Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Discovery, synthesis and antibacterial evaluation of phenolic compounds from Cylicodiscus gabunensis

Authors: Omar Aldulaimi, Falko Drijfhout, Fidelia I. Uche, Paul Horrocks, Wen-Wu Li

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Cylicodiscus gabunensis Harms (Family Leguminosae) (CG) is an African medicinal plant used as a treatment of various ailments including malaria, liver diseases, and gastrointestinal disturbances. Its extracts showed potent in vitro antibacterial activity. However, the antibacterial components are unknown.

Methods

In this study, the stem bark of the CG plant was extracted and its antibacterial property against a panel of Gram-negative and Gram-positive bacterial strains assessed using the disk diffusion assay method. Bioassay-guided fractionation of the bioactive extracts was employed to identify bioactive constituents using both gas and liquid chromatography mass spectrometry. Chemical synthesis was used to make the analogues of gallic acid. Microplate dilution assays and scanning electron microscopy (SEM) were used to evaluate the antibacterial properties and mechanism of action of the active fractions and pure compounds.

Results

The most bioactive sub-fractions derived from CG comprised of ethyl gallate, gallic acid and polyphenols. Five alkyl/alkenyl gallates were synthesized. A preliminary structure-activity relationship of gallic acid derivatives was obtained using the synthetic analogues and a series of commercially available phenolic compounds. Increasing the length of alkyl chains generally increases the potency of the alkyl gallates. Introducing a double bond with restricted conformations of the C-5 side chain has little effect on the antibacterial property. SEM analysis of the effect of alkyl gallates on Staphylococcus aureus indicates that they appear to interrupt S. aureus bacterial cell wall integrity.

