Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Research article

Different mechanisms of two anti-anthrax protective antigen antibodies and function comparison between them

Authors: Siping Xiong, Tingting Zhou, Feng Zheng, Xudong Liang, Yongping Cao, Chunhui Wang, Zhengqin Feng, Qi Tang, Jin Zhu

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Bacillus anthracis causes a highly lethal infectious disease primarily due to toxin-mediated injury. Antibiotics are no longer effective to treat the accumulation of anthrax toxin, thereby new strategies of antibody treatment are essential. Two anti- anthrax protective antigen (PA) antibodies, hmPA6 and PA21, have been reported by our lab previously.

Methods

The mechanisms of the two antibodies were elucidated by Electrophoresis, Competitive Enzyme-linked immune sorbent assay, Western blot analysis and immunoprecipitation test, and in vitro, in vivo (F344 rats) treatment test. The epitopes of the two antibodies were proved by Western blot and Enzyme-linked immune sorbent assay with different domains of PA.

Results

In this study, we compared affinity and neutralization of these two antibodies. PA21 was better in protecting cells and rats, whereas hmPA6 had higher affinity. Furthermore, the neutralization mechanisms of the two antibodies and their recognition domains of PA were studied. The results showed that hmPA6 recognized domain IV, thus PA could not bind to cell receptors. Conversely, PA21 recognized domain II, thereby limiting heptamer oligomerization of PA63 in cells.

Conclusions

Our studies elucidated the mechanisms and epitopes of hmPA6 and PA21. The present investigation can advance future use of the two antibodies in anthrax treatment or prophylaxis, and potentially as a combination treatment as the antibodies target different epitopes.
Literature
1.
go back to reference Simonsen KA, Chatterjee K. Anthrax. In: StatPearls. FL: Treasure Island; 2019. Simonsen KA, Chatterjee K. Anthrax. In: StatPearls. FL: Treasure Island; 2019.
2.
go back to reference Alqurashi AM. Anthrax threat: a review of clinical and diagnostic measures. J Egypt Soc Parasitol. 2013;43(1):147–66.CrossRef Alqurashi AM. Anthrax threat: a review of clinical and diagnostic measures. J Egypt Soc Parasitol. 2013;43(1):147–66.CrossRef
3.
go back to reference Goel AK. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases. 2015;3(1):20–33.CrossRef Goel AK. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases. 2015;3(1):20–33.CrossRef
4.
go back to reference Steelfisher GK, Blendon RJ, Brule AS, Ben-Porath EN, Ross LJ, Atkins BM. Public response to an anthrax attack: a multiethnic perspective. Biosecur Bioterror. 2012;10(4):401–11.CrossRef Steelfisher GK, Blendon RJ, Brule AS, Ben-Porath EN, Ross LJ, Atkins BM. Public response to an anthrax attack: a multiethnic perspective. Biosecur Bioterror. 2012;10(4):401–11.CrossRef
5.
go back to reference Golden HB, Watson LE, Lal H, Verma SK, Foster DM, Kuo SR, Sharma A, Frankel A, Dostal DE. Anthrax toxin: pathologic effects on the cardiovascular system. Front Biosci (Landmark Ed). 2009;14:2335–57.CrossRef Golden HB, Watson LE, Lal H, Verma SK, Foster DM, Kuo SR, Sharma A, Frankel A, Dostal DE. Anthrax toxin: pathologic effects on the cardiovascular system. Front Biosci (Landmark Ed). 2009;14:2335–57.CrossRef
6.
go back to reference Golden HB, Watson LE, Nizamutdinov D, Feng H, Gerilechaogetu F, Lal H, Verma SK, Mukhopadhyay S, Foster DM, Dillmann WH, et al. Anthrax lethal toxin induces acute diastolic dysfunction in rats through disruption of the phospholamban signaling network. Int J Cardiol. 2013;168(4):3884–95.CrossRef Golden HB, Watson LE, Nizamutdinov D, Feng H, Gerilechaogetu F, Lal H, Verma SK, Mukhopadhyay S, Foster DM, Dillmann WH, et al. Anthrax lethal toxin induces acute diastolic dysfunction in rats through disruption of the phospholamban signaling network. Int J Cardiol. 2013;168(4):3884–95.CrossRef
7.
go back to reference Castanon I, Abrami L, Holtzer L, Heisenberg CP, van der Goot FG, Gonzalez-Gaitan M. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nat Cell Biol. 2013;15(1):28–39.CrossRef Castanon I, Abrami L, Holtzer L, Heisenberg CP, van der Goot FG, Gonzalez-Gaitan M. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nat Cell Biol. 2013;15(1):28–39.CrossRef
8.
go back to reference Reeves CV, Dufraine J, Young JA, Kitajewski J. Anthrax toxin receptor 2 is expressed in murine and tumor vasculature and functions in endothelial proliferation and morphogenesis. Oncogene. 2010;29(6):789–801.CrossRef Reeves CV, Dufraine J, Young JA, Kitajewski J. Anthrax toxin receptor 2 is expressed in murine and tumor vasculature and functions in endothelial proliferation and morphogenesis. Oncogene. 2010;29(6):789–801.CrossRef
9.
go back to reference Maddugoda MP, Stefani C, Gonzalez-Rodriguez D, Saarikangas J, Torrino S, Janel S, Munro P, Doye A, Prodon F, Aurrand-Lions M, et al. cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization. Cell Host Microbe. 2011;10(5):464–74.CrossRef Maddugoda MP, Stefani C, Gonzalez-Rodriguez D, Saarikangas J, Torrino S, Janel S, Munro P, Doye A, Prodon F, Aurrand-Lions M, et al. cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization. Cell Host Microbe. 2011;10(5):464–74.CrossRef
10.
go back to reference Al-Dimassi S, Salloum G, Saykali B, Khoury O, Liu S, Leppla SH, Abi-Habib R, El-Sibai M. Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion. Int J Oncol. 2016;48(5):1913–20.CrossRef Al-Dimassi S, Salloum G, Saykali B, Khoury O, Liu S, Leppla SH, Abi-Habib R, El-Sibai M. Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion. Int J Oncol. 2016;48(5):1913–20.CrossRef
11.
go back to reference Bhatnagar R, Batra S. Anthrax toxin. Crit Rev Microbiol. 2001;27(3):167–200.CrossRef Bhatnagar R, Batra S. Anthrax toxin. Crit Rev Microbiol. 2001;27(3):167–200.CrossRef
12.
go back to reference Jang KH, Nam SJ, Locke JB, Kauffman CA, Beatty DS, Paul LA, Fenical W. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angew Chem Int Ed Engl. 2013;52(30):7822–4.CrossRef Jang KH, Nam SJ, Locke JB, Kauffman CA, Beatty DS, Paul LA, Fenical W. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angew Chem Int Ed Engl. 2013;52(30):7822–4.CrossRef
13.
go back to reference Gill IJ. Antibiotic therapy in the control of an outbreak of anthrax in dairy cows. Aust Vet J. 1982;58(5):214–5.CrossRef Gill IJ. Antibiotic therapy in the control of an outbreak of anthrax in dairy cows. Aust Vet J. 1982;58(5):214–5.CrossRef
14.
go back to reference Kayabas U, Karahocagil MK, Ozkurt Z, Metan G, Parlak E, Bayindir Y, Kalkan A, Akdeniz H, Parlak M, Simpson AJ, et al. Naturally occurring cutaneous anthrax: antibiotic treatment and outcome. Chemotherapy. 2012;58(1):34–43.CrossRef Kayabas U, Karahocagil MK, Ozkurt Z, Metan G, Parlak E, Bayindir Y, Kalkan A, Akdeniz H, Parlak M, Simpson AJ, et al. Naturally occurring cutaneous anthrax: antibiotic treatment and outcome. Chemotherapy. 2012;58(1):34–43.CrossRef
15.
go back to reference Klinman DM, Yamamoto M, Tross D, Tomaru K. Anthrax prevention and treatment: utility of therapy combining antibiotic plus vaccine. Expert Opin Biol Ther. 2009;9(12):1477–86.CrossRef Klinman DM, Yamamoto M, Tross D, Tomaru K. Anthrax prevention and treatment: utility of therapy combining antibiotic plus vaccine. Expert Opin Biol Ther. 2009;9(12):1477–86.CrossRef
