Skip to main content
Top
Published in: Inflammation 2/2019

01-04-2019 | ORIGINAL ARTICLE

DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway

Authors: Fan Zhang, Bufu Tang, Zijiao Zhang, Di Xu, Guowu Ma

Published in: Inflammation | Issue 2/2019

Login to get access

Abstract

Macrophages play a fundamental role in human chronic diseases such as rheumatoid arthritis, atherosclerosis, and cancer. In the present study, we demonstrated that dual-specificity phosphatase 6 (DUSP6) was upregulated by lipopolysaccharide (LPS) treatment of macrophages. (E/Z)-BCI hydrochloride (BCI) functions as a small molecule inhibitor of DUSP6, and BCI treatment inhibited DUSP6 expression in LPS-activated macrophages. BCI treatment inhibited LPS-triggered inflammatory cytokine production, including IL-1β and IL-6, but not TNF-α, and also affected macrophage polarization to an M1 phenotype. In addition, BCI treatment decreased reactive oxygen species (ROS) production and significantly elevated the levels of Nrf2. Interestingly, pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory responses was independent of extracellular signal-regulated kinase (ERK) signaling. Furthermore, BCI treatment inhibited phosphorylation of P65 and nuclear P65 expression in LPS-activated macrophages. These results demonstrated that pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory mediators and ROS production in macrophage cells via activating the Nrf2 signaling axis and inhibiting the NF-κB pathway. These anti-inflammatory effects indicated that BCI may be considered as a therapeutic agent for blocking inflammatory disorders.
Literature
1.
go back to reference Pullamsetti, S.S., R. Savai, W. Janssen, B.K. Dahal, W. Seeger, F. Grimminger, H.A. Ghofrani, N. Weissmann, and R.T. Schermuly. 2011. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clinical Microbiology and Infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 17 (1): 7–14.CrossRef Pullamsetti, S.S., R. Savai, W. Janssen, B.K. Dahal, W. Seeger, F. Grimminger, H.A. Ghofrani, N. Weissmann, and R.T. Schermuly. 2011. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clinical Microbiology and Infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 17 (1): 7–14.CrossRef
2.
go back to reference Garcia-Hernandez, M.H., R. Gonzalez-Amaro, and D.P. Portales-Perez. 2014. Specific therapy to regulate inflammation in rheumatoid arthritis: Molecular aspects. Immunotherapy 6 (5): 623–636.CrossRefPubMed Garcia-Hernandez, M.H., R. Gonzalez-Amaro, and D.P. Portales-Perez. 2014. Specific therapy to regulate inflammation in rheumatoid arthritis: Molecular aspects. Immunotherapy 6 (5): 623–636.CrossRefPubMed
3.
go back to reference Mendel, I., N. Yacov, D. Harats, and E. Breitbart. 2015. Therapies targeting innate immunity for fighting inflammation in atherosclerosis. Current Pharmaceutical Design 21 (9): 1185–1195.CrossRefPubMed Mendel, I., N. Yacov, D. Harats, and E. Breitbart. 2015. Therapies targeting innate immunity for fighting inflammation in atherosclerosis. Current Pharmaceutical Design 21 (9): 1185–1195.CrossRefPubMed
4.
go back to reference Karam, B.S., A. Chavez-Moreno, W. Koh, J.G. Akar, and F.G. Akar. 2017. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology. 16 (1): 120.CrossRefPubMedPubMedCentral Karam, B.S., A. Chavez-Moreno, W. Koh, J.G. Akar, and F.G. Akar. 2017. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology. 16 (1): 120.CrossRefPubMedPubMedCentral
5.
go back to reference Fernandes, J.V., R.N. Cobucci, C.A. Jatoba, T.A. Fernandes, J.W. de Azevedo, and J.M. de Araujo. 2015. The role of the mediators of inflammation in cancer development. Pathology Oncology Research : POR 21 (3): 527–534.CrossRefPubMed Fernandes, J.V., R.N. Cobucci, C.A. Jatoba, T.A. Fernandes, J.W. de Azevedo, and J.M. de Araujo. 2015. The role of the mediators of inflammation in cancer development. Pathology Oncology Research : POR 21 (3): 527–534.CrossRefPubMed
6.
go back to reference Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.CrossRefPubMed Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.CrossRefPubMed
7.
go back to reference Hedger, M.P. 2002. Macrophages and the immune responsiveness of the testis. Journal of Reproductive Immunology. 57 (1–2): 19–34.CrossRefPubMed Hedger, M.P. 2002. Macrophages and the immune responsiveness of the testis. Journal of Reproductive Immunology. 57 (1–2): 19–34.CrossRefPubMed
8.
go back to reference Zhou, D., C. Huang, Z. Lin, S. Zhan, L. Kong, C. Fang, and J. Li. 2014. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cellular Signalling. 26 (2): 192–197.CrossRefPubMed Zhou, D., C. Huang, Z. Lin, S. Zhan, L. Kong, C. Fang, and J. Li. 2014. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cellular Signalling. 26 (2): 192–197.CrossRefPubMed
9.
go back to reference Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling. 13 (2): 85–94.CrossRefPubMed Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling. 13 (2): 85–94.CrossRefPubMed
10.
go back to reference Laskin, D.L., V.R. Sunil, C.R. Gardner, and J.D. Laskin. 2011. Macrophages and tissue injury: Agents of defense or destruction? Annual Review of Pharmacology and Toxicology 51: 267–288.CrossRefPubMedPubMedCentral Laskin, D.L., V.R. Sunil, C.R. Gardner, and J.D. Laskin. 2011. Macrophages and tissue injury: Agents of defense or destruction? Annual Review of Pharmacology and Toxicology 51: 267–288.CrossRefPubMedPubMedCentral
11.
go back to reference Arkell, R.S., R.J. Dickinson, M. Squires, S. Hayat, S.M. Keyse, and S.J. Cook. 2008. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cellular Signalling 20 (5): 836–843.CrossRefPubMed Arkell, R.S., R.J. Dickinson, M. Squires, S. Hayat, S.M. Keyse, and S.J. Cook. 2008. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cellular Signalling 20 (5): 836–843.CrossRefPubMed
12.
go back to reference Eblaghie, M.C., J.S. Lunn, R.J. Dickinson, A.E. Munsterberg, J.J. Sanz-Ezquerro, E.R. Farrell, et al. 2003. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology : CB 13 (12): 1009–1018.CrossRefPubMed Eblaghie, M.C., J.S. Lunn, R.J. Dickinson, A.E. Munsterberg, J.J. Sanz-Ezquerro, E.R. Farrell, et al. 2003. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology : CB 13 (12): 1009–1018.CrossRefPubMed
13.
go back to reference Ahmad, M.K., N.A. Abdollah, N.H. Shafie, N.M. Yusof, and S.R.A. Razak. 2018. Dual-specificity phosphatase 6 (DUSP6): A review of its molecular characteristics and clinical relevance in cancer. Cancer Biology & Medicine 15 (1): 14–28.CrossRef Ahmad, M.K., N.A. Abdollah, N.H. Shafie, N.M. Yusof, and S.R.A. Razak. 2018. Dual-specificity phosphatase 6 (DUSP6): A review of its molecular characteristics and clinical relevance in cancer. Cancer Biology & Medicine 15 (1): 14–28.CrossRef
14.
go back to reference Li, C., D.A. Scott, E. Hatch, X. Tian, and S.L. Mansour. 2007. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development (Cambridge, England) 134 (1): 167–176.CrossRef Li, C., D.A. Scott, E. Hatch, X. Tian, and S.L. Mansour. 2007. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development (Cambridge, England) 134 (1): 167–176.CrossRef
15.
go back to reference Maillet, M., N.H. Purcell, M.A. Sargent, A.J. York, Bueno OF, and J.D. Molkentin. 2008. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. The Journal of Biological Chemistry 283 (45): 31246–31255.CrossRefPubMedPubMedCentral Maillet, M., N.H. Purcell, M.A. Sargent, A.J. York, Bueno OF, and J.D. Molkentin. 2008. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. The Journal of Biological Chemistry 283 (45): 31246–31255.CrossRefPubMedPubMedCentral
16.
go back to reference Feng, B., P. Jiao, Z. Yang, and H. Xu. 2012. MEK/ERK pathway mediates insulin-promoted degradation of MKP-3 protein in liver cells. Molecular and Cellular Endocrinology. 361 (1–2): 116–123.CrossRefPubMedPubMedCentral Feng, B., P. Jiao, Z. Yang, and H. Xu. 2012. MEK/ERK pathway mediates insulin-promoted degradation of MKP-3 protein in liver cells. Molecular and Cellular Endocrinology. 361 (1–2): 116–123.CrossRefPubMedPubMedCentral
17.
go back to reference Bertin, S., B. Lozano-Ruiz, V. Bachiller, I. Garcia-Martinez, S. Herdman, P. Zapater, et al. 2015. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunology 8 (3): 505–515.CrossRefPubMed Bertin, S., B. Lozano-Ruiz, V. Bachiller, I. Garcia-Martinez, S. Herdman, P. Zapater, et al. 2015. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunology 8 (3): 505–515.CrossRefPubMed
18.
go back to reference Hsu, W.C., M.Y. Chen, S.C. Hsu, L.R. Huang, C.Y. Kao, W.H. Cheng, C.H. Pan, M.S. Wu, G.Y. Yu, M.S. Hung, C.M. Leu, T.H. Tan, and Y.W. Su. 2018. DUSP6 mediates T cell receptor-engaged glycolysis and restrains TFH cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 115 (34): E8027–E8e36.CrossRefPubMedPubMedCentral Hsu, W.C., M.Y. Chen, S.C. Hsu, L.R. Huang, C.Y. Kao, W.H. Cheng, C.H. Pan, M.S. Wu, G.Y. Yu, M.S. Hung, C.M. Leu, T.H. Tan, and Y.W. Su. 2018. DUSP6 mediates T cell receptor-engaged glycolysis and restrains TFH cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 115 (34): E8027–E8e36.CrossRefPubMedPubMedCentral
19.
go back to reference Li, G.Y., Y. Zhou, R.S. Ying, L. Shi, Y.Q. Cheng, J.P. Ren, et al. 2015. Hepatitis C virus-induced reduction in miR-181a impairs CD4(+) T-cell responses through overexpression of DUSP6. Hepatology (Baltimore, Md) 61 (4): 1163–1173.CrossRef Li, G.Y., Y. Zhou, R.S. Ying, L. Shi, Y.Q. Cheng, J.P. Ren, et al. 2015. Hepatitis C virus-induced reduction in miR-181a impairs CD4(+) T-cell responses through overexpression of DUSP6. Hepatology (Baltimore, Md) 61 (4): 1163–1173.CrossRef
20.
go back to reference Molina, G., A. Vogt, A. Bakan, W. Dai, P. Queiroz de Oliveira, W. Znosko, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature Chemical Biology 5 (9): 680–687.CrossRefPubMedPubMedCentral Molina, G., A. Vogt, A. Bakan, W. Dai, P. Queiroz de Oliveira, W. Znosko, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature Chemical Biology 5 (9): 680–687.CrossRefPubMedPubMedCentral
21.
go back to reference Wu, Q.N., Y.F. Liao, Y.X. Lu, Y. Wang, J.H. Lu, Z.L. Zeng, Q.T. Huang, H. Sheng, J.P. Yun, D. Xie, H.Q. Ju, and R.H. Xu. 2018. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Letters 412: 243–255.CrossRefPubMed Wu, Q.N., Y.F. Liao, Y.X. Lu, Y. Wang, J.H. Lu, Z.L. Zeng, Q.T. Huang, H. Sheng, J.P. Yun, D. Xie, H.Q. Ju, and R.H. Xu. 2018. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Letters 412: 243–255.CrossRefPubMed
22.
go back to reference Missinato, M.A., M. Saydmohammed, D.A. Zuppo, K.S. Rao, G.W. Opie, B. Kuhn, et al. 2018. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development (Cambridge, England) 145 (5). Missinato, M.A., M. Saydmohammed, D.A. Zuppo, K.S. Rao, G.W. Opie, B. Kuhn, et al. 2018. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development (Cambridge, England) 145 (5).
23.
go back to reference Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling 20 (7): 1126–1167.CrossRef Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling 20 (7): 1126–1167.CrossRef
24.
go back to reference Jaramillo, M.C., and D.D. Zhang. 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes & Development 27 (20): 2179–2191.CrossRef Jaramillo, M.C., and D.D. Zhang. 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes & Development 27 (20): 2179–2191.CrossRef
26.
go back to reference Du, M., L. Yuan, X. Tan, D. Huang, X. Wang, Z. Zheng, et al. 2017. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nature Communications 8 (1): 2049.CrossRefPubMedPubMedCentral Du, M., L. Yuan, X. Tan, D. Huang, X. Wang, Z. Zheng, et al. 2017. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nature Communications 8 (1): 2049.CrossRefPubMedPubMedCentral
27.
go back to reference Kim, K.J., K.Y. Yoon, H.S. Yoon, S.R. Oh, and B.Y. Lee. 2015. Brazilein suppresses inflammation through inactivation of IRAK4-NF-kappaB pathway in LPS-induced Raw264.7 macrophage cells. International Journal of Molecular Sciences 16 (11): 27589–27598.CrossRefPubMedPubMedCentral Kim, K.J., K.Y. Yoon, H.S. Yoon, S.R. Oh, and B.Y. Lee. 2015. Brazilein suppresses inflammation through inactivation of IRAK4-NF-kappaB pathway in LPS-induced Raw264.7 macrophage cells. International Journal of Molecular Sciences 16 (11): 27589–27598.CrossRefPubMedPubMedCentral
28.
go back to reference Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.CrossRefPubMed Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.CrossRefPubMed
29.
go back to reference Fujiwara, N., and K. Kobayashi. 2005. Macrophages in inflammation. Current Drug Targets Inflammation and Allergy 4 (3): 281–286.CrossRefPubMed Fujiwara, N., and K. Kobayashi. 2005. Macrophages in inflammation. Current Drug Targets Inflammation and Allergy 4 (3): 281–286.CrossRefPubMed
30.
go back to reference Hsu, S.F., Y.B. Lee, Y.C. Lee, A.L. Chung, M.K. Apaya, L.F. Shyur, C.F. Cheng, F.M. Ho, and T.C. Meng. 2018. Dual specificity phosphatase DUSP6 promotes endothelial inflammation through inducible expression of ICAM-1. The FEBS Journal 285 (9): 1593–1610.CrossRefPubMed Hsu, S.F., Y.B. Lee, Y.C. Lee, A.L. Chung, M.K. Apaya, L.F. Shyur, C.F. Cheng, F.M. Ho, and T.C. Meng. 2018. Dual specificity phosphatase DUSP6 promotes endothelial inflammation through inducible expression of ICAM-1. The FEBS Journal 285 (9): 1593–1610.CrossRefPubMed
31.
go back to reference Zhang, H., Q. Guo, C. Wang, L. Yan, Y. Fu, M. Fan, X. Zhao, and M. Li. 2013. Dual-specificity phosphatase 6 (Dusp6), a negative regulator of FGF2/ERK1/2 signaling, enhances 17beta-estradiol-induced cell growth in endometrial adenocarcinoma cell. Molecular and Cellular Endocrinology 376 (1–2): 60–69.CrossRefPubMed Zhang, H., Q. Guo, C. Wang, L. Yan, Y. Fu, M. Fan, X. Zhao, and M. Li. 2013. Dual-specificity phosphatase 6 (Dusp6), a negative regulator of FGF2/ERK1/2 signaling, enhances 17beta-estradiol-induced cell growth in endometrial adenocarcinoma cell. Molecular and Cellular Endocrinology 376 (1–2): 60–69.CrossRefPubMed
32.
go back to reference Lu, J., X. Liu, Y. Liao, D. Wang, J. Chen, and S. Li. 2018. Jian-Pi-Yi-Shen formula regulates inflammatory cytokines production in 5/6 nephrectomized rats via suppression of NF-kappaB activation. Evidence-Based Complementary and Alternative Medicine : eCAM 2018: 7203547. Lu, J., X. Liu, Y. Liao, D. Wang, J. Chen, and S. Li. 2018. Jian-Pi-Yi-Shen formula regulates inflammatory cytokines production in 5/6 nephrectomized rats via suppression of NF-kappaB activation. Evidence-Based Complementary and Alternative Medicine : eCAM 2018: 7203547.
33.
go back to reference Wu, X., H. Gao, Y. Hou, J. Yu, W. Sun, Y. Wang, X. Chen, Y. Feng, Q.M. Xu, and X. Chen. 2018. Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-kappaB, mitochondrial ROS, and MAPK pathways. Toxicology and Applied Pharmacology 355: 1–8.CrossRefPubMed Wu, X., H. Gao, Y. Hou, J. Yu, W. Sun, Y. Wang, X. Chen, Y. Feng, Q.M. Xu, and X. Chen. 2018. Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-kappaB, mitochondrial ROS, and MAPK pathways. Toxicology and Applied Pharmacology 355: 1–8.CrossRefPubMed
Metadata
Title
DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway
Authors
Fan Zhang
Bufu Tang
Zijiao Zhang
Di Xu
Guowu Ma
Publication date
01-04-2019
Publisher
Springer US
Published in
Inflammation / Issue 2/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0924-2

Other articles of this Issue 2/2019

Inflammation 2/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.