Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2019

Open Access 01-06-2019 | Research Article

A Trimodal Imaging Platform for Tracking Viable Transplanted Pancreatic Islets In Vivo: F-19 MR, Fluorescence, and Bioluminescence Imaging

Authors: A. Gálisová, V. Herynek, E. Swider, E. Sticová, A. Pátiková, L. Kosinová, J. Kříž, M. Hájek, M. Srinivas, D. Jirák

Published in: Molecular Imaging and Biology | Issue 3/2019

Login to get access

Abstract

Purpose

Combining specific and quantitative F-19 magnetic resonance imaging (MRI) with sensitive and convenient optical imaging provides complementary information about the distribution and viability of transplanted pancreatic islet grafts. In this study, pancreatic islets (PIs) were labeled with positively charged multimodal nanoparticles based on poly(lactic-co-glycolic acid) (PLGA-NPs) with encapsulated perfluoro-15-crown-5-ether and the near-infrared fluorescent dye indocyanine green.

Procedures

One thousand and three thousand bioluminescent PIs were transplanted into subcutaneous artificial scaffolds, which served as an alternative transplant site. The grafts were monitored using in vivo F-19 MR, fluorescence, and bioluminescence imaging in healthy rats for 2 weeks.

Results

Transplanted PIs were unambiguously localized in the scaffolds by F-19 MRI throughout the whole experiment. Fluorescence was detected in the first 4 days after transplantation only. Importantly, in vivo bioluminescence correlated with the F-19 MRI signal.

Conclusions

We developed a trimodal imaging platform for in vivo examination of transplanted PIs. Fluorescence imaging revealed instability of the fluorescent dye and its limited applicability for longitudinal in vivo studies. A correlation between the bioluminescence signal and the F-19 MRI signal indicated the fast clearance of PLGA-NPs from the transplantation site after cell death, which addresses a major issue with intracellular imaging labels. Therefore, the proposed PLGA-NP platform is reliable for reflecting the status of transplanted PIs in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Emamaullee J, Shapiro A (2007) Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant 16:1–8CrossRefPubMed Emamaullee J, Shapiro A (2007) Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant 16:1–8CrossRefPubMed
2.
go back to reference Cantarelli E, Piemonti L (2011) Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep 11:364–374CrossRefPubMed Cantarelli E, Piemonti L (2011) Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep 11:364–374CrossRefPubMed
3.
go back to reference Kříž J, Greg V, Mazzuca DM et al (2012) A novel technique for the transplantation of pancreatic islets within a vascularized device into the greater omentum to achieve insulin independence. Am J Surg 203:793–797CrossRefPubMed Kříž J, Greg V, Mazzuca DM et al (2012) A novel technique for the transplantation of pancreatic islets within a vascularized device into the greater omentum to achieve insulin independence. Am J Surg 203:793–797CrossRefPubMed
4.
go back to reference Gálisová A, Fábryová E, Sticová E, Kosinová L, Jirátová M, Herynek V, Berková Z, Kříž J, Hájek M, Jirák D (2017) The optimal timing for pancreatic islet transplantation into subcutaneous scaffolds assessed by multimodal imaging. Contrast Media Mol Imaging 5418495:1–13. https://doi.org/10.1155/2017/5418495 CrossRef Gálisová A, Fábryová E, Sticová E, Kosinová L, Jirátová M, Herynek V, Berková Z, Kříž J, Hájek M, Jirák D (2017) The optimal timing for pancreatic islet transplantation into subcutaneous scaffolds assessed by multimodal imaging. Contrast Media Mol Imaging 5418495:1–13. https://​doi.​org/​10.​1155/​2017/​5418495 CrossRef
5.
go back to reference Pileggi A, Molano RD, Ricordi C, Zahr E, Collins J, Valdes R, Inverardi L (2006) Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation 81:1318–1324CrossRefPubMed Pileggi A, Molano RD, Ricordi C, Zahr E, Collins J, Valdes R, Inverardi L (2006) Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation 81:1318–1324CrossRefPubMed
6.
go back to reference Pepper AR, Pawlick R, Gala-lopez B et al (2015) Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation 99:2294–2300CrossRefPubMedPubMedCentral Pepper AR, Pawlick R, Gala-lopez B et al (2015) Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation 99:2294–2300CrossRefPubMedPubMedCentral
7.
go back to reference Eriksson O, Selvaraju R, Eich T, Willny M, Brismar TB, Carlbom L, Ahlström H, Tufvesson G, Lundgren T, Korsgren O (2016) Positron emission tomography to assess the outcome of intraportal islet transplantation. Diabetes 65:2482–2489CrossRefPubMedPubMedCentral Eriksson O, Selvaraju R, Eich T, Willny M, Brismar TB, Carlbom L, Ahlström H, Tufvesson G, Lundgren T, Korsgren O (2016) Positron emission tomography to assess the outcome of intraportal islet transplantation. Diabetes 65:2482–2489CrossRefPubMedPubMedCentral
8.
go back to reference Eter W, Bos D, Frielink C et al (2015) Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin. Sci Rep 5:15521CrossRefPubMedPubMedCentral Eter W, Bos D, Frielink C et al (2015) Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin. Sci Rep 5:15521CrossRefPubMedPubMedCentral
9.
go back to reference Jirák D, Kříž J, Herynek V et al (2004) MRI of transplanted pancreatic islets. Magn Reson Med 52:1228–1233CrossRefPubMed Jirák D, Kříž J, Herynek V et al (2004) MRI of transplanted pancreatic islets. Magn Reson Med 52:1228–1233CrossRefPubMed
10.
go back to reference Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Campbell-Thompson M, Atkinson MA, Gambhir SS, Tian J, Kaufman DL (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther 9:428–435CrossRefPubMed Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Campbell-Thompson M, Atkinson MA, Gambhir SS, Tian J, Kaufman DL (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther 9:428–435CrossRefPubMed
11.
go back to reference Fowler M, Virostko J, Chen Z, Poffenberger G, Radhika A, Brissova M, Shiota M, Nicholson WE, Shi Y, Hirshberg B, Harlan DM, Jansen ED, Powers AC (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation 79:768–776CrossRefPubMed Fowler M, Virostko J, Chen Z, Poffenberger G, Radhika A, Brissova M, Shiota M, Nicholson WE, Shi Y, Hirshberg B, Harlan DM, Jansen ED, Powers AC (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation 79:768–776CrossRefPubMed
12.
go back to reference Sakata N, Goto M, Gumpei Y, Mizuma M, Motoi F, Satomi S, Unno M (2012) Intraoperative ultrasound examination is useful for monitoring transplanted islets. Islets 4:339–342CrossRefPubMedPubMedCentral Sakata N, Goto M, Gumpei Y, Mizuma M, Motoi F, Satomi S, Unno M (2012) Intraoperative ultrasound examination is useful for monitoring transplanted islets. Islets 4:339–342CrossRefPubMedPubMedCentral
13.
go back to reference Toso C, Vallee J-P, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, Marangon N, Saudek F, James Shapiro AM, Bosco D, Berney T (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8:701–706CrossRefPubMed Toso C, Vallee J-P, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, Marangon N, Saudek F, James Shapiro AM, Bosco D, Berney T (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8:701–706CrossRefPubMed
14.
go back to reference Saudek F, Jirák D, Girman P, Herynek V, Dezortová M, Kříž J, Peregrin J, Berková Z, Zacharovová K, Hájek M (2010) Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation 90:1602–1606CrossRefPubMed Saudek F, Jirák D, Girman P, Herynek V, Dezortová M, Kříž J, Peregrin J, Berková Z, Zacharovová K, Hájek M (2010) Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation 90:1602–1606CrossRefPubMed
16.
go back to reference Srinivas M, Boehm-Sturm P, Figdor C et al (2012) Labeling cells for in vivo tracking using 19F MRI. Biomaterials 33:8830–8840CrossRefPubMed Srinivas M, Boehm-Sturm P, Figdor C et al (2012) Labeling cells for in vivo tracking using 19F MRI. Biomaterials 33:8830–8840CrossRefPubMed
17.
go back to reference Swider E, Staal AHJ, van Riessen N et al (2018) Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications. RSC Adv 8:6460–6470CrossRefPubMedPubMedCentral Swider E, Staal AHJ, van Riessen N et al (2018) Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications. RSC Adv 8:6460–6470CrossRefPubMedPubMedCentral
18.
go back to reference Srinivas M, Cruz L, Bonetto F et al (2010) Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials 31:7070–7077CrossRefPubMed Srinivas M, Cruz L, Bonetto F et al (2010) Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials 31:7070–7077CrossRefPubMed
19.
go back to reference Ahrens E, Helfer B, O’Hanl, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72:1696–1701CrossRefPubMedPubMedCentral Ahrens E, Helfer B, O’Hanl, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72:1696–1701CrossRefPubMedPubMedCentral
20.
go back to reference Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58:725–734CrossRefPubMed Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58:725–734CrossRefPubMed
22.
go back to reference Constantinides C, Maguire M, McNeill E et al (2018) Fast, quantitative, murine cardiac 19F MRI/MRS of PFCE-labeled progenitor stem cells and macrophages at 9.4T. PLoS One 13:e0190558CrossRefPubMedPubMedCentral Constantinides C, Maguire M, McNeill E et al (2018) Fast, quantitative, murine cardiac 19F MRI/MRS of PFCE-labeled progenitor stem cells and macrophages at 9.4T. PLoS One 13:e0190558CrossRefPubMedPubMedCentral
23.
go back to reference Temme S, Bönner F, Schrader J, Flögel U (2012) 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:329–343CrossRefPubMed Temme S, Bönner F, Schrader J, Flögel U (2012) 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:329–343CrossRefPubMed
24.
go back to reference Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R, Shamblott MJ, Lauzon C, Walczak P, Gilson WD, Chacko VP, Kraitchman DL, Arepally A, Bulte JWM (2011) Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 6:251–259CrossRefPubMed Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R, Shamblott MJ, Lauzon C, Walczak P, Gilson WD, Chacko VP, Kraitchman DL, Arepally A, Bulte JWM (2011) Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 6:251–259CrossRefPubMed
26.
go back to reference Srinivas M, Böhm-Sturm P, Aswendt M et al (2013) In vivo 19F MRI for cell tracking. J Vis Exp e50802:25 Srinivas M, Böhm-Sturm P, Aswendt M et al (2013) In vivo 19F MRI for cell tracking. J Vis Exp e50802:25
27.
go back to reference Böhm-Sturm P, Aswendt M, Minassian A et al (2014) A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials 35:2218–2226CrossRef Böhm-Sturm P, Aswendt M, Minassian A et al (2014) A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials 35:2218–2226CrossRef
28.
go back to reference Kim J, Kalimuthu S, Ahn B (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 49:3–10CrossRefPubMed Kim J, Kalimuthu S, Ahn B (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 49:3–10CrossRefPubMed
29.
go back to reference Herynek V, Gálisová A, Srinivas M, van Dinther EAW, Kosinová L, Ruzicka J, Jirátová M, Kriz J, Jirák D (2017) Pre-microporation improves outcome of pancreatic islet labelling for optical and 19F MR imaging. Biol Proced Online 19:6CrossRefPubMedPubMedCentral Herynek V, Gálisová A, Srinivas M, van Dinther EAW, Kosinová L, Ruzicka J, Jirátová M, Kriz J, Jirák D (2017) Pre-microporation improves outcome of pancreatic islet labelling for optical and 19F MR imaging. Biol Proced Online 19:6CrossRefPubMedPubMedCentral
30.
go back to reference Gotoh M, Maki T, Kiyoizumi T et al (1985) An improved method for isolation of mouse pancreatic islets. Transplantation 40:437–438CrossRefPubMed Gotoh M, Maki T, Kiyoizumi T et al (1985) An improved method for isolation of mouse pancreatic islets. Transplantation 40:437–438CrossRefPubMed
32.
