Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Research article

Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components

Authors: Ban Chen, Xican Li, Jie Liu, Wei Qin, Minshi Liang, Qianru Liu, Dongfeng Chen

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

Pyrola decorata H. Andres, is exclusively distributed in China and a source of traditional Chinese herbal medicine Luxiancao for more than 2000 years. Here, we evaluated the antioxidant and cytoprotective effects of P. decorata and its five phenolic components (protocatechuic acid, gallic acid, hyperoside, 2′′-O-galloylhyperin, and quercetin), and discussed their antioxidant chemistry.

Methods

A lyophilized aqueous extract of P. decorata (LAEP) was prepared and analyzed with high-performance liquid chromatography (HPLC). LAEP and its five phenolic components were comparatively investigated using five antioxidant assays, including ferric-reducing antioxidant power, cupric ion-reducing antioxidant capacity, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical (PTIO)-scavenging, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH)-scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical (ABTS+•)-scavenging activities. The reaction products of the five phenolic components with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl radical (4-methoxy-TEMPO) were determined with ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. LAEP and its five phenolic components were incubated with bone marrow-derived mesenchymal stem cells (bmMSCs) subjected to oxidative stress to demonstrate their cytoprotective effects with a flow cytometry assay.

Results

In the five antioxidant assays, LAEP and its five phenolic components dose-dependently increased the radical-scavenging (or reducing power) activities. However, the IC50 values of hyperoside were consistently higher than those of 2′′-O-galloylhyperin. UPLC-ESI-Q-TOF-MS/MS analysis results indicated that the five phenolics could yield dimer products in the presence of 4-methoxy-TEMPO via the radical adduct formation (RAF) pathway. Flow cytometry assay results confirmed the cytoprotective activity of LAEP and its five phenolic components toward stressed bmMSCs. In particular, 2′′-O-galloylhyperin could more effectively reduce the percentage of damaged bmMSCs than hyperoside.