16.
go back to reference Migone TS, Bolmer S, Zhong J, Corey A, Vasconcelos D, Buccellato M, Meister G. Added benefit of raxibacumab to antibiotic treatment of inhalational anthrax. Antimicrob Agents Chemother. 2015;59(2):1145–51.CrossRef Migone TS, Bolmer S, Zhong J, Corey A, Vasconcelos D, Buccellato M, Meister G. Added benefit of raxibacumab to antibiotic treatment of inhalational anthrax. Antimicrob Agents Chemother. 2015;59(2):1145–51.CrossRef
17.
go back to reference Beierlein JM, Anderson AC. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for bacillus anthracis. Curr Med Chem. 2011;18(33):5083–94.CrossRef Beierlein JM, Anderson AC. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for bacillus anthracis. Curr Med Chem. 2011;18(33):5083–94.CrossRef
18.
go back to reference Tang Q, Xiong S, Liang X, Kuai X, Wang Y, Wang C, Feng Z, Zhu J. Human monoclonal anti-protective antigen antibody for the low-dose post-exposure prophylaxis and treatment of Anthrax. BMC Infect Dis. 2018;18(1):640.CrossRef Tang Q, Xiong S, Liang X, Kuai X, Wang Y, Wang C, Feng Z, Zhu J. Human monoclonal anti-protective antigen antibody for the low-dose post-exposure prophylaxis and treatment of Anthrax. BMC Infect Dis. 2018;18(1):640.CrossRef
19.
go back to reference Xiong S, Tang Q, Liang X, Zhou T, Yang J, Liu P, Chen Y, Wang C, Feng Z, Zhu J. A novel chimeric anti-PA neutralizing antibody for Postexposure prophylaxis and treatment of Anthrax. Sci Rep. 2015;5:11776.CrossRef Xiong S, Tang Q, Liang X, Zhou T, Yang J, Liu P, Chen Y, Wang C, Feng Z, Zhu J. A novel chimeric anti-PA neutralizing antibody for Postexposure prophylaxis and treatment of Anthrax. Sci Rep. 2015;5:11776.CrossRef
20.
go back to reference Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z, Finkelstein A, Collier RJ. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science. 2005;309(5735):777–81.CrossRef Krantz BA, Melnyk RA, Zhang S, Juris SJ, Lacy DB, Wu Z, Finkelstein A, Collier RJ. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science. 2005;309(5735):777–81.CrossRef
21.
go back to reference Hernandez-Torres F, Pedrajas JR, Aranega AE, Navarro F. Expression in bacteria of small and specific protein domains of two transcription factor isoforms, purification and monospecific polyclonal antibodies generation, by a two-step affinity chromatography procedure. Protein Expr Purif. 2008;60(2):151–6.CrossRef Hernandez-Torres F, Pedrajas JR, Aranega AE, Navarro F. Expression in bacteria of small and specific protein domains of two transcription factor isoforms, purification and monospecific polyclonal antibodies generation, by a two-step affinity chromatography procedure. Protein Expr Purif. 2008;60(2):151–6.CrossRef
22.
go back to reference Feld GK, Kintzer AF, Tang II, Thoren KL, Krantz BA. Domain flexibility modulates the heterogeneous assembly mechanism of anthrax toxin protective antigen. J Mol Biol. 2012;415(1):159–74.CrossRef Feld GK, Kintzer AF, Tang II, Thoren KL, Krantz BA. Domain flexibility modulates the heterogeneous assembly mechanism of anthrax toxin protective antigen. J Mol Biol. 2012;415(1):159–74.CrossRef
23.
go back to reference Mechaly A, Levy H, Epstein E, Rosenfeld R, Marcus H, Ben-Arie E, Shafferman A, Ordentlich A, Mazor O. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of prepore-to-pore conversion. J Biol Chem. 2012;287(39):32665–73.CrossRef Mechaly A, Levy H, Epstein E, Rosenfeld R, Marcus H, Ben-Arie E, Shafferman A, Ordentlich A, Mazor O. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of prepore-to-pore conversion. J Biol Chem. 2012;287(39):32665–73.CrossRef
24.
go back to reference Williams AS, Lovell S, Anbanandam A, El-Chami R, Bann JG. Domain 4 of the anthrax protective antigen maintains structure and binding to the host receptor CMG2 at low pH. Protein Sci. 2009;18(11):2277–86.CrossRef Williams AS, Lovell S, Anbanandam A, El-Chami R, Bann JG. Domain 4 of the anthrax protective antigen maintains structure and binding to the host receptor CMG2 at low pH. Protein Sci. 2009;18(11):2277–86.CrossRef
25.
go back to reference Varughese M, Teixeira AV, Liu S, Leppla SH. Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect Immun. 1999;67(4):1860–5.PubMedPubMedCentral Varughese M, Teixeira AV, Liu S, Leppla SH. Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect Immun. 1999;67(4):1860–5.PubMedPubMedCentral
26.
go back to reference Go MY, Kim S, Partridge AW, Melnyk RA, Rath A, Deber CM, Mogridge J. Self-association of the transmembrane domain of an anthrax toxin receptor. J Mol Biol. 2006;360(1):145–56.CrossRef Go MY, Kim S, Partridge AW, Melnyk RA, Rath A, Deber CM, Mogridge J. Self-association of the transmembrane domain of an anthrax toxin receptor. J Mol Biol. 2006;360(1):145–56.CrossRef
27.
go back to reference Mogridge J, Mourez M, Collier RJ. Involvement of domain 3 in oligomerization by the protective antigen moiety of anthrax toxin. J Bacteriol. 2001;183(6):2111–6.CrossRef Mogridge J, Mourez M, Collier RJ. Involvement of domain 3 in oligomerization by the protective antigen moiety of anthrax toxin. J Bacteriol. 2001;183(6):2111–6.CrossRef
Metadata
Title
Different mechanisms of two anti-anthrax protective antigen antibodies and function comparison between them
Authors
Siping Xiong
Tingting Zhou
Feng Zheng
Xudong Liang
Yongping Cao
Chunhui Wang
Zhengqin Feng
Qi Tang
Jin Zhu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4508-z

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.