go back to reference Fabryova E, Jirak D, Girman P, Zacharovova K, Galisova A, Saudek F, Kriz J (2014) Effect of mesenchymal stem cells on the vascularization of the artificial site for islet transplantation in rats. Transplant Proc 46:1963–1966CrossRefPubMed Fabryova E, Jirak D, Girman P, Zacharovova K, Galisova A, Saudek F, Kriz J (2014) Effect of mesenchymal stem cells on the vascularization of the artificial site for islet transplantation in rats. Transplant Proc 46:1963–1966CrossRefPubMed
33.
go back to reference Böhm-Sturm P, Mengler L, Wecker S, Hoehn M (2011) In vivo tracking of human neural stem cells with magnetic resonance imaging. PLoS One 6:e29040CrossRef Böhm-Sturm P, Mengler L, Wecker S, Hoehn M (2011) In vivo tracking of human neural stem cells with magnetic resonance imaging. PLoS One 6:e29040CrossRef
34.
go back to reference Srinivas M, Tel J, Schreibelt G, Bonetto F, Cruz LJ, Amiri H, Heerschap A, Figdor CG, de Vries IJM (2015) PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI. Nanomedicine 10:2339–2348CrossRefPubMed Srinivas M, Tel J, Schreibelt G, Bonetto F, Cruz LJ, Amiri H, Heerschap A, Figdor CG, de Vries IJM (2015) PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI. Nanomedicine 10:2339–2348CrossRefPubMed
35.
go back to reference Fink C, Gaudet JM, Fox MS et al (2018) 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep 8:590CrossRefPubMedPubMedCentral Fink C, Gaudet JM, Fox MS et al (2018) 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep 8:590CrossRefPubMedPubMedCentral
36.
go back to reference Bonetto F, Srinivas M, Heerschap A et al (2012) A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer 129:365–373CrossRef Bonetto F, Srinivas M, Heerschap A et al (2012) A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer 129:365–373CrossRef
37.
go back to reference Helfer B, Balducci A, Nelson A et al (2010) Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250CrossRefPubMedPubMedCentral Helfer B, Balducci A, Nelson A et al (2010) Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250CrossRefPubMedPubMedCentral
38.
go back to reference Jirák D, Kříž J, Strzelecki M et al (2009) Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magn Reson Mater Physics, Biol Med 22:257–265CrossRef Jirák D, Kříž J, Strzelecki M et al (2009) Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magn Reson Mater Physics, Biol Med 22:257–265CrossRef
39.
go back to reference Liang S, Dresselaers T, Louchami K, Zhu C, Liu Y, Himmelreich U (2017) Comparison of different compressed sensing algorithms for low SNR 19F MRI applications — imaging of transplanted pancreatic islets and cells labeled with perfluorocarbons. NMR Biomed 30:e3776CrossRef Liang S, Dresselaers T, Louchami K, Zhu C, Liu Y, Himmelreich U (2017) Comparison of different compressed sensing algorithms for low SNR 19F MRI applications — imaging of transplanted pancreatic islets and cells labeled with perfluorocarbons. NMR Biomed 30:e3776CrossRef
40.
go back to reference Liang S, Louchami K, Kolster H, Jacobsen A, Zhang Y, Thimm J, Sener A, Thiem J, Malaisse W, Dresselaers T, Himmelreich U (2016) In vivo and ex vivo 19-fluorine magnetic resonance imaging and spectroscopy of beta-cells and pancreatic islets using GLUT-2 specific contrast agents. Contrast Media Mol Imaging 11:506–513CrossRefPubMed Liang S, Louchami K, Kolster H, Jacobsen A, Zhang Y, Thimm J, Sener A, Thiem J, Malaisse W, Dresselaers T, Himmelreich U (2016) In vivo and ex vivo 19-fluorine magnetic resonance imaging and spectroscopy of beta-cells and pancreatic islets using GLUT-2 specific contrast agents. Contrast Media Mol Imaging 11:506–513CrossRefPubMed
41.
go back to reference Amiri H, Srinivas M, Veltien A, van Uden MJ, de Vries IJM, Heerschap A (2015) Cell tracking using 19F magnetic resonance imaging: technical aspects and challenges towards clinical applications. Eur Radiol 25:726–735CrossRefPubMed Amiri H, Srinivas M, Veltien A, van Uden MJ, de Vries IJM, Heerschap A (2015) Cell tracking using 19F magnetic resonance imaging: technical aspects and challenges towards clinical applications. Eur Radiol 25:726–735CrossRefPubMed
42.
go back to reference Blahut J, Bernášek K, Gálisová A, Herynek V, Císařová I, Kotek J, Lang J, Matějková S, Hermann P (2017) Paramagnetic 19F relaxation enhancement in nickel(II) complexes of N-trifluoroethyl cyclam derivatives and cell labeling for 19F MRI. Inorg Chem 56:13337–13348CrossRefPubMed Blahut J, Bernášek K, Gálisová A, Herynek V, Císařová I, Kotek J, Lang J, Matějková S, Hermann P (2017) Paramagnetic 19F relaxation enhancement in nickel(II) complexes of N-trifluoroethyl cyclam derivatives and cell labeling for 19F MRI. Inorg Chem 56:13337–13348CrossRefPubMed
44.
go back to reference Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, Schrader J, Flögel U (2014) Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27:261–271CrossRefPubMed Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, Schrader J, Flögel U (2014) Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27:261–271CrossRefPubMed
Metadata
Title
A Trimodal Imaging Platform for Tracking Viable Transplanted Pancreatic Islets In Vivo: F-19 MR, Fluorescence, and Bioluminescence Imaging
Authors
A. Gálisová
V. Herynek
E. Swider
E. Sticová
A. Pátiková
L. Kosinová
J. Kříž
M. Hájek
M. Srinivas
D. Jirák
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 3/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1270-3

Other articles of this Issue 3/2019

Molecular Imaging and Biology 3/2019 Go to the issue