Conclusion

LAEP and its five phenolic components may undergo redox-based pathways (such as electron transfer and H+ transfer) and covalent-based pathway (i.e., RAF) to exhibit antioxidant activity. One consequence of RAF is the generation of phenolic-phenolic dimer. In both organic and aqueous media, 2′′-O-galloylhyperin exhibited higher redox-based antioxidant levels (or cytoprotective levels) than those with hyperoside. The differences could be attributed to 2′′-O-galloylation reaction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Uesugi T, Nakano M, Selosse M, Obase K, Matsuda Y. Pyrola japonica, a partially mycoheterotrophic Ericaceae, has mycorrhizal preference for russulacean fungi in Central Japan. Mycorrhiza. 2016;26(8):819–29.PubMedCrossRef Uesugi T, Nakano M, Selosse M, Obase K, Matsuda Y. Pyrola japonica, a partially mycoheterotrophic Ericaceae, has mycorrhizal preference for russulacean fungi in Central Japan. Mycorrhiza. 2016;26(8):819–29.PubMedCrossRef
2.
go back to reference Zhang SD, Wang P, Zhang J, Wang W, Yao LP, Gu CB, Efferth T, Fu YJ. 2′-O-galloylhyperin attenuates LPS-induced acute lung injury via upregulation antioxidation and inhibition of inflammatory responses in vivo. Chem Biol Interact. 2019;304:20–7.PubMedCrossRef Zhang SD, Wang P, Zhang J, Wang W, Yao LP, Gu CB, Efferth T, Fu YJ. 2′-O-galloylhyperin attenuates LPS-induced acute lung injury via upregulation antioxidation and inhibition of inflammatory responses in vivo. Chem Biol Interact. 2019;304:20–7.PubMedCrossRef
3.
go back to reference Chen YL, Tan CH, Tan JJ, Qu SJ, Jiang SH, Zhu DY. Two new isomeric α-Tetralones from Pyrola decorata. Planta Med. 2008;74(15):1826–8.PubMedCrossRef Chen YL, Tan CH, Tan JJ, Qu SJ, Jiang SH, Zhu DY. Two new isomeric α-Tetralones from Pyrola decorata. Planta Med. 2008;74(15):1826–8.PubMedCrossRef
4.
go back to reference Wang DM, He FY, Lv ZJ, Li DW. Phytochemical composition, antioxidant activity and HPLC fingerprinting profiles of three Pyrola species from different regions. PLoS One. 2014;9(5):e96329.PubMedPubMedCentralCrossRef Wang DM, He FY, Lv ZJ, Li DW. Phytochemical composition, antioxidant activity and HPLC fingerprinting profiles of three Pyrola species from different regions. PLoS One. 2014;9(5):e96329.PubMedPubMedCentralCrossRef
5.
go back to reference Yao XH, Zhang DY, Zu YG, Fu YJ, Luo M, Gu CB, Li CY, Mu FS, Efferth T. Free radical scavenging capability, antioxidant activity and chemical constituents of Pyrola incarnata Fisch leaves. Ind Crop Prod. 2013;49:247–55.CrossRef Yao XH, Zhang DY, Zu YG, Fu YJ, Luo M, Gu CB, Li CY, Mu FS, Efferth T. Free radical scavenging capability, antioxidant activity and chemical constituents of Pyrola incarnata Fisch leaves. Ind Crop Prod. 2013;49:247–55.CrossRef
6.
go back to reference Luo DQ, Yang YZ, Song L, Wang JX. Advances in studies on special plants of Pyrola L. in China. Chinese Traditional and Herbal Drugs. 2004;34(4):107–10 (in Chinese). Luo DQ, Yang YZ, Song L, Wang JX. Advances in studies on special plants of Pyrola L. in China. Chinese Traditional and Herbal Drugs. 2004;34(4):107–10 (in Chinese).
7.
go back to reference Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia, vol. 1. 2015th ed; 2015. p. 324. Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia, vol. 1. 2015th ed; 2015. p. 324.
8.
go back to reference Li LF, Liu H, Yang JQ, Shi W, Wu LH. The anti-inflammatory and anti-osteoarthritis activities of Pyrola Decorata extracts. J Am Geriatr Soc. 2015;63(S02):S359–60. Li LF, Liu H, Yang JQ, Shi W, Wu LH. The anti-inflammatory and anti-osteoarthritis activities of Pyrola Decorata extracts. J Am Geriatr Soc. 2015;63(S02):S359–60.
9.
go back to reference Wang P, Gao YM, Sun X, Guo N, Li J, Wang W, Yao LP, Fu YJ. Hepatoprotective effect of 2′-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway. Food Chem Toxicol. 2017;102:129–42.PubMedCrossRef Wang P, Gao YM, Sun X, Guo N, Li J, Wang W, Yao LP, Fu YJ. Hepatoprotective effect of 2′-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway. Food Chem Toxicol. 2017;102:129–42.PubMedCrossRef
10.
go back to reference Yang XY, Liu AL, Liu SJ, Xu XW, Huang LF. Screening for neuraminidase inhibitory activity in traditional Chinese medicines used to treat influenza. Molecules. 2016;21(9):1138.PubMedCentralCrossRef Yang XY, Liu AL, Liu SJ, Xu XW, Huang LF. Screening for neuraminidase inhibitory activity in traditional Chinese medicines used to treat influenza. Molecules. 2016;21(9):1138.PubMedCentralCrossRef
11.
go back to reference Grover AK, Samson SE. Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr J. 2015;15(1):1.CrossRef Grover AK, Samson SE. Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr J. 2015;15(1):1.CrossRef
12.
go back to reference Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF, Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;95:e109708.CrossRef Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF, Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;95:e109708.CrossRef
13.
go back to reference Wang QW, Su Y, Sheng JT, Gu LM, Zhao Y, Chen XX, Chen C, Li WZ, Li KS, Dai JP. Anti-influenza a virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-kappa B signal pathways. PLoS One. 2018;13(1):e0191793.PubMedPubMedCentralCrossRef Wang QW, Su Y, Sheng JT, Gu LM, Zhao Y, Chen XX, Chen C, Li WZ, Li KS, Dai JP. Anti-influenza a virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-kappa B signal pathways. PLoS One. 2018;13(1):e0191793.PubMedPubMedCentralCrossRef
14.
go back to reference Zhang YY, Chen XH, Sun YY, Bi KS. Determination of flavonoid glycosides in Pyrola decorate by reversed-phase high performance liquid chromatography. Chin J Chromatogr. 2007;25(3):367–70. Zhang YY, Chen XH, Sun YY, Bi KS. Determination of flavonoid glycosides in Pyrola decorate by reversed-phase high performance liquid chromatography. Chin J Chromatogr. 2007;25(3):367–70.
15.
go back to reference Zhang YY, Zhang C, Ren R, Liu R. Simultaneous determination of seven major triterpenoids in Pyrola decorata H. Andres by LC-MS method. Pharmazie. 2012;67(10):822–6.PubMed Zhang YY, Zhang C, Ren R, Liu R. Simultaneous determination of seven major triterpenoids in Pyrola decorata H. Andres by LC-MS method. Pharmazie. 2012;67(10):822–6.PubMed
16.
go back to reference Yu CT, Dai LF, Ma ZX, Zhao HB, Yuan Y, Zhang YF, Bao PF, Su YF, Ma DP, Liu CE, Wu XF, Liu JX, Li YJ, Wang B, Hu M. Effect of Osteoking on the osteogenic and adipogenic differentiation potential of rat bone marrow mesenchymal stem cells in vitro. BMC Complement Altern Med. 2019;19(1):36.PubMedPubMedCentralCrossRef Yu CT, Dai LF, Ma ZX, Zhao HB, Yuan Y, Zhang YF, Bao PF, Su YF, Ma DP, Liu CE, Wu XF, Liu JX, Li YJ, Wang B, Hu M. Effect of Osteoking on the osteogenic and adipogenic differentiation potential of rat bone marrow mesenchymal stem cells in vitro. BMC Complement Altern Med. 2019;19(1):36.PubMedPubMedCentralCrossRef
17.
go back to reference Jacobs FA, van de Vyver M, Ferris WF. Isolation and Characterization of Different Mesenchymal Stem Cell Populations from Rat Femur. Methods Mol Biol. 2019;1916:1333–147. Jacobs FA, van de Vyver M, Ferris WF. Isolation and Characterization of Different Mesenchymal Stem Cell Populations from Rat Femur. Methods Mol Biol. 2019;1916:1333–147.
18.
go back to reference Yi F, Khan M, Gao HW, Hao F, Sun MY, Zhong LL, Lu CZ, Feng XC, Ma TH. Increased differentiation capacity of bone marrow-derived Mesenchymal stem cells in Aquaporin-5 deficiency. Stem Cells Dev. 2012;21(13):2495–507.PubMedPubMedCentralCrossRef Yi F, Khan M, Gao HW, Hao F, Sun MY, Zhong LL, Lu CZ, Feng XC, Ma TH. Increased differentiation capacity of bone marrow-derived Mesenchymal stem cells in Aquaporin-5 deficiency. Stem Cells Dev. 2012;21(13):2495–507.PubMedPubMedCentralCrossRef
19.
go back to reference Cai BZ, Wang G, Chen N, Liu YJ, Yin K, Ning CP, Li XD, Yang F, Wang N, Wang Y, Pan ZW, Lu YJ. Bone marrow mesenchymal stem cells protected post-infarcted myocardium against arrhythmias via reversing potassium channels remodelling. J Cell Mol Med. 2014;18(7):1407–16.PubMedPubMedCentralCrossRef Cai BZ, Wang G, Chen N, Liu YJ, Yin K, Ning CP, Li XD, Yang F, Wang N, Wang Y, Pan ZW, Lu YJ. Bone marrow mesenchymal stem cells protected post-infarcted myocardium against arrhythmias via reversing potassium channels remodelling. J Cell Mol Med. 2014;18(7):1407–16.PubMedPubMedCentralCrossRef
20.
go back to reference Ning GZ, Song WY, Xu H, Zhu RS, Wu QL, Wu Y, Zhu SB, Li JQ, Wang M, Qu ZG. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: better choice of transplantation treatment for spinal cord injury treatment for SCI by LIPUS-BMSCs transplantation. CNS Neurosci Ther. 2019;25(4):496–508.PubMedCrossRef Ning GZ, Song WY, Xu H, Zhu RS, Wu QL, Wu Y, Zhu SB, Li JQ, Wang M, Qu ZG. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: better choice of transplantation treatment for spinal cord injury treatment for SCI by LIPUS-BMSCs transplantation. CNS Neurosci Ther. 2019;25(4):496–508.PubMedCrossRef
21.
go back to reference Du C, Jiang MD, Wei XL, Qin JP, Xu H, Wang YX, Zhang Y, Zhou DJ, Xue HL, Zheng SM, Zeng WZ. Durable control of autoimmune diabetes in mice achieved by Intraperitoneal transplantation of "neo-islets," three-dimensional aggregates of allogeneic islet and "Mesenchymal stem cells". Stem Cells Transl Med. 2017;6(7):1631–43.CrossRef Du C, Jiang MD, Wei XL, Qin JP, Xu H, Wang YX, Zhang Y, Zhou DJ, Xue HL, Zheng SM, Zeng WZ. Durable control of autoimmune diabetes in mice achieved by Intraperitoneal transplantation of "neo-islets," three-dimensional aggregates of allogeneic islet and "Mesenchymal stem cells". Stem Cells Transl Med. 2017;6(7):1631–43.CrossRef
22.
go back to reference Liu J, Li X, Lin J, Li Y, Wang T, Jiang Q, Chen D. Sarcandra glabra (Caoshanhu) protects mesenchymal stem cells from oxidative stress: a bioevaluation and mechanistic chemistry. BMC Complement Altern Med. 2016;16:423.PubMedPubMedCentralCrossRef Liu J, Li X, Lin J, Li Y, Wang T, Jiang Q, Chen D. Sarcandra glabra (Caoshanhu) protects mesenchymal stem cells from oxidative stress: a bioevaluation and mechanistic chemistry. BMC Complement Altern Med. 2016;16:423.PubMedPubMedCentralCrossRef
23.
go back to reference Yu ZY, Ma D, He ZC, Liu P, Huang J, Fang Q, Zhao JY, Wang JS. Heme oxygenase-1 protects bone marrow mesenchymal stem cells from iron overload through decreasing reactive oxygen species and promoting IL-10 generation. Exp Cell Res. 2018;362(1):28–42.PubMedCrossRef Yu ZY, Ma D, He ZC, Liu P, Huang J, Fang Q, Zhao JY, Wang JS. Heme oxygenase-1 protects bone marrow mesenchymal stem cells from iron overload through decreasing reactive oxygen species and promoting IL-10 generation. Exp Cell Res. 2018;362(1):28–42.PubMedCrossRef
24.
go back to reference Hsieh CY, Chang ST. Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches. J Agric Food Chem. 2010;58(3):1578–83.PubMedCrossRef Hsieh CY, Chang ST. Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches. J Agric Food Chem. 2010;58(3):1578–83.PubMedCrossRef
25.
go back to reference Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6.PubMedCrossRef Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6.PubMedCrossRef
26.
go back to reference Apak R, Guclu K, Ozyurek M, Bektas Oglu B, Bener M. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Methods Mol Biol. 2008;477:163–93.PubMedCrossRef Apak R, Guclu K, Ozyurek M, Bektas Oglu B, Bener M. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Methods Mol Biol. 2008;477:163–93.PubMedCrossRef
27.
go back to reference Li XC. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•) radical scavenging: a new and simple antioxidant assay In Vitro. J Agric Food Chem. 2017;65(30):6288–97.PubMedCrossRef Li XC. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) radical scavenging: a new and simple antioxidant assay In Vitro. J Agric Food Chem. 2017;65(30):6288–97.PubMedCrossRef
28.
go back to reference Ouyang X, Li X, Lu W, Zhao X, Chen D. A null B-ring improves the antioxidant levels of Flavonol: a comparative study between Galangin and 3,5,7-Trihydroxychromone. Molecules. 2018;23(12):3083.PubMedCentralCrossRef Ouyang X, Li X, Lu W, Zhao X, Chen D. A null B-ring improves the antioxidant levels of Flavonol: a comparative study between Galangin and 3,5,7-Trihydroxychromone. Molecules. 2018;23(12):3083.PubMedCentralCrossRef
29.
go back to reference Li XC, Jiang Q, Wang TT, Liu JJ, Chen DF. Comparison of the antioxidant effects of Quercitrin and Isoquercitrin: understanding the role of the 6″-OH group. Molecules. 2016;21(9):1246.PubMedCentralCrossRef Li XC, Jiang Q, Wang TT, Liu JJ, Chen DF. Comparison of the antioxidant effects of Quercitrin and Isoquercitrin: understanding the role of the 6″-OH group. Molecules. 2016;21(9):1246.PubMedCentralCrossRef
30.
go back to reference Liang M, Li X, Ouyang X, Xie H, Chen D. Antioxidant mechanisms of Echinatin and Licochalcone a. Molecules. 2019;24(1):3.CrossRef Liang M, Li X, Ouyang X, Xie H, Chen D. Antioxidant mechanisms of Echinatin and Licochalcone a. Molecules. 2019;24(1):3.CrossRef
31.
go back to reference Xie H, Li X, Ren Z, Qiu W, Chen J, Jiang Q, Chen B, Chen D. Antioxidant and Cytoprotective effects of Tibetan tea and its phenolic components. Molecules. 2018;23(2):179.PubMedCentralCrossRef Xie H, Li X, Ren Z, Qiu W, Chen J, Jiang Q, Chen B, Chen D. Antioxidant and Cytoprotective effects of Tibetan tea and its phenolic components. Molecules. 2018;23(2):179.PubMedCentralCrossRef
32.
go back to reference Yao XH, Zhang DY, Duan MH, Cui Q, Xu WJ, Luo M, Li CY, Zu YG, Fu YJ. Preparation and determination of phenolic compounds from Pyrola incarnata Fisch with a green polyols based-deep eutectic solvent. Sep Purif Technol. 2015;149:116–23.CrossRef Yao XH, Zhang DY, Duan MH, Cui Q, Xu WJ, Luo M, Li CY, Zu YG, Fu YJ. Preparation and determination of phenolic compounds from Pyrola incarnata Fisch with a green polyols based-deep eutectic solvent. Sep Purif Technol. 2015;149:116–23.CrossRef
33.
go back to reference Yao XH, Zhang ZB, Song P, Hao JY, Zhang DY, Zhang YF. Different harvest seasons modify bioactive compounds and antioxidant activities of Pyrola incarnata. Ind Crop Prod. 2016;94:405–12.CrossRef Yao XH, Zhang ZB, Song P, Hao JY, Zhang DY, Zhang YF. Different harvest seasons modify bioactive compounds and antioxidant activities of Pyrola incarnata. Ind Crop Prod. 2016;94:405–12.CrossRef
34.
go back to reference Li X, Chen B, Xie H, He Y, Zhong D, Chen D. Antioxidant structure - activity relationship analysis of five Dihydrochalcones. Molecules. 2018;23(5):1162.PubMedCentralCrossRef Li X, Chen B, Xie H, He Y, Zhong D, Chen D. Antioxidant structure - activity relationship analysis of five Dihydrochalcones. Molecules. 2018;23(5):1162.PubMedCentralCrossRef
35.
go back to reference Cekic SD, Baskan KS, Tutem E, Apak R. Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols. Talanta. 2009;79(2):344–51.PubMedCrossRef Cekic SD, Baskan KS, Tutem E, Apak R. Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols. Talanta. 2009;79(2):344–51.PubMedCrossRef
36.
go back to reference Goldstein S, Russo A, Samuni A. Reactions of PTIO and carboxy-PTIO with •NO, •NO2, and •O2 −. J Biol Chem. 2003;278(51):50949–55.PubMedCrossRef Goldstein S, Russo A, Samuni A. Reactions of PTIO and carboxy-PTIO with NO, NO2, and O2 . J Biol Chem. 2003;278(51):50949–55.PubMedCrossRef
37.
go back to reference Iglesias J, Pazos M, Lois S, Medina I. Contribution of Galloylation and polymerization to the antioxidant activity of polyphenols in fish lipid systems. J Agric Food Chem. 2010;58(12):7423–31.PubMedCrossRef Iglesias J, Pazos M, Lois S, Medina I. Contribution of Galloylation and polymerization to the antioxidant activity of polyphenols in fish lipid systems. J Agric Food Chem. 2010;58(12):7423–31.PubMedCrossRef
38.
go back to reference Mitjans M, Ugartondo V, Martinez V, Tourino S, Torres JL, Vinardell MP. Role of Galloylation and polymerization in Cytoprotective effects of Polyphenolic fractions against hydrogen peroxide insult. J Agric Food Chem. 2011;59(5):2113–9.PubMedCrossRef Mitjans M, Ugartondo V, Martinez V, Tourino S, Torres JL, Vinardell MP. Role of Galloylation and polymerization in Cytoprotective effects of Polyphenolic fractions against hydrogen peroxide insult. J Agric Food Chem. 2011;59(5):2113–9.PubMedCrossRef
39.
go back to reference Plumb GW, De Pascual-Teresa S, Santos-Buelga C, Cheynier V, Williamson G. Antioxidant properties of catechins and proanthocyanidins: effect of polymerisation, galloylation and glycosylation. Free Radic Res. 1998;29(4):351–8.PubMedCrossRef Plumb GW, De Pascual-Teresa S, Santos-Buelga C, Cheynier V, Williamson G. Antioxidant properties of catechins and proanthocyanidins: effect of polymerisation, galloylation and glycosylation. Free Radic Res. 1998;29(4):351–8.PubMedCrossRef
40.
go back to reference Wang S, Ye K, Shu T, Tang X, Wang XJ, Liu S. Enhancement of Galloylation efficacy of Stigmasterol and β-Sitosterol followed by evaluation of cholesterol-reducing activity. J Agric Food Chem. 2019;67(11):3179–87.PubMedCrossRef Wang S, Ye K, Shu T, Tang X, Wang XJ, Liu S. Enhancement of Galloylation efficacy of Stigmasterol and β-Sitosterol followed by evaluation of cholesterol-reducing activity. J Agric Food Chem. 2019;67(11):3179–87.PubMedCrossRef
41.
go back to reference Li XC. Improved Pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem. 2012;60(25):6418–24.PubMedCrossRef Li XC. Improved Pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem. 2012;60(25):6418–24.PubMedCrossRef
42.
go back to reference Klein E, Lukes V. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action. J Phys Chem A. 2006;110(44):12312–20.PubMedCrossRef Klein E, Lukes V. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action. J Phys Chem A. 2006;110(44):12312–20.PubMedCrossRef
43.
go back to reference Alfonso-Prieto M, Oberhofer H, Klein ML, Rovira C, Blumberger J. Proton transfer drives protein radical formation in helicobacter pylori catalase but not in Penicillium vitale catalase. J Am Chem Soc. 2011;133(12):4285–98.PubMedCrossRef Alfonso-Prieto M, Oberhofer H, Klein ML, Rovira C, Blumberger J. Proton transfer drives protein radical formation in helicobacter pylori catalase but not in Penicillium vitale catalase. J Am Chem Soc. 2011;133(12):4285–98.PubMedCrossRef
44.
go back to reference Lucarini M, Pedulli GF. Free radical intermediates in the inhibition of the autoxidation reaction. Chem Soc Rev. 2010;39(6):2106–19.PubMedCrossRef Lucarini M, Pedulli GF. Free radical intermediates in the inhibition of the autoxidation reaction. Chem Soc Rev. 2010;39(6):2106–19.PubMedCrossRef
Metadata
Title
Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components
Authors
Ban Chen
Xican Li
Jie Liu
Wei Qin
Minshi Liang
Qianru Liu
Dongfeng Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2698-y

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue