubMed
14.
go back to reference van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22(6):704–709CrossRefPubMed van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22(6):704–709CrossRefPubMed
15.
go back to reference Kellner E, Mix M, Reisert M, Förster K, Nguyen-Thanh T, Splitthoff DN, Gall P, Kiselev VG, Mader I (2014) Quantitative cerebral blood flow with bolus tracking perfusion MRI: measurements in porcine model and comparison with \({{\rm H}}_2{^{15}O}\) PET. Magn Reson Med 72(6):1723–1734CrossRefPubMed Kellner E, Mix M, Reisert M, Förster K, Nguyen-Thanh T, Splitthoff DN, Gall P, Kiselev VG, Mader I (2014) Quantitative cerebral blood flow with bolus tracking perfusion MRI: measurements in porcine model and comparison with \({{\rm H}}_2{^{15}O}\) PET. Magn Reson Med 72(6):1723–1734CrossRefPubMed
16.
go back to reference Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763CrossRefPubMed Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763CrossRefPubMed
17.
go back to reference Calamante F, Gadian D, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33(4):1146–51CrossRefPubMed Calamante F, Gadian D, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33(4):1146–51CrossRefPubMed
18.
go back to reference Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Oestergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14(6):659–67CrossRefPubMedPubMedCentral Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Oestergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14(6):659–67CrossRefPubMedPubMedCentral
19.
go back to reference Zaharchuk G, Bammer R, Straka M, Newbould RD, Rosenberg J, Olivot JM, Mlynash M, Lansberg MG, Schwartz NE, Marks MM et al (2009) Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: a xenon computed tomographic comparative study. J Magn Reson Imaging 30(4):743–752CrossRefPubMedPubMedCentral Zaharchuk G, Bammer R, Straka M, Newbould RD, Rosenberg J, Olivot JM, Mlynash M, Lansberg MG, Schwartz NE, Marks MM et al (2009) Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: a xenon computed tomographic comparative study. J Magn Reson Imaging 30(4):743–752CrossRefPubMedPubMedCentral
20.
go back to reference Knutsson L, van Westen D, Petersen ET, Bloch KM, Holtås S, Ståhlberg F, Wirestam R (2010) Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Med 28(1):1–7 Knutsson L, van Westen D, Petersen ET, Bloch KM, Holtås S, Ståhlberg F, Wirestam R (2010) Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Med 28(1):1–7
21.
go back to reference Østergaard L, Johannsen P, Høst-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with \([{}^{15}{{\rm O}}]{{\rm H}}_{2}{{\rm O}}\) positron emission tomography in humans. J Cereb Blood Flow Metab 18(9):935–940CrossRefPubMed Østergaard L, Johannsen P, Høst-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with \([{}^{15}{{\rm O}}]{{\rm H}}_{2}{{\rm O}}\) positron emission tomography in humans. J Cereb Blood Flow Metab 18(9):935–940CrossRefPubMed
22.
go back to reference van Osch MJP, Vonken EJPA, Wu O, Viergever MA, van der Grond J, Bakker CJG (2003) Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 50(3):614–622CrossRefPubMed van Osch MJP, Vonken EJPA, Wu O, Viergever MA, van der Grond J, Bakker CJG (2003) Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 50(3):614–622CrossRefPubMed
23.
go back to reference Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22(6):718–722CrossRefPubMed Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22(6):718–722CrossRefPubMed
24.
go back to reference Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ (2012) Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 68(2):495–506CrossRefPubMed Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ (2012) Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 68(2):495–506CrossRefPubMed
25.
26.
go back to reference Willats L, Connelly A, Calamante F (2006) Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 56(1):146–156CrossRefPubMed Willats L, Connelly A, Calamante F (2006) Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 56(1):146–156CrossRefPubMed
27.
go back to reference Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Cardiovasc Comput Tomogr 4(6):727–736CrossRef Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Cardiovasc Comput Tomogr 4(6):727–736CrossRef
28.
go back to reference Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17(6):1220–1228CrossRefPubMed Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17(6):1220–1228CrossRefPubMed
29.
go back to reference Leenders K, Perani D, Lammertsma A, Heather J, Buckingham P, Jones T, Healy M, Gibbs J, Wise R, Hatazawa J et al (1990) Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age. Brain 113(1):27–47CrossRefPubMed Leenders K, Perani D, Lammertsma A, Heather J, Buckingham P, Jones T, Healy M, Gibbs J, Wise R, Hatazawa J et al (1990) Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age. Brain 113(1):27–47CrossRefPubMed
30.
go back to reference Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N et al (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31(5):635–643CrossRefPubMed Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N et al (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31(5):635–643CrossRefPubMed
31.
go back to reference Grandin CB, Bol A, Smith AM, Michel C, Cosnard G (2005) Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage 26(2):525–535PubMed Grandin CB, Bol A, Smith AM, Michel C, Cosnard G (2005) Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage 26(2):525–535PubMed
32.
go back to reference Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, Kanno I, Miura S (2006) Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 27(2):404–413CrossRefPubMed Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, Kanno I, Miura S (2006) Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 27(2):404–413CrossRefPubMed
33.
go back to reference Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21(5):512–519CrossRefPubMed Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21(5):512–519CrossRefPubMed
34.
go back to reference Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58(6):1232–1241CrossRefPubMed Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58(6):1232–1241CrossRefPubMed
35.
go back to reference Mouannes Srour J, Shin W, Shah S, Sen A, Carroll TJ (2010) SCALE-PWI: a pulse sequence for absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab 31(5):1272–1282CrossRef Mouannes Srour J, Shin W, Shah S, Sen A, Carroll TJ (2010) SCALE-PWI: a pulse sequence for absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab 31(5):1272–1282CrossRef
36.
go back to reference Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49(1):104–113CrossRefPubMed Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49(1):104–113CrossRefPubMed
Metadata
Title
Arterial input function in a dedicated slice for cerebral perfusion measurements in humans
Authors
Elias Kellner
Irina Mader
Marco Reisert
Horst Urbach
Valerij Gennadevic Kiselev
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2018
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0663-7

Other articles of this Issue 3/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2018 Go to the issue