Conclusions

The results of this research rationalise the ethnobotanical use of C. gabunensis and suggest that gallate derivatives may serve as promising antibacterial agents for the treatment of infectious diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015;33:1582–614.CrossRef Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015;33:1582–614.CrossRef
2.
go back to reference Sahoo N, Manchikanti P, Dey S. Herbal drugs: standards and regulation. Fitoterapia. 2010;81:462–71.CrossRef Sahoo N, Manchikanti P, Dey S. Herbal drugs: standards and regulation. Fitoterapia. 2010;81:462–71.CrossRef
3.
go back to reference Gibbons S. Phytochemicals for bacterial resistance--strengths, weaknesses and opportunities. Planta Med. 2008;74:594–602.CrossRef Gibbons S. Phytochemicals for bacterial resistance--strengths, weaknesses and opportunities. Planta Med. 2008;74:594–602.CrossRef
4.
go back to reference Slobodnikova L, Fialova S, Rendekova K, Kovac J, Mucaji P. Antibiofilm activity of plant polyphenols. Molecules. 2016;21:1717.CrossRef Slobodnikova L, Fialova S, Rendekova K, Kovac J, Mucaji P. Antibiofilm activity of plant polyphenols. Molecules. 2016;21:1717.CrossRef
5.
go back to reference Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sanchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 2017;196:44–68.CrossRef Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sanchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 2017;196:44–68.CrossRef
6.
go back to reference Calderon AI, Romero LI, Ortega-Barria E, Brun R, Correa AMD, Gupta MP. Evaluation of larvicidal and in vitro antiparasitic activities of plants in a biodiversity plot in the altos de Campana National Park, Panama. Pharm Biol. 2006;44:487–98.CrossRef Calderon AI, Romero LI, Ortega-Barria E, Brun R, Correa AMD, Gupta MP. Evaluation of larvicidal and in vitro antiparasitic activities of plants in a biodiversity plot in the altos de Campana National Park, Panama. Pharm Biol. 2006;44:487–98.CrossRef
7.
go back to reference Kouitcheu MLB, Kouam J, Penlap BV, Ngadjui BT, Fomum ZT, Etoa FX. Evaluation of antimicrobial activity of the stem bark of Cylicodiscus gabunensis (Mimosaceae). Afr J Tradit Complem. 2007;4:87–93. Kouitcheu MLB, Kouam J, Penlap BV, Ngadjui BT, Fomum ZT, Etoa FX. Evaluation of antimicrobial activity of the stem bark of Cylicodiscus gabunensis (Mimosaceae). Afr J Tradit Complem. 2007;4:87–93.
8.
go back to reference Oboh G, Adebayo AA, Ademosun AO. Erection-stimulating, anti-diabetic and antioxidant properties of Hunteria umbellata and Cylicodiscus gabunensis water extractable phytochemicals. J Complement Integr Med. 2017:20160164. Oboh G, Adebayo AA, Ademosun AO. Erection-stimulating, anti-diabetic and antioxidant properties of Hunteria umbellata and Cylicodiscus gabunensis water extractable phytochemicals. J Complement Integr Med. 2017:20160164.
9.
go back to reference Oboh G, Adebayo AA, Ademosun AO. Phenolic-rich extracts of Eurycoma longifolia and Cylicodiscus gabunensis inhibit enzymes responsible for the development of erectile dysfunction and are antioxidants. J Basic Clin Physiol Pharmacol. 2018;29:689–96.CrossRef Oboh G, Adebayo AA, Ademosun AO. Phenolic-rich extracts of Eurycoma longifolia and Cylicodiscus gabunensis inhibit enzymes responsible for the development of erectile dysfunction and are antioxidants. J Basic Clin Physiol Pharmacol. 2018;29:689–96.CrossRef
10.
go back to reference Tchivounda HP, Koudogbo B, Besace Y, Casadevall E. Cylicodiscic acid, a Dihydroxy Pentacyclic triterpene carboxylic-acid from Cylicodiscus-Gabunensis. Phytochemistry. 1990;29:3255–8.CrossRef Tchivounda HP, Koudogbo B, Besace Y, Casadevall E. Cylicodiscic acid, a Dihydroxy Pentacyclic triterpene carboxylic-acid from Cylicodiscus-Gabunensis. Phytochemistry. 1990;29:3255–8.CrossRef
11.
go back to reference Tene M, Chabert P, Note O, Kenla TJN, Tane P, Lobstein A. Triterpenoid saponins from Cylicodiscus gabunensis. Phytochem Lett. 2011;4:89–92.CrossRef Tene M, Chabert P, Note O, Kenla TJN, Tane P, Lobstein A. Triterpenoid saponins from Cylicodiscus gabunensis. Phytochem Lett. 2011;4:89–92.CrossRef
12.
go back to reference Mkounga P, Tiabou AT, Kouam J. Triterpenoid derivatives from Cylicodiscus gabunensis. Chem Pharm Bull. 2010;58:1100–2.CrossRef Mkounga P, Tiabou AT, Kouam J. Triterpenoid derivatives from Cylicodiscus gabunensis. Chem Pharm Bull. 2010;58:1100–2.CrossRef
13.
go back to reference Tchivounda HP, Koudogbo B, Besace Y, Casadevall E. Triterpene Saponins from Cylicodiscus-Gabunensis. Phytochemistry. 1991;30:2711–6.CrossRef Tchivounda HP, Koudogbo B, Besace Y, Casadevall E. Triterpene Saponins from Cylicodiscus-Gabunensis. Phytochemistry. 1991;30:2711–6.CrossRef
14.
go back to reference Tane P, Bergquist KE, Tene M, Ngadjui BT, Ayafor JF, Sterner O. Cyclodione, an unsymmetrical dimeric Diterpene from Cylicodiscus-Gabunensis. Tetrahedron. 1995;51:11595–600.CrossRef Tane P, Bergquist KE, Tene M, Ngadjui BT, Ayafor JF, Sterner O. Cyclodione, an unsymmetrical dimeric Diterpene from Cylicodiscus-Gabunensis. Tetrahedron. 1995;51:11595–600.CrossRef
15.
go back to reference Nchancho K, Kouam J, Tane P, Kuete V, Watchueng J, Fomum ZT. Coumestan glycosides from the stem bark of Cylicodiscus gabunensis. Nat Prod Commun. 2009;4:931–4.PubMed Nchancho K, Kouam J, Tane P, Kuete V, Watchueng J, Fomum ZT. Coumestan glycosides from the stem bark of Cylicodiscus gabunensis. Nat Prod Commun. 2009;4:931–4.PubMed
16.
go back to reference Aldulaimi O, Uche FI, Hameed H, Mbye H, Ullah I, Drijfhout F, Claridge TDW, Horrocks P, Li WW. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis harms. J Ethnopharmacol. 2017;198:221–5.CrossRef Aldulaimi O, Uche FI, Hameed H, Mbye H, Ullah I, Drijfhout F, Claridge TDW, Horrocks P, Li WW. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis harms. J Ethnopharmacol. 2017;198:221–5.CrossRef
17.
go back to reference Okokon JE, Ita BN, Udokpoh AE. Antiplasmodial activity of Cylicodiscus gabunensis. J Ethnopharmacol. 2006;107:175–8.CrossRef Okokon JE, Ita BN, Udokpoh AE. Antiplasmodial activity of Cylicodiscus gabunensis. J Ethnopharmacol. 2006;107:175–8.CrossRef
18.
go back to reference Aldulaimi O, Li WW. Antibacterial effects of the essential oil from flower buds of Magnolia biondii Pamp. Planta Med. 2016;82:505.CrossRef Aldulaimi O, Li WW. Antibacterial effects of the essential oil from flower buds of Magnolia biondii Pamp. Planta Med. 2016;82:505.CrossRef
19.
go back to reference Beesoo R, Bhagooli R, Neergheen-Bhujun VS, Li WW, Kagansky A, Bahorun T. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts. Comp Biochem Physiol C Toxicol Pharmacol. 2017;196:81–90.CrossRef Beesoo R, Bhagooli R, Neergheen-Bhujun VS, Li WW, Kagansky A, Bahorun T. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts. Comp Biochem Physiol C Toxicol Pharmacol. 2017;196:81–90.CrossRef
20.
go back to reference Cao P, Yang Y, Uche FI, Hart SR, Li WW, Yuan CQ. Coupling plant-derived cyclotides to metal surfaces: an antibacterial and antibiofilm study. Int J Mol Sci. 2018;19:793.CrossRef Cao P, Yang Y, Uche FI, Hart SR, Li WW, Yuan CQ. Coupling plant-derived cyclotides to metal surfaces: an antibacterial and antibiofilm study. Int J Mol Sci. 2018;19:793.CrossRef
21.
go back to reference Jones WP, Kinghorn AD. Extraction of plant secondary metabolites. Methods Mol Biol. 2012;864:341–66.CrossRef Jones WP, Kinghorn AD. Extraction of plant secondary metabolites. Methods Mol Biol. 2012;864:341–66.CrossRef
22.
go back to reference Li WW, Barz W. Structure and accumulation of phenolics in elicited Echinacea purpurea cell cultures. Planta Med. 2006;72:248–54.CrossRef Li WW, Barz W. Structure and accumulation of phenolics in elicited Echinacea purpurea cell cultures. Planta Med. 2006;72:248–54.CrossRef
23.
go back to reference Miyaichi Y, Nunomura N, Kawata Y, Kizu H, Tomimori T, Watanabe T, Takano A, Malla KJ. Studies on Nepalese crude drugs. XXVIII. Chemical constituents of Bhote Khair, the underground parts of Eskemukerjea megacarpum HARA. Chem Pharm Bull. 2006;54:136–8.CrossRef Miyaichi Y, Nunomura N, Kawata Y, Kizu H, Tomimori T, Watanabe T, Takano A, Malla KJ. Studies on Nepalese crude drugs. XXVIII. Chemical constituents of Bhote Khair, the underground parts of Eskemukerjea megacarpum HARA. Chem Pharm Bull. 2006;54:136–8.CrossRef
24.
go back to reference Verotta L, Dell'Agli M, Giolito A, Guerrini M, Cabalion P, Bosisio E. In vitro antiplasmodial activity of extracts of Tristaniopsis species and identification of the active constituents: Ellagic acid and 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-beta-D-glucopyranoside. J Nat Prod. 2001;64:603–7.CrossRef Verotta L, Dell'Agli M, Giolito A, Guerrini M, Cabalion P, Bosisio E. In vitro antiplasmodial activity of extracts of Tristaniopsis species and identification of the active constituents: Ellagic acid and 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-beta-D-glucopyranoside. J Nat Prod. 2001;64:603–7.CrossRef
25.
go back to reference Hashimoto F, Nonaka G, Nishioka I. Tannins and related-compounds .56. Isolation of 4 new Acylated Flavan-3-Ols from oolong tea. Chem Pharm Bull. 1987;35:611–6.CrossRef Hashimoto F, Nonaka G, Nishioka I. Tannins and related-compounds .56. Isolation of 4 new Acylated Flavan-3-Ols from oolong tea. Chem Pharm Bull. 1987;35:611–6.CrossRef
26.
go back to reference Hartisch C, Kolodziej H. Galloylhamameloses and proanthocyanidins from Hamamelis virginiana. Phytochemistry. 1996;42:191–8.CrossRef Hartisch C, Kolodziej H. Galloylhamameloses and proanthocyanidins from Hamamelis virginiana. Phytochemistry. 1996;42:191–8.CrossRef
27.
go back to reference Bicker J, Petereit F, Hensel A. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L. Fitoterapia. 2009;80:483–95.CrossRef Bicker J, Petereit F, Hensel A. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L. Fitoterapia. 2009;80:483–95.CrossRef
28.
go back to reference Wang KJ, Zhang YJ, Yang CR. Antioxidant phenolic compounds from rhizomes of Polygonum paleaceum. J Ethnopharmacol. 2005;96:483–7.CrossRef Wang KJ, Zhang YJ, Yang CR. Antioxidant phenolic compounds from rhizomes of Polygonum paleaceum. J Ethnopharmacol. 2005;96:483–7.CrossRef
29.
go back to reference Gujer R, Magnolato D, Self R. Glucosylated flavonoids and other phenolic-compounds from sorghum. Phytochemistry. 1986;25:1431–6.CrossRef Gujer R, Magnolato D, Self R. Glucosylated flavonoids and other phenolic-compounds from sorghum. Phytochemistry. 1986;25:1431–6.CrossRef
30.
go back to reference Kubo I, Xiao P, Nihei K, Fujita K, Yamagiwa Y, Kamikawa T. Molecular design of antifungal agents. J Agric Food Chem. 2002;50:3992–8.CrossRef Kubo I, Xiao P, Nihei K, Fujita K, Yamagiwa Y, Kamikawa T. Molecular design of antifungal agents. J Agric Food Chem. 2002;50:3992–8.CrossRef
31.
go back to reference Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20:O255–66.CrossRef Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20:O255–66.CrossRef
32.
go back to reference Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997;41:1004–9.CrossRef Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997;41:1004–9.CrossRef
33.
go back to reference Aldulaimi O. Screening of fruits of seven plants indicated for medicinal use in Iraq. Pharmacogn Mag. 2017;13:S189–95.CrossRef Aldulaimi O. Screening of fruits of seven plants indicated for medicinal use in Iraq. Pharmacogn Mag. 2017;13:S189–95.CrossRef
34.
go back to reference Monson BK, Stringham J, Jones BB, Abdel-Aziz S, Cutler Peck CM, Olson RJ. Scanning electron microscopy visualization of methicillin-resistant Staphylococcus aureus after contact with gatifloxacin with and without preservative. J Ocul Pharmacol Ther. 2010;26:133–6.CrossRef Monson BK, Stringham J, Jones BB, Abdel-Aziz S, Cutler Peck CM, Olson RJ. Scanning electron microscopy visualization of methicillin-resistant Staphylococcus aureus after contact with gatifloxacin with and without preservative. J Ocul Pharmacol Ther. 2010;26:133–6.CrossRef
35.
go back to reference Kubo I, Xiao P, Fujita K. Anti-MRSA activity of alkyl gallates. Bioorg Med Chem Lett. 2002;12:113–6.CrossRef Kubo I, Xiao P, Fujita K. Anti-MRSA activity of alkyl gallates. Bioorg Med Chem Lett. 2002;12:113–6.CrossRef
36.
go back to reference Kubo I, Fujita K, Nihei K, Nihei A. Antibacterial activity of akyl gallates against Bacillus subtilis. J Agric Food Chem. 2004;52:1072–6.CrossRef Kubo I, Fujita K, Nihei K, Nihei A. Antibacterial activity of akyl gallates against Bacillus subtilis. J Agric Food Chem. 2004;52:1072–6.CrossRef
37.
go back to reference Kubo I, Fujita K, Nihei K. Molecular design of multifunctional antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA). Bioorg Med Chem. 2003;11:4255–62.CrossRef Kubo I, Fujita K, Nihei K. Molecular design of multifunctional antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA). Bioorg Med Chem. 2003;11:4255–62.CrossRef
38.
go back to reference Shibata H, Kondo K, Katsuyama R, Kawazoe K, Sato Y, Murakami K, Takaishi Y, Arakaki N, Higuti T. Alkyl gallates, intensifiers of beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Ch. 2005;49:549–55.CrossRef Shibata H, Kondo K, Katsuyama R, Kawazoe K, Sato Y, Murakami K, Takaishi Y, Arakaki N, Higuti T. Alkyl gallates, intensifiers of beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Ch. 2005;49:549–55.CrossRef
39.
go back to reference Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.CrossRef Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.CrossRef
40.
go back to reference Borges A, Ferreira C, Saavedra MJ, Simoes M. Antibacterial activity and mode of action of Ferulic and Gallic acids against pathogenic Bacteria. Microb Drug Resist. 2013;19:256–65.CrossRef Borges A, Ferreira C, Saavedra MJ, Simoes M. Antibacterial activity and mode of action of Ferulic and Gallic acids against pathogenic Bacteria. Microb Drug Resist. 2013;19:256–65.CrossRef
41.
go back to reference Takai E, Hirano A, Shiraki K. Effects of alkyl chain length of gallate on self-association and membrane binding. J Biochem. 2011;150:165–71.CrossRef Takai E, Hirano A, Shiraki K. Effects of alkyl chain length of gallate on self-association and membrane binding. J Biochem. 2011;150:165–71.CrossRef
42.
go back to reference Krol E, de Sousa Borges A, da Silva I, Polaquini CR, Regasini LO, Ferreira H, Scheffers DJ. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes. Front Microbiol. 2015;6:390.CrossRef Krol E, de Sousa Borges A, da Silva I, Polaquini CR, Regasini LO, Ferreira H, Scheffers DJ. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes. Front Microbiol. 2015;6:390.CrossRef
43.
go back to reference Coppo E, Marchese A. Antibacterial activity of polyphenols. Curr Pharm Biotechnol. 2014;15:380–90.CrossRef Coppo E, Marchese A. Antibacterial activity of polyphenols. Curr Pharm Biotechnol. 2014;15:380–90.CrossRef
Metadata
Title
Discovery, synthesis and antibacterial evaluation of phenolic compounds from Cylicodiscus gabunensis
Authors
Omar Aldulaimi
Falko Drijfhout
Fidelia I. Uche
Paul Horrocks
Wen-Wu Li
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2589-2

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue