Skip to main content
Top
Published in: Heart and Vessels 4/2021

01-04-2021 | Original Article

Disruption of asparagine-linked glycosylation to rescue and alter gating of the NaV1.5-Na+ channel

Authors: Pu Wang, Xiufang Zhu, Mengyan Wei, Yangong Liu, Kenshi Yoshimura, Mingqi Zheng, Gang Liu, Shinichiro Kume, Tatsuki Kurokawa, Katsushige Ono

Published in: Heart and Vessels | Issue 4/2021

Login to get access

Abstract

SCN5A gene encodes the voltage-gated sodium channel NaV1.5 which is composed of a pore-forming α subunit of the channel. Asparagine (N)-linked glycosylation is one of the common post-translational modifications in proteins. The aim of this study was to investigate impact of N-linked glycosylation disruption on the Na+ channel, and the mechanism by which glycosylation regulates the current density and gating properties of the Na+ channel. The NaV1.5-Na+ channel isoform (α submit) derived from human was stably expressed in human embryonic kidney (HEK)-293 cells (Nav1.5-HEK cell). We applied the whole-cell patch-clamp technique to study the impact of N-linked glycosylation disruption in Nav1.5-HEK cell. Inhibition of the N-glycosylation with tunicamycin caused a significant increase of NaV1.5 channel current (INa) when applied for 24 h. Tunicamycin shifted the steady-state inactivation curve to the hyperpolarization direction, whereas the activation curve was unaffected. Recovery from inactivation was prolonged, while the fast phase (τfast) and the slow phase (τslow) of the current decay was unaffected by tunicamycin. INa was unaffected by tunicamycin in the present of a proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-l-leucy-N-[(1S)-1-formyl-3-methylbutyl]-l-leucinamide], while it was significantly increased by tunicamycin in the presence of a lysosome inhibitor butyl methacrylate (BMA). These findings suggest that N-glycosylation disruption rescues the NaV1.5 channel possibly through the alteration of ubiquitin–proteasome activity, and changes gating properties of the NaV1.5 channel by modulating glycan milieu of the channel protein.
Literature
1.
go back to reference Imaizumi S, Shiga Y, Ogawa M, Sako H, Nagata Y, Matsunaga A, Shirotani T, Hoshino F, Yahiro E, Uehara Y, Morito N, Tanigawa H, Shimono D, Fukushima M, Sugihara H, Norimatsu K, Kusumoto T, Saku K, Miura SI; ACADEMIE Study Investigators (2019) Randomized trial of an increased dose of calcium channel blocker or angiotensin II type 1 receptor blocker as an add-on intensive depressor therapy in type 2 diabetes mellitus patients with uncontrolled essential hypertension: the ACADEMIE Study. Heart Vessels 34:698–710CrossRef Imaizumi S, Shiga Y, Ogawa M, Sako H, Nagata Y, Matsunaga A, Shirotani T, Hoshino F, Yahiro E, Uehara Y, Morito N, Tanigawa H, Shimono D, Fukushima M, Sugihara H, Norimatsu K, Kusumoto T, Saku K, Miura SI; ACADEMIE Study Investigators (2019) Randomized trial of an increased dose of calcium channel blocker or angiotensin II type 1 receptor blocker as an add-on intensive depressor therapy in type 2 diabetes mellitus patients with uncontrolled essential hypertension: the ACADEMIE Study. Heart Vessels 34:698–710CrossRef
2.
go back to reference Tanaka Y, Hayashi K, Fujino N, Konno T, Tada H, Nakanishi C, Hodatsu A, Tsuda T, Nagata Y, Teramoto R, Yoshida S, Nomura A, Kawashiri MA, Yamagishi M (2019) Functional analysis of KCNH2 gene mutations of type 2 long QT syndrome in larval zebrafish using microscopy and electrocardiography. Heart Vessels 34:159–166CrossRef Tanaka Y, Hayashi K, Fujino N, Konno T, Tada H, Nakanishi C, Hodatsu A, Tsuda T, Nagata Y, Teramoto R, Yoshida S, Nomura A, Kawashiri MA, Yamagishi M (2019) Functional analysis of KCNH2 gene mutations of type 2 long QT syndrome in larval zebrafish using microscopy and electrocardiography. Heart Vessels 34:159–166CrossRef
3.
go back to reference Chen XM, Guo K, Li H, Lu QF, Yang C, Yu Y, Hou JW, Fei YD, Sun J, Wang J, Li YX, Li YG (2019) A novel mutation KCNQ1p.Thr312del is responsible for long QT syndrome type 1. Heart Vessels 34:177–188CrossRef Chen XM, Guo K, Li H, Lu QF, Yang C, Yu Y, Hou JW, Fei YD, Sun J, Wang J, Li YX, Li YG (2019) A novel mutation KCNQ1p.Thr312del is responsible for long QT syndrome type 1. Heart Vessels 34:177–188CrossRef
5.
go back to reference Li J, He Y, Bu H, Wang M, Yu J, Li L, Li H, Zhang X, Cui X, Cheng M (2020) Oscillating shear stress mediates mesenchymal transdifferentiation of EPCs by the Kir2.1 channel. Heart Vessels 35:1473–1482CrossRef Li J, He Y, Bu H, Wang M, Yu J, Li L, Li H, Zhang X, Cui X, Cheng M (2020) Oscillating shear stress mediates mesenchymal transdifferentiation of EPCs by the Kir2.1 channel. Heart Vessels 35:1473–1482CrossRef
6.
go back to reference Wu J, Zhou W, Wu L, Qian Y, Lu Y, Li F (2020) Ionic mechanisms underlying atrial electrical remodeling after a fontan-style operation in a canine model. Heart Vessels 35:731–741CrossRef Wu J, Zhou W, Wu L, Qian Y, Lu Y, Li F (2020) Ionic mechanisms underlying atrial electrical remodeling after a fontan-style operation in a canine model. Heart Vessels 35:731–741CrossRef
7.
go back to reference Ruane-O’Hora T, Markos F (2020) Small and intermediate Ca2+-sensitive K+ channels do not play a role in vascular conductance during resting blood flow in the anaesthetised pig. Heart Vessels 35:284–289CrossRef Ruane-O’Hora T, Markos F (2020) Small and intermediate Ca2+-sensitive K+ channels do not play a role in vascular conductance during resting blood flow in the anaesthetised pig. Heart Vessels 35:284–289CrossRef
8.
go back to reference Nakano Y, Shimizu W (2016) Genetics of long-QT syndrome. J Hum Genet 61:51–55CrossRef Nakano Y, Shimizu W (2016) Genetics of long-QT syndrome. J Hum Genet 61:51–55CrossRef
9.
go back to reference Hu D, Barajas-Martínez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, Betzenhauser MJ, Belardinelli L, Kahlig KM, Rajamani S, DeAntonio HJ, Myerburg RJ, Ito H, Deshmukh P, Marieb M, Nam GB, Bhatia A, Hasdemir C, Haïssaguerre M, Veltmann C, Schimpf R, Borggrefe M, Viskin S, Antzelevitch C (2014) Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol 64:66–79CrossRef Hu D, Barajas-Martínez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, Betzenhauser MJ, Belardinelli L, Kahlig KM, Rajamani S, DeAntonio HJ, Myerburg RJ, Ito H, Deshmukh P, Marieb M, Nam GB, Bhatia A, Hasdemir C, Haïssaguerre M, Veltmann C, Schimpf R, Borggrefe M, Viskin S, Antzelevitch C (2014) Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol 64:66–79CrossRef
10.
go back to reference Shan L, Makita N, Xing Y, Watanabe S, Futatani T, Ye F, Saito K, Ibuki K, Watanabe K, Hirono K, Uese K, Ichida F, Miyawaki T, Origasa H, Bowles NE, Towbin JA (2008) SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Mol Genet Metab 93:468–474CrossRef Shan L, Makita N, Xing Y, Watanabe S, Futatani T, Ye F, Saito K, Ibuki K, Watanabe K, Hirono K, Uese K, Ichida F, Miyawaki T, Origasa H, Bowles NE, Towbin JA (2008) SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Mol Genet Metab 93:468–474CrossRef
11.
go back to reference Hesse M, Kondo CS, Clark RB, Su L, Allen FL, Geary-Joo CT, Kunnathu S, Severson DL, Nygren A, Giles WR, Cross JC (2007) Dilated cardiomyopathy is associated with reduced expression of the cardiac sodium channel Scn5a. Cardiovasc Res 75:498–509CrossRef Hesse M, Kondo CS, Clark RB, Su L, Allen FL, Geary-Joo CT, Kunnathu S, Severson DL, Nygren A, Giles WR, Cross JC (2007) Dilated cardiomyopathy is associated with reduced expression of the cardiac sodium channel Scn5a. Cardiovasc Res 75:498–509CrossRef
12.
go back to reference Laurent G, Saal S, Amarouch MY, Béziau DM, Marsman RF, Faivre L, Barc J, Dina C, Bertaux G, Barthez O, Thauvin-Robinet C, Charron P, Fressart V, Maltret A, Villain E, Baron E, Mérot J, Turpault R, Coudière Y, Charpentier F, Schott JJ, Loussouarn G, Wilde AA, Wolf JE, Baró I, Kyndt F, Probst V (2012) Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol 60:144–156CrossRef Laurent G, Saal S, Amarouch MY, Béziau DM, Marsman RF, Faivre L, Barc J, Dina C, Bertaux G, Barthez O, Thauvin-Robinet C, Charron P, Fressart V, Maltret A, Villain E, Baron E, Mérot J, Turpault R, Coudière Y, Charpentier F, Schott JJ, Loussouarn G, Wilde AA, Wolf JE, Baró I, Kyndt F, Probst V (2012) Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol 60:144–156CrossRef
13.
go back to reference Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D, Zhang H, Krag SS, Betenbaugh MJ (2014) Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem Biophys Res Commun 453:243–253CrossRef Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D, Zhang H, Krag SS, Betenbaugh MJ (2014) Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem Biophys Res Commun 453:243–253CrossRef
14.
go back to reference Scott H, Panin VM (2014) N-glycosylation in regulation of the nervous system. Adv Neurobiol 9:367–394CrossRef Scott H, Panin VM (2014) N-glycosylation in regulation of the nervous system. Adv Neurobiol 9:367–394CrossRef
15.
go back to reference Mercier A, Clément R, Harnois T, Bourmeyster N, Bois P, Chatelier A (2015) Nav1.5 channels can reach the plasma membrane through distinct N-glycosylation states. Biochim Biophys Acta 1850:1215–1223CrossRef Mercier A, Clément R, Harnois T, Bourmeyster N, Bois P, Chatelier A (2015) Nav1.5 channels can reach the plasma membrane through distinct N-glycosylation states. Biochim Biophys Acta 1850:1215–1223CrossRef
16.
go back to reference Kang L, Zheng MQ, Morishima M, Wang Y, Ono K (2009) Bepridil up-regulates cardiac Na+ channels as a long-term effect by blunting proteasome signals through inhibition of calmodulin activity. Br J Pharmacol 157:404–414CrossRef Kang L, Zheng MQ, Morishima M, Wang Y, Ono K (2009) Bepridil up-regulates cardiac Na+ channels as a long-term effect by blunting proteasome signals through inhibition of calmodulin activity. Br J Pharmacol 157:404–414CrossRef
17.
go back to reference Liu Y, Wang P, Ma F, Zheng M, Liu G, Kume S, Kurokawa T, Ono K (2019) Asparagine-linked glycosylation modifies voltage-dependent gating properties of CaV3.1-T-type Ca 2+ channel. J Physiol Sci 69:335–343CrossRef Liu Y, Wang P, Ma F, Zheng M, Liu G, Kume S, Kurokawa T, Ono K (2019) Asparagine-linked glycosylation modifies voltage-dependent gating properties of CaV3.1-T-type Ca 2+ channel. J Physiol Sci 69:335–343CrossRef
18.
go back to reference Lazniewska J, Weiss N (2014) The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol 167:67–114CrossRef Lazniewska J, Weiss N (2014) The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol 167:67–114CrossRef
19.
go back to reference Gong Q, Anderson CL, January CT, Zhou Z (2002) Role of glycosylation in cell surface expression and stability of HERG potassium channels. Am J Physiol Heart Circ Physiol 283:H77-84CrossRef Gong Q, Anderson CL, January CT, Zhou Z (2002) Role of glycosylation in cell surface expression and stability of HERG potassium channels. Am J Physiol Heart Circ Physiol 283:H77-84CrossRef
20.
go back to reference Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 465:1159–1170CrossRef Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 465:1159–1170CrossRef
21.
go back to reference Gallastegui N, Groll M (2010) The 26S proteasome: assembly and function of a destructive machine. Trends Biocheml Sci 35:634–642CrossRef Gallastegui N, Groll M (2010) The 26S proteasome: assembly and function of a destructive machine. Trends Biocheml Sci 35:634–642CrossRef
22.
go back to reference Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439CrossRef Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439CrossRef
23.
go back to reference van Bemmelen MX, Rougier JS, Gavillet B, Apothéloz F, Daidié D, Tateyama M, Rivolta I, Thomas MA, Kass RS, Staub O, Abriel H (2004) Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 95:284–291CrossRef van Bemmelen MX, Rougier JS, Gavillet B, Apothéloz F, Daidié D, Tateyama M, Rivolta I, Thomas MA, Kass RS, Staub O, Abriel H (2004) Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 95:284–291CrossRef
24.
go back to reference Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409CrossRef Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409CrossRef
25.
go back to reference Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K, Schmitto JD, Seipelt R, Schöndube FA, Hasenfuss G, Belardinelli L, Maier LS (2010) Altered Na+ currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342CrossRef Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K, Schmitto JD, Seipelt R, Schöndube FA, Hasenfuss G, Belardinelli L, Maier LS (2010) Altered Na+ currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342CrossRef
26.
go back to reference Gaspo R, Bosch RF, Bou-Abboud E, Nattel S (1997) Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 81:1045–1052CrossRef Gaspo R, Bosch RF, Bou-Abboud E, Nattel S (1997) Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 81:1045–1052CrossRef
27.
go back to reference Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38:475–483CrossRef Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38:475–483CrossRef
28.
go back to reference Shang LL, Pfahnl AE, Sanyal S, Jiao Z, Allen J, Banach K, Fahrenbach J, Weiss D, Taylor WR, Zafari AM, Dudley SC Jr (2007) Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ Res 101:1146–1154CrossRef Shang LL, Pfahnl AE, Sanyal S, Jiao Z, Allen J, Banach K, Fahrenbach J, Weiss D, Taylor WR, Zafari AM, Dudley SC Jr (2007) Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ Res 101:1146–1154CrossRef
29.
go back to reference Remme CA, Bezzina CR (2010) Sodium channel (dys)function and cardiac arrhythmias. Cardiovasc Ther 28:287–294CrossRef Remme CA, Bezzina CR (2010) Sodium channel (dys)function and cardiac arrhythmias. Cardiovasc Ther 28:287–294CrossRef
30.
go back to reference Lau DH, Clausen C, Sosunov EA, Shlapakova IN, Anyukhovsky EP, Danilo P Jr, Rosen TS, Kelly C, Duffy HS, Szabolcs MJ, Chen M, Robinson RB, Lu J, Kumari S, Cohen IS, Rosen MR (2009) Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation 119:19–27CrossRef Lau DH, Clausen C, Sosunov EA, Shlapakova IN, Anyukhovsky EP, Danilo P Jr, Rosen TS, Kelly C, Duffy HS, Szabolcs MJ, Chen M, Robinson RB, Lu J, Kumari S, Cohen IS, Rosen MR (2009) Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation 119:19–27CrossRef
Metadata
Title
Disruption of asparagine-linked glycosylation to rescue and alter gating of the NaV1.5-Na+ channel
Authors
Pu Wang
Xiufang Zhu
Mengyan Wei
Yangong Liu
Kenshi Yoshimura
Mingqi Zheng
Gang Liu
Shinichiro Kume
Tatsuki Kurokawa
Katsushige Ono
Publication date
01-04-2021
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 4/2021
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-020-01736-4

Other articles of this Issue 4/2021

Heart and Vessels 4/2021 Go to the issue