Skip to main content
Top
Published in: Heart and Vessels 5/2020

Open Access 01-05-2020 | Tachyarrythmia | Original Article

Ionic mechanisms underlying atrial electrical remodeling after a fontan-style operation in a canine model

Authors: Jinjin Wu, Wanping Zhou, Lanping Wu, Yijiao Qian, Yanan Lu, Fen Li

Published in: Heart and Vessels | Issue 5/2020

Login to get access

Abstract

Atrial arrhythmia is an important cause of late death in patients after the Fontan-Style operation. However, the detailed electrophysiological characteristics of the post-Fontan atrium and its underlying mechanisms are largely unknown. In this study, we investigated electrophysiological characteristics and the ionic remodeling in the right atrium (RA) of a canine model after the Fontan operation. We performed the operation of RA to pulmonary artery connection to mimic the Fontan operation. We undertook hemodynamic measurements, cardiac electrophysiological studies, and ion current measurements. The expression of ionic channels was analyzed by PCR and western-blotting. Our Fontan model induced RA hypertension, enlarged the size of RA, and increased atrial fibrosis, representing the classic characteristic of Fontan patients. In the Fontan group, the atrial effective refractory period and the active potential duration were reduced, and the atrial tachycardia has been more often to be induced. The electrical conduction mapping showed that the Fontan group reduced the conduction velocity. The Fontan operation significantly down-regulated the expression of KCND3/Kv4.3, CACNA1C/Cav1.2 and SCN5A, but up-regulated the expression of KCNJ2/Kir2.1. Correspondingly, The Fontan operation reduced transient-outward (Ito) and L-type Ca2 (ICa,L) and INa currents, while increasing the inward-rectifier current (IK1). Thus, the net shortening of the action potential in the post-Fontan atrium is associated with the altered expression of ionic channels which disturbed the balance between inward and outward currents. Taken together, the Fontan operation induces the ionic remodeling, and thus altered electrophysiological characteristics of the right atrium, improving our understanding on the pathophysiology of atrial arrhythmias in Fontan patients.
Literature
1.
go back to reference Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248CrossRef Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248CrossRef
2.
go back to reference McKay R, Bini RM, Wright JP (1986) Staged septation of double inlet left ventricle. Br Heart J 56(6):563–566CrossRef McKay R, Bini RM, Wright JP (1986) Staged septation of double inlet left ventricle. Br Heart J 56(6):563–566CrossRef
3.
go back to reference Walsh EP (2007) Interventional electrophysiology in patients with congenital heart disease. Circulation 115(25):3224–3234CrossRef Walsh EP (2007) Interventional electrophysiology in patients with congenital heart disease. Circulation 115(25):3224–3234CrossRef
4.
go back to reference Walsh EP, Cecchin F (2007) Arrhythmias in adult patients with congenital heart disease. Circulation 115(4):534–545CrossRef Walsh EP, Cecchin F (2007) Arrhythmias in adult patients with congenital heart disease. Circulation 115(4):534–545CrossRef
5.
go back to reference Van Wagoner DR (2003) Electrophysiological remodeling in human atrial fibrillation. Pacing Clin Electrophysiol 26(7 Pt 2):1572–1575CrossRef Van Wagoner DR (2003) Electrophysiological remodeling in human atrial fibrillation. Pacing Clin Electrophysiol 26(7 Pt 2):1572–1575CrossRef
6.
go back to reference Igarashi T, Niwano S, Niwano H, Yoshizawa T, Nakamura H, Fukaya H, Fujiishi T, Ishizue N, Satoh A, Kishihara J, Murakami M, Ako J (2018) Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 33(10):1258–1265CrossRef Igarashi T, Niwano S, Niwano H, Yoshizawa T, Nakamura H, Fukaya H, Fujiishi T, Ishizue N, Satoh A, Kishihara J, Murakami M, Ako J (2018) Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 33(10):1258–1265CrossRef
7.
go back to reference Nishida K, Qi XY, Wakili R, Comtois P, Chartier D, Harada M, Iwasaki YK, Romeo P, Maguy A, Dobrev D, Michael G, Talajic M, Nattel S (2011) Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model. Circulation 123(2):137–146CrossRef Nishida K, Qi XY, Wakili R, Comtois P, Chartier D, Harada M, Iwasaki YK, Romeo P, Maguy A, Dobrev D, Michael G, Talajic M, Nattel S (2011) Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model. Circulation 123(2):137–146CrossRef
8.
go back to reference Wolf CM, Seslar SP, den Boer K, Juraszek AL, McGowan FX, Cowan DB, Del Nido P, Triedman JK, Berul CI, Walsh EP (2009) Atrial remodeling after the Fontan operation. Am J Cardiol 104(12):1737–1742CrossRef Wolf CM, Seslar SP, den Boer K, Juraszek AL, McGowan FX, Cowan DB, Del Nido P, Triedman JK, Berul CI, Walsh EP (2009) Atrial remodeling after the Fontan operation. Am J Cardiol 104(12):1737–1742CrossRef
9.
go back to reference Grammer JB, Bosch RF, Kuhlkamp V, Seipel L (2000) Molecular remodeling of Kv4.3 potassium channels in human atrial fibrillation. J Cardiovasc Electrophysiol 11(6):626–633CrossRef Grammer JB, Bosch RF, Kuhlkamp V, Seipel L (2000) Molecular remodeling of Kv4.3 potassium channels in human atrial fibrillation. J Cardiovasc Electrophysiol 11(6):626–633CrossRef
10.
go back to reference Cha TJ, Ehrlich JR, Zhang L, Nattel S (2004) Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation 110(12):1520–1526CrossRef Cha TJ, Ehrlich JR, Zhang L, Nattel S (2004) Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation 110(12):1520–1526CrossRef
11.
go back to reference Kuijpers NH, ten Eikelder HM, Bovendeerd PH, Verheule S, Arts T, Hilbers PA (2007) Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics. Am J Physiol Heart Circ Physiol 292(6):H2832–2853CrossRef Kuijpers NH, ten Eikelder HM, Bovendeerd PH, Verheule S, Arts T, Hilbers PA (2007) Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics. Am J Physiol Heart Circ Physiol 292(6):H2832–2853CrossRef
12.
go back to reference Ellinor PT, Nam EG, Shea MA, Milan DJ, Ruskin JN, MacRae CA (2008) Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm 5(1):99–105CrossRef Ellinor PT, Nam EG, Shea MA, Milan DJ, Ruskin JN, MacRae CA (2008) Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm 5(1):99–105CrossRef
13.
go back to reference Correa R, Sherwin ED, Kovach J, Mah DY, Alexander ME, Cecchin F, Walsh EP, Triedman JK, Abrams DJ (2015) Mechanism and ablation of arrhythmia following total cavopulmonary connection. Circ Arrhythm Electrophysiol 8(2):318–325CrossRef Correa R, Sherwin ED, Kovach J, Mah DY, Alexander ME, Cecchin F, Walsh EP, Triedman JK, Abrams DJ (2015) Mechanism and ablation of arrhythmia following total cavopulmonary connection. Circ Arrhythm Electrophysiol 8(2):318–325CrossRef
14.
go back to reference Wu J, Pflaumer A, Deisenhofer I, Hoppmann P, Hess J, Hessling G (2010) Mapping of atrial tachycardia by remote magnetic navigation in postoperative patients with congenital heart disease. J Cardiovasc Electrophysiol 21(7):751–759PubMed Wu J, Pflaumer A, Deisenhofer I, Hoppmann P, Hess J, Hessling G (2010) Mapping of atrial tachycardia by remote magnetic navigation in postoperative patients with congenital heart disease. J Cardiovasc Electrophysiol 21(7):751–759PubMed
15.
go back to reference Schulte JS, Seidl MD, Nunes F, Freese C, Schneider M, Schmitz W, Muller FU (2012) CREB critically regulates action potential shape and duration in the adult mouse ventricle. Am J Physiol Heart Circ Physiol 302(10):H1998–2007CrossRef Schulte JS, Seidl MD, Nunes F, Freese C, Schneider M, Schmitz W, Muller FU (2012) CREB critically regulates action potential shape and duration in the adult mouse ventricle. Am J Physiol Heart Circ Physiol 302(10):H1998–2007CrossRef
16.
go back to reference Olesen MS, Refsgaard L, Holst AG, Larsen AP, Grubb S, Haunso S, Svendsen JH, Olesen SP, Schmitt N, Calloe K (2013) A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res 98(3):488–495CrossRef Olesen MS, Refsgaard L, Holst AG, Larsen AP, Grubb S, Haunso S, Svendsen JH, Olesen SP, Schmitt N, Calloe K (2013) A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res 98(3):488–495CrossRef
17.
go back to reference Kharche S, Garratt CJ, Boyett MR, Inada S, Holden AV, Hancox JC, Zhang H (2008) Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation–a simulation study. Prog Biophys Mol Biol 98(2–3):186–197CrossRef Kharche S, Garratt CJ, Boyett MR, Inada S, Holden AV, Hancox JC, Zhang H (2008) Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation–a simulation study. Prog Biophys Mol Biol 98(2–3):186–197CrossRef
18.
go back to reference Kaab S, Nuss HB, Chiamvimonvat N, O'Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78(2):262–273CrossRef Kaab S, Nuss HB, Chiamvimonvat N, O'Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78(2):262–273CrossRef
19.
go back to reference Barana A, Matamoros M, Dolz-Gaiton P, Perez-Hernandez M, Amoros I, Nunez M, Sacristan S, Pedraz A, Pinto A, Fernandez-Aviles F, Tamargo J, Delpon E, Caballero R (2014) Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol 7(5):861–868CrossRef Barana A, Matamoros M, Dolz-Gaiton P, Perez-Hernandez M, Amoros I, Nunez M, Sacristan S, Pedraz A, Pinto A, Fernandez-Aviles F, Tamargo J, Delpon E, Caballero R (2014) Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current. Circ Arrhythm Electrophysiol 7(5):861–868CrossRef
20.
go back to reference Zhao Y, Yuan Y, Qiu C (2016) Underexpression of CACNA1C caused by overexpression of microRNA-29a underlies the pathogenesis of atrial fibrillation. Med Sci Monit 22:2175–2181CrossRef Zhao Y, Yuan Y, Qiu C (2016) Underexpression of CACNA1C caused by overexpression of microRNA-29a underlies the pathogenesis of atrial fibrillation. Med Sci Monit 22:2175–2181CrossRef
21.
go back to reference He F, Xu X, Yuan S, Tan L, Gao L, Ma S, Zhang S, Ma Z, Jiang W, Liu F, Chen B, Zhang B, Pang J, Huang X, Weng J (2016) Oxidized low-density lipoprotein (ox-LDL) cholesterol induces the expression of miRNA-223 and L-type calcium channel protein in atrial fibrillation. Sci Rep 6:30368CrossRef He F, Xu X, Yuan S, Tan L, Gao L, Ma S, Zhang S, Ma Z, Jiang W, Liu F, Chen B, Zhang B, Pang J, Huang X, Weng J (2016) Oxidized low-density lipoprotein (ox-LDL) cholesterol induces the expression of miRNA-223 and L-type calcium channel protein in atrial fibrillation. Sci Rep 6:30368CrossRef
22.
go back to reference Bai J, Wang K, Li Q, Yuan Y, Zhang H (2016) Pro-arrhythmogenic effects of CACNA1C G1911R mutation in human ventricular tachycardia: insights from cardiac multi-scale models. Sci Rep 6:31262CrossRef Bai J, Wang K, Li Q, Yuan Y, Zhang H (2016) Pro-arrhythmogenic effects of CACNA1C G1911R mutation in human ventricular tachycardia: insights from cardiac multi-scale models. Sci Rep 6:31262CrossRef
Metadata
Title
Ionic mechanisms underlying atrial electrical remodeling after a fontan-style operation in a canine model
Authors
Jinjin Wu
Wanping Zhou
Lanping Wu
Yijiao Qian
Yanan Lu
Fen Li
Publication date
01-05-2020
Publisher
Springer Japan
Keyword
Tachyarrythmia
Published in
Heart and Vessels / Issue 5/2020
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-019-01544-5

Other articles of this Issue 5/2020

Heart and Vessels 5/2020 Go to the issue