Skip to main content
Top
Published in: Diabetologia 9/2014

Open Access 01-09-2014 | Review

Dietary gluten and the development of type 1 diabetes

Authors: Julie C. Antvorskov, Knud Josefsen, Kåre Engkilde, David P. Funda, Karsten Buschard

Published in: Diabetologia | Issue 9/2014

Login to get access

Abstract

Gluten proteins differ from other cereal proteins as they are partly resistant to enzymatic processing in the intestine, resulting in a continuous exposure of the proteins to the intestinal immune system. In addition to being a disease-initiating factor in coeliac disease (CD), gluten intake might affect type 1 diabetes development. Studies in animal models of type 1 diabetes have documented that the pathogenesis is influenced by diet. Thus, a gluten-free diet largely prevents diabetes in NOD mice while a cereal-based diet promotes diabetes development. In infants, amount, timing and mode of introduction have been shown to affect the diabetogenic potential of gluten, and some studies now suggest that a gluten-free diet may preserve beta cell function. Other studies have not found this effect. There is evidence that the intestinal immune system plays a primary role in the pathogenesis of type 1 diabetes, as diabetogenic T cells are initially primed in the gut, islet-infiltrating T cells express gut-associated homing receptors, and mesenteric lymphocytes transfer diabetes from NOD mice to NOD/severe combined immunodeficiency (SCID) mice. Thus, gluten may affect diabetes development by influencing proportional changes in immune cell populations or by modifying the cytokine/chemokine pattern towards an inflammatory profile. This supports an important role for gluten intake in the pathogenesis of type 1 diabetes and further studies should be initiated to clarify whether a gluten-free diet could prevent disease in susceptible individuals or be used with newly diagnosed patients to stop disease progression.
Literature
1.
go back to reference Eurodiab, ACE Study Group (2000) Variation and trends in incidence of childhood diabetes in Europe. Lancet 355:873–876CrossRef Eurodiab, ACE Study Group (2000) Variation and trends in incidence of childhood diabetes in Europe. Lancet 355:873–876CrossRef
2.
go back to reference Akerblom HK, Vaarala O, Hyoty H, Ilonen J, Knip M (2002) Environmental factors in the etiology of type 1 diabetes. Am J Med Genet 115:18–29PubMedCrossRef Akerblom HK, Vaarala O, Hyoty H, Ilonen J, Knip M (2002) Environmental factors in the etiology of type 1 diabetes. Am J Med Genet 115:18–29PubMedCrossRef
4.
go back to reference Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9:858–870PubMedCrossRef Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9:858–870PubMedCrossRef
5.
go back to reference Fasano A, Berti I, Gerarduzzi T et al (2003) Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 163:286–292PubMedCrossRef Fasano A, Berti I, Gerarduzzi T et al (2003) Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 163:286–292PubMedCrossRef
6.
go back to reference Shan L, Molberg O, Parrot I et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279PubMedCrossRef Shan L, Molberg O, Parrot I et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279PubMedCrossRef
7.
go back to reference Nikulina M, Habich C, Flohe SB, Scott FW, Kolb H (2004) Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol 173:1925–1933PubMedCrossRef Nikulina M, Habich C, Flohe SB, Scott FW, Kolb H (2004) Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol 173:1925–1933PubMedCrossRef
8.
go back to reference Palova-Jelinkova L, Rozkova D, Pecharova B et al (2005) Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 175:7038–7045PubMedCrossRef Palova-Jelinkova L, Rozkova D, Pecharova B et al (2005) Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 175:7038–7045PubMedCrossRef
10.
go back to reference Maiuri L, Ciacci C, Ricciardelli I et al (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362:30–37PubMedCrossRef Maiuri L, Ciacci C, Ricciardelli I et al (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362:30–37PubMedCrossRef
11.
12.
go back to reference Collin P, Kaukinen K, Valimaki M, Salmi J (2002) Endocrinological disorders and celiac disease. Endocr Rev 23:464–483PubMedCrossRef Collin P, Kaukinen K, Valimaki M, Salmi J (2002) Endocrinological disorders and celiac disease. Endocr Rev 23:464–483PubMedCrossRef
13.
go back to reference Hansen D, Brock-Jacobsen B, Lund E et al (2006) Clinical benefit of a gluten-free diet in type 1 diabetic children with screening-detected celiac disease: a population-based screening study with 2 years' follow-up. Diabetes Care 29:2452–2456PubMedCrossRef Hansen D, Brock-Jacobsen B, Lund E et al (2006) Clinical benefit of a gluten-free diet in type 1 diabetic children with screening-detected celiac disease: a population-based screening study with 2 years' follow-up. Diabetes Care 29:2452–2456PubMedCrossRef
14.
go back to reference Cosnes J, Cellier C, Viola S et al (2008) Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clin Gastroenterol Hepatol 6:753–758PubMedCrossRef Cosnes J, Cellier C, Viola S et al (2008) Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clin Gastroenterol Hepatol 6:753–758PubMedCrossRef
15.
go back to reference Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond B Biol Sci 357:133–142PubMedCentralPubMedCrossRef Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond B Biol Sci 357:133–142PubMedCentralPubMedCrossRef
16.
go back to reference Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958PubMedCrossRef Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958PubMedCrossRef
17.
go back to reference Piper JL, Gray GM, Khosla C (2004) Effect of prolyl endopeptidase on digestive-resistant gliadin peptides in vivo. J Pharmacol Exp Ther 311:213–219PubMedCrossRef Piper JL, Gray GM, Khosla C (2004) Effect of prolyl endopeptidase on digestive-resistant gliadin peptides in vivo. J Pharmacol Exp Ther 311:213–219PubMedCrossRef
18.
go back to reference Helmerhorst EJ, Zamakhchari M, Schuppan D, Oppenheim FG (2010) Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity. PLoS One 5:e13264PubMedCentralPubMedCrossRef Helmerhorst EJ, Zamakhchari M, Schuppan D, Oppenheim FG (2010) Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity. PLoS One 5:e13264PubMedCentralPubMedCrossRef
19.
go back to reference Bernardo D, Garrote JA, Nadal I et al (2009) Is it true that coeliacs do not digest gliadin? Degradation pattern of gliadin in coeliac disease small intestinal mucosa. Gut 58:886–887PubMedCrossRef Bernardo D, Garrote JA, Nadal I et al (2009) Is it true that coeliacs do not digest gliadin? Degradation pattern of gliadin in coeliac disease small intestinal mucosa. Gut 58:886–887PubMedCrossRef
20.
go back to reference Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56:1669–1674PubMedCrossRef Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56:1669–1674PubMedCrossRef
21.
go back to reference Tlaskalova-Hogenova H, Stepankova R, Farre M et al (1997) Autoimmune reactions induced by gliadin feeding in germ-free AVN rats and athymic nude mice. Animal models for celiac disease. Ann N Y Acad Sci 815:503–505PubMedCrossRef Tlaskalova-Hogenova H, Stepankova R, Farre M et al (1997) Autoimmune reactions induced by gliadin feeding in germ-free AVN rats and athymic nude mice. Animal models for celiac disease. Ann N Y Acad Sci 815:503–505PubMedCrossRef
22.
go back to reference Stepankova R, Tlaskalova-Hogenova H, Sinkora J, Jodl J, Fric P (1996) Changes in jejunal mucosa after long-term feeding of germfree rats with gluten. Scand J Gastroenterol 31:551–557PubMedCrossRef Stepankova R, Tlaskalova-Hogenova H, Sinkora J, Jodl J, Fric P (1996) Changes in jejunal mucosa after long-term feeding of germfree rats with gluten. Scand J Gastroenterol 31:551–557PubMedCrossRef
23.
go back to reference Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world—recent facts and figures. Immunol Today 14:193–196PubMedCrossRef Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world—recent facts and figures. Immunol Today 14:193–196PubMedCrossRef
24.
go back to reference Buschard K, Pedersen C, Hansen SV, Hageman I, Aaen K, Bendtzen K (1992) Anti-diabetogenic effect of fusidic acid in diabetes prone BB rats. Autoimmunity 14:101–104PubMedCrossRef Buschard K, Pedersen C, Hansen SV, Hageman I, Aaen K, Bendtzen K (1992) Anti-diabetogenic effect of fusidic acid in diabetes prone BB rats. Autoimmunity 14:101–104PubMedCrossRef
25.
go back to reference Hansen CH, Krych L, Nielsen DS et al (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55:2285–2294PubMedCrossRef Hansen CH, Krych L, Nielsen DS et al (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55:2285–2294PubMedCrossRef
26.
go back to reference Matsuzaki T, Nagata Y, Kado S et al (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 105:643–649PubMedCrossRef Matsuzaki T, Nagata Y, Kado S et al (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 105:643–649PubMedCrossRef
27.
28.
go back to reference Hansen AK, Ling F, Kaas A, Funda DP, Farlov H, Buschard K (2006) Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev 22:220–225PubMedCrossRef Hansen AK, Ling F, Kaas A, Funda DP, Farlov H, Buschard K (2006) Diabetes preventive gluten-free diet decreases the number of caecal bacteria in non-obese diabetic mice. Diabetes Metab Res Rev 22:220–225PubMedCrossRef
29.
go back to reference Marietta EV, Gomez AM, Yeoman C et al (2013) Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One 8:e78687PubMedCentralPubMedCrossRef Marietta EV, Gomez AM, Yeoman C et al (2013) Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One 8:e78687PubMedCentralPubMedCrossRef
30.
go back to reference Patrick C, Wang GS, Lefebvre DE et al (2013) Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial peptide. Diabetes 62:2036–2047PubMedCentralPubMedCrossRef Patrick C, Wang GS, Lefebvre DE et al (2013) Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial peptide. Diabetes 62:2036–2047PubMedCentralPubMedCrossRef
31.
go back to reference Funda DP, Kaas A, Bock T, Tlaskalova-Hogenova H, Buschard K (1999) Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 15:323–327PubMedCrossRef Funda DP, Kaas A, Bock T, Tlaskalova-Hogenova H, Buschard K (1999) Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 15:323–327PubMedCrossRef
32.
go back to reference Funda DP, Kaas A, Tlaskalova-Hogenova H, Buschard K (2008) Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev 24:59–63PubMedCrossRef Funda DP, Kaas A, Tlaskalova-Hogenova H, Buschard K (2008) Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev 24:59–63PubMedCrossRef
33.
go back to reference Hoorfar J, Scott FW, Cloutier HE (1991) Dietary plant materials and development of diabetes in the BB rat. J Nutr 121:908–916PubMed Hoorfar J, Scott FW, Cloutier HE (1991) Dietary plant materials and development of diabetes in the BB rat. J Nutr 121:908–916PubMed
34.
go back to reference Coleman DL, Kuzava JE, Leiter EH (1990) Effect of diet on incidence of diabetes in nonobese diabetic mice. Diabetes 39:432–436PubMedCrossRef Coleman DL, Kuzava JE, Leiter EH (1990) Effect of diet on incidence of diabetes in nonobese diabetic mice. Diabetes 39:432–436PubMedCrossRef
35.
36.
go back to reference Pastore MR, Bazzigaluppi E, Belloni C, Arcovio C, Bonifacio E, Bosi E (2003) Six months of gluten-free diet do not influence autoantibody titers, but improve insulin secretion in subjects at high risk for type 1 diabetes. J Clin Endocrinol Metab 88:162–165PubMedCrossRef Pastore MR, Bazzigaluppi E, Belloni C, Arcovio C, Bonifacio E, Bosi E (2003) Six months of gluten-free diet do not influence autoantibody titers, but improve insulin secretion in subjects at high risk for type 1 diabetes. J Clin Endocrinol Metab 88:162–165PubMedCrossRef
37.
go back to reference Fuchtenbusch M, Ziegler AG, Hummel M (2004) Elimination of dietary gluten and development of type 1 diabetes in high risk subjects. Rev Diabet Stud 1:39–41PubMedCentralPubMedCrossRef Fuchtenbusch M, Ziegler AG, Hummel M (2004) Elimination of dietary gluten and development of type 1 diabetes in high risk subjects. Rev Diabet Stud 1:39–41PubMedCentralPubMedCrossRef
38.
go back to reference Sildorf SM, Fredheim S, Svensson J, Buschard K (2012) Remission without insulin therapy on gluten-free diet in a 6-year old boy with type 1 diabetes mellitus. BMJ Case Rep. doi:10.1136/bcr.02.2012.5878 Sildorf SM, Fredheim S, Svensson J, Buschard K (2012) Remission without insulin therapy on gluten-free diet in a 6-year old boy with type 1 diabetes mellitus. BMJ Case Rep. doi:10.​1136/​bcr.​02.​2012.​5878
39.
go back to reference Saadah OI, Zacharin M, O'Callaghan A, Oliver MR, Catto-Smith AG (2004) Effect of gluten-free diet and adherence on growth and diabetic control in diabetics with coeliac disease. Arch Dis Child 89:871–876PubMedCentralPubMedCrossRef Saadah OI, Zacharin M, O'Callaghan A, Oliver MR, Catto-Smith AG (2004) Effect of gluten-free diet and adherence on growth and diabetic control in diabetics with coeliac disease. Arch Dis Child 89:871–876PubMedCentralPubMedCrossRef
40.
go back to reference Rami B, Sumnik Z, Schober E et al (2005) Screening detected celiac disease in children with type 1 diabetes mellitus: effect on the clinical course (a case control study). J Pediatr Gastroenterol Nutr 41:317–321PubMedCrossRef Rami B, Sumnik Z, Schober E et al (2005) Screening detected celiac disease in children with type 1 diabetes mellitus: effect on the clinical course (a case control study). J Pediatr Gastroenterol Nutr 41:317–321PubMedCrossRef
41.
go back to reference Westman E, Ambler GR, Royle M, Peat J, Chan A (1999) Children with coeliac disease and insulin dependent diabetes mellitus—growth, diabetes control and dietary intake. J Pediatr Endocrinol Metab 12:433–442PubMedCrossRef Westman E, Ambler GR, Royle M, Peat J, Chan A (1999) Children with coeliac disease and insulin dependent diabetes mellitus—growth, diabetes control and dietary intake. J Pediatr Endocrinol Metab 12:433–442PubMedCrossRef
42.
go back to reference Troncone R, Franzese A, Mazzarella G et al (2003) Gluten sensitivity in a subset of children with insulin dependent diabetes mellitus. Am J Gastroenterol 98:590–595PubMedCrossRef Troncone R, Franzese A, Mazzarella G et al (2003) Gluten sensitivity in a subset of children with insulin dependent diabetes mellitus. Am J Gastroenterol 98:590–595PubMedCrossRef
43.
go back to reference Mojibian M, Chakir H, Lefebvre DE et al (2009) Diabetes-specific HLA-DR-restricted proinflammatory T cell response to wheat polypeptides in tissue transglutaminase antibody-negative patients with type 1 diabetes. Diabetes 58:1789–1796PubMedCentralPubMedCrossRef Mojibian M, Chakir H, Lefebvre DE et al (2009) Diabetes-specific HLA-DR-restricted proinflammatory T cell response to wheat polypeptides in tissue transglutaminase antibody-negative patients with type 1 diabetes. Diabetes 58:1789–1796PubMedCentralPubMedCrossRef
44.
go back to reference Klemetti P, Savilahti E, Ilonen J, Akerblom HK, Vaarala O (1998) T cell reactivity to wheat gluten in patients with insulin-dependent diabetes mellitus. Scand J Immunol 47:48–53PubMedCrossRef Klemetti P, Savilahti E, Ilonen J, Akerblom HK, Vaarala O (1998) T cell reactivity to wheat gluten in patients with insulin-dependent diabetes mellitus. Scand J Immunol 47:48–53PubMedCrossRef
45.
go back to reference MacFarlane AJ, Burghardt KM, Kelly J et al (2003) A type 1 diabetes-related protein from wheat (Triticum aestivum): cDNA clone of a wheat storage globulin, Glb1, linked to islet damage. J Biol Chem 278:54–63PubMedCrossRef MacFarlane AJ, Burghardt KM, Kelly J et al (2003) A type 1 diabetes-related protein from wheat (Triticum aestivum): cDNA clone of a wheat storage globulin, Glb1, linked to islet damage. J Biol Chem 278:54–63PubMedCrossRef
46.
go back to reference Simpson M, Mojibian M, Barriga K et al (2009) An exploration of Glo-3A antibody levels in children at increased risk for type 1 diabetes mellitus. Pediatr Diabetes 10:563–572PubMedCentralPubMedCrossRef Simpson M, Mojibian M, Barriga K et al (2009) An exploration of Glo-3A antibody levels in children at increased risk for type 1 diabetes mellitus. Pediatr Diabetes 10:563–572PubMedCentralPubMedCrossRef
47.
go back to reference Mueller DB, Koczwara K, Mueller AS, Pallauf J, Ziegler AG, Bonifacio E (2009) Influence of early nutritional components on the development of murine autoimmune diabetes. Ann Nutr Metab 54:208–217PubMedCentralPubMedCrossRef Mueller DB, Koczwara K, Mueller AS, Pallauf J, Ziegler AG, Bonifacio E (2009) Influence of early nutritional components on the development of murine autoimmune diabetes. Ann Nutr Metab 54:208–217PubMedCentralPubMedCrossRef
48.
go back to reference Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728PubMedCrossRef Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728PubMedCrossRef
49.
go back to reference Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720PubMedCrossRef Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720PubMedCrossRef
50.
go back to reference Atkinson M, Gale EA (2003) Infant diets and type 1 diabetes: too early, too late, or just too complicated? JAMA 290:1771–1772PubMedCrossRef Atkinson M, Gale EA (2003) Infant diets and type 1 diabetes: too early, too late, or just too complicated? JAMA 290:1771–1772PubMedCrossRef
51.
go back to reference Strobel S, Mowat AM (1998) Immune responses to dietary antigens: oral tolerance. Immunol Today 19:173–181PubMedCrossRef Strobel S, Mowat AM (1998) Immune responses to dietary antigens: oral tolerance. Immunol Today 19:173–181PubMedCrossRef
52.
go back to reference Hummel S, Pfluger M, Hummel M, Bonifacio E, Ziegler AG (2011) Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care 34:1301–1305PubMedCentralPubMedCrossRef Hummel S, Pfluger M, Hummel M, Bonifacio E, Ziegler AG (2011) Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care 34:1301–1305PubMedCentralPubMedCrossRef
53.
go back to reference Ludvigsson J (2003) Cow-milk-free diet during last trimester of pregnancy does not influence diabetes-related autoantibodies in nondiabetic children. Ann N Y Acad Sci 1005:275–278PubMedCrossRef Ludvigsson J (2003) Cow-milk-free diet during last trimester of pregnancy does not influence diabetes-related autoantibodies in nondiabetic children. Ann N Y Acad Sci 1005:275–278PubMedCrossRef
54.
go back to reference Virtanen SM, Takkinen HM, Nevalainen J et al (2011) Early introduction of root vegetables in infancy associated with advanced β-cell autoimmunity in young children with human leukocyte antigen-conferred susceptibility to type 1 diabetes. Diabet Med 28:965–971PubMedCrossRef Virtanen SM, Takkinen HM, Nevalainen J et al (2011) Early introduction of root vegetables in infancy associated with advanced β-cell autoimmunity in young children with human leukocyte antigen-conferred susceptibility to type 1 diabetes. Diabet Med 28:965–971PubMedCrossRef
55.
go back to reference Scott FW, Rowsell P, Wang GS, Burghardt K, Kolb H, Flohe S (2002) Oral exposure to diabetes-promoting food or immunomodulators in neonates alters gut cytokines and diabetes. Diabetes 51:73–78PubMedCrossRef Scott FW, Rowsell P, Wang GS, Burghardt K, Kolb H, Flohe S (2002) Oral exposure to diabetes-promoting food or immunomodulators in neonates alters gut cytokines and diabetes. Diabetes 51:73–78PubMedCrossRef
56.
go back to reference Schmid S, Koczwara K, Schwinghammer S, Lampasona V, Ziegler AG, Bonifacio E (2004) Delayed exposure to wheat and barley proteins reduces diabetes incidence in non-obese diabetic mice. Clin Immunol 111:108–118PubMedCrossRef Schmid S, Koczwara K, Schwinghammer S, Lampasona V, Ziegler AG, Bonifacio E (2004) Delayed exposure to wheat and barley proteins reduces diabetes incidence in non-obese diabetic mice. Clin Immunol 111:108–118PubMedCrossRef
57.
go back to reference Ivarsson A, Persson LA, Nystrom L et al (2000) Epidemic of coeliac disease in Swedish children. Acta Paediatr 89:165–171PubMedCrossRef Ivarsson A, Persson LA, Nystrom L et al (2000) Epidemic of coeliac disease in Swedish children. Acta Paediatr 89:165–171PubMedCrossRef
58.
go back to reference Ivarsson A, Hernell O, Stenlund H, Persson LA (2002) Breast-feeding protects against celiac disease. Am J Clin Nutr 75:914–921PubMed Ivarsson A, Hernell O, Stenlund H, Persson LA (2002) Breast-feeding protects against celiac disease. Am J Clin Nutr 75:914–921PubMed
59.
go back to reference Kimpimaki T, Erkkola M, Korhonen S et al (2001) Short-term exclusive breastfeeding predisposes young children with increased genetic risk of type I diabetes to progressive beta-cell autoimmunity. Diabetologia 44:63–69PubMedCrossRef Kimpimaki T, Erkkola M, Korhonen S et al (2001) Short-term exclusive breastfeeding predisposes young children with increased genetic risk of type I diabetes to progressive beta-cell autoimmunity. Diabetologia 44:63–69PubMedCrossRef
60.
go back to reference Savilahti E, Ormala T, Saukkonen T et al (1999) Jejuna of patients with insulin-dependent diabetes mellitus (IDDM) show signs of immune activation. Clin Exp Immunol 116:70–77PubMedCentralPubMedCrossRef Savilahti E, Ormala T, Saukkonen T et al (1999) Jejuna of patients with insulin-dependent diabetes mellitus (IDDM) show signs of immune activation. Clin Exp Immunol 116:70–77PubMedCentralPubMedCrossRef
61.
go back to reference Westerholm-Ormio M, Vaarala O, Pihkala P, Ilonen J, Savilahti E (2003) Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes 52:2287–2295PubMedCrossRef Westerholm-Ormio M, Vaarala O, Pihkala P, Ilonen J, Savilahti E (2003) Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes 52:2287–2295PubMedCrossRef
62.
go back to reference Hanninen A, Salmi M, Simell O, Jalkanen S (1996) Mucosa-associated (beta 7-integrin high) lymphocytes accumulate early in the pancreas of NOD mice and show aberrant recirculation behavior. Diabetes 45:1173–1180PubMedCrossRef Hanninen A, Salmi M, Simell O, Jalkanen S (1996) Mucosa-associated (beta 7-integrin high) lymphocytes accumulate early in the pancreas of NOD mice and show aberrant recirculation behavior. Diabetes 45:1173–1180PubMedCrossRef
63.
go back to reference Yang XD, Sytwu HK, McDevitt HO, Michie SA (1997) Involvement of beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in the development of diabetes in obese diabetic mice. Diabetes 46:1542–1547PubMedCrossRef Yang XD, Sytwu HK, McDevitt HO, Michie SA (1997) Involvement of beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in the development of diabetes in obese diabetic mice. Diabetes 46:1542–1547PubMedCrossRef
64.
go back to reference Hanninen A, Jaakkola I, Jalkanen S (1998) Mucosal addressin is required for the development of diabetes in nonobese diabetic mice. J Immunol 160:6018–6025PubMed Hanninen A, Jaakkola I, Jalkanen S (1998) Mucosal addressin is required for the development of diabetes in nonobese diabetic mice. J Immunol 160:6018–6025PubMed
65.
go back to reference Jaakkola I, Jalkanen S, Hanninen A (2003) Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol 33:3255–3264PubMedCrossRef Jaakkola I, Jalkanen S, Hanninen A (2003) Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol 33:3255–3264PubMedCrossRef
66.
go back to reference Hanninen A, Salmi M, Simell O, Jalkanen S (1993) Endothelial cell-binding properties of lymphocytes infiltrated into human diabetic pancreas. Implications for pathogenesis of IDDM. Diabetes 42:1656–1662PubMedCrossRef Hanninen A, Salmi M, Simell O, Jalkanen S (1993) Endothelial cell-binding properties of lymphocytes infiltrated into human diabetic pancreas. Implications for pathogenesis of IDDM. Diabetes 42:1656–1662PubMedCrossRef
67.
go back to reference Paronen J, Klemetti P, Kantele JM et al (1997) Glutamate decarboxylase-reactive peripheral blood lymphocytes from patients with IDDM express gut-specific homing receptor α4β7-integrin. Diabetes 46:583–588PubMedCrossRef Paronen J, Klemetti P, Kantele JM et al (1997) Glutamate decarboxylase-reactive peripheral blood lymphocytes from patients with IDDM express gut-specific homing receptor α4β7-integrin. Diabetes 46:583–588PubMedCrossRef
68.
go back to reference Neu J, Reverte CM, Mackey AD et al (2005) Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes. J Pediatr Gastroenterol Nutr 40:589–595PubMedCrossRef Neu J, Reverte CM, Mackey AD et al (2005) Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes. J Pediatr Gastroenterol Nutr 40:589–595PubMedCrossRef
69.
70.
go back to reference Bosi E, Molteni L, Radaelli MG et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49:2824–2827PubMedCrossRef Bosi E, Molteni L, Radaelli MG et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49:2824–2827PubMedCrossRef
71.
go back to reference Secondulfo M, Iafusco D, Carratu R et al (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis 36:35–45PubMedCrossRef Secondulfo M, Iafusco D, Carratu R et al (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis 36:35–45PubMedCrossRef
72.
go back to reference Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35:365–368PubMedCrossRef Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35:365–368PubMedCrossRef
73.
go back to reference Fasano A, Not T, Wang W et al (2000) Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355:1518–1519PubMedCrossRef Fasano A, Not T, Wang W et al (2000) Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355:1518–1519PubMedCrossRef
74.
go back to reference Watts T, Berti I, Sapone A et al (2005) Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A 102:2916–2921PubMedCentralPubMedCrossRef Watts T, Berti I, Sapone A et al (2005) Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A 102:2916–2921PubMedCentralPubMedCrossRef
75.
go back to reference Sapone A, de Magistris L, Pietzak M et al (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55:1443–1449PubMedCrossRef Sapone A, de Magistris L, Pietzak M et al (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55:1443–1449PubMedCrossRef
76.
go back to reference Visser JT, Lammers K, Hoogendijk A et al (2010) Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia 53:2621–2628PubMedCentralPubMedCrossRef Visser JT, Lammers K, Hoogendijk A et al (2010) Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia 53:2621–2628PubMedCentralPubMedCrossRef
77.
go back to reference Lammers KM, Lu R, Brownley J et al (2008) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135:194–204PubMedCentralPubMedCrossRef Lammers KM, Lu R, Brownley J et al (2008) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135:194–204PubMedCentralPubMedCrossRef
78.
go back to reference Flohe SB, Wasmuth HE, Kerad JB et al (2003) A wheat-based, diabetes-promoting diet induces a Th1-type cytokine bias in the gut of NOD mice. Cytokine 21:149–154PubMedCrossRef Flohe SB, Wasmuth HE, Kerad JB et al (2003) A wheat-based, diabetes-promoting diet induces a Th1-type cytokine bias in the gut of NOD mice. Cytokine 21:149–154PubMedCrossRef
79.
go back to reference Chakir H, Lefebvre DE, Wang H, Caraher E, Scott FW (2005) Wheat protein-induced proinflammatory T helper 1 bias in mesenteric lymph nodes of young diabetes-prone rats. Diabetologia 48:1576–1584PubMedCrossRef Chakir H, Lefebvre DE, Wang H, Caraher E, Scott FW (2005) Wheat protein-induced proinflammatory T helper 1 bias in mesenteric lymph nodes of young diabetes-prone rats. Diabetologia 48:1576–1584PubMedCrossRef
80.
go back to reference Nilsen EM, Jahnsen FL, Lundin KE et al (1998) Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 115:551–563PubMedCrossRef Nilsen EM, Jahnsen FL, Lundin KE et al (1998) Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 115:551–563PubMedCrossRef
81.
82.
go back to reference Antvorskov JC, Fundova P, Buschard K, Funda DP (2013) Dietary gluten alters the balance of pro-inflammatory and anti-inflammatory cytokines in T cells of BALB/c mice. Immunology 138:23–33PubMedCentralPubMedCrossRef Antvorskov JC, Fundova P, Buschard K, Funda DP (2013) Dietary gluten alters the balance of pro-inflammatory and anti-inflammatory cytokines in T cells of BALB/c mice. Immunology 138:23–33PubMedCentralPubMedCrossRef
83.
go back to reference Scott FW, Cloutier HE, Kleemann R et al (1997) Potential mechanisms by which certain foods promote or inhibit the development of spontaneous diabetes in BB rats: dose, timing, early effect on islet area, and switch in infiltrate from Th1 to Th2 cells. Diabetes 46:589–598PubMedCrossRef Scott FW, Cloutier HE, Kleemann R et al (1997) Potential mechanisms by which certain foods promote or inhibit the development of spontaneous diabetes in BB rats: dose, timing, early effect on islet area, and switch in infiltrate from Th1 to Th2 cells. Diabetes 46:589–598PubMedCrossRef
84.
go back to reference Ciccocioppo R, Rossi M, Pesce I et al (2008) Effects of gliadin stimulation on bone marrow-derived dendritic cells from HLA-DQ8 transgenic MICE. Dig Liver Dis 40:927–935PubMedCrossRef Ciccocioppo R, Rossi M, Pesce I et al (2008) Effects of gliadin stimulation on bone marrow-derived dendritic cells from HLA-DQ8 transgenic MICE. Dig Liver Dis 40:927–935PubMedCrossRef
85.
go back to reference Thomas KE, Sapone A, Fasano A, Vogel SN (2006) Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in celiac disease. J Immunol 176:2512–2521PubMedCrossRef Thomas KE, Sapone A, Fasano A, Vogel SN (2006) Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in celiac disease. J Immunol 176:2512–2521PubMedCrossRef
86.
go back to reference Tuckova L, Flegelova Z, Tlaskalova-Hogenova H, Zidek Z (2000) Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. J Leukoc Biol 67:312–318PubMed Tuckova L, Flegelova Z, Tlaskalova-Hogenova H, Zidek Z (2000) Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. J Leukoc Biol 67:312–318PubMed
87.
go back to reference Gianfrani C, Auricchio S, Troncone R (2005) Adaptive and innate immune responses in celiac disease. Immunol Lett 99:141–145PubMedCrossRef Gianfrani C, Auricchio S, Troncone R (2005) Adaptive and innate immune responses in celiac disease. Immunol Lett 99:141–145PubMedCrossRef
88.
go back to reference Di SA, Pickard KM, Gordon JN et al (2007) Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology 133:1175–1187CrossRef Di SA, Pickard KM, Gordon JN et al (2007) Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology 133:1175–1187CrossRef
89.
go back to reference Hue S, Mention JJ, Monteiro RC et al (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377PubMedCrossRef Hue S, Mention JJ, Monteiro RC et al (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377PubMedCrossRef
90.
go back to reference Terrazzano G, Sica M, Gianfrani C et al (2007) Gliadin regulates the NK-dendritic cell cross-talk by HLA-E surface stabilization. J Immunol 179:372–381PubMedCrossRef Terrazzano G, Sica M, Gianfrani C et al (2007) Gliadin regulates the NK-dendritic cell cross-talk by HLA-E surface stabilization. J Immunol 179:372–381PubMedCrossRef
91.
go back to reference Meresse B, Chen Z, Ciszewski C et al (2004) Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366PubMedCrossRef Meresse B, Chen Z, Ciszewski C et al (2004) Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366PubMedCrossRef
92.
go back to reference Junker Y, Zeissig S, Kim SJ et al (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209:2395–2408PubMedCentralPubMedCrossRef Junker Y, Zeissig S, Kim SJ et al (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209:2395–2408PubMedCentralPubMedCrossRef
93.
go back to reference Dall M, Calloe K, Haupt-Jorgensen M et al (2013) Gliadin fragments and a specific gliadin 33-mer peptide close KATP channels and induce insulin secretion in INS-1E cells and rat islets of Langerhans. PLoS One 8:e66474PubMedCentralPubMedCrossRef Dall M, Calloe K, Haupt-Jorgensen M et al (2013) Gliadin fragments and a specific gliadin 33-mer peptide close KATP channels and induce insulin secretion in INS-1E cells and rat islets of Langerhans. PLoS One 8:e66474PubMedCentralPubMedCrossRef
94.
go back to reference Gotfredsen CF, Buschard K, Frandsen EK (1985) Reduction of diabetes incidence of BB Wistar rats by early prophylactic insulin treatment of diabetes-prone animals. Diabetologia 28:933–935PubMedCrossRef Gotfredsen CF, Buschard K, Frandsen EK (1985) Reduction of diabetes incidence of BB Wistar rats by early prophylactic insulin treatment of diabetes-prone animals. Diabetologia 28:933–935PubMedCrossRef
95.
go back to reference Hardin JA, Donegan L, Woodman RC, Trevenen C, Gall DG (2002) Mucosal inflammation in a genetic model of spontaneous type I diabetes mellitus. Can J Physiol Pharmacol 80:1064–1070PubMedCrossRef Hardin JA, Donegan L, Woodman RC, Trevenen C, Gall DG (2002) Mucosal inflammation in a genetic model of spontaneous type I diabetes mellitus. Can J Physiol Pharmacol 80:1064–1070PubMedCrossRef
96.
go back to reference Meddings JB, Jarand J, Urbanski SJ, Hardin J, Gall DG (1999) Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Physiol 276:G951–G957PubMed Meddings JB, Jarand J, Urbanski SJ, Hardin J, Gall DG (1999) Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Physiol 276:G951–G957PubMed
97.
go back to reference Tuckova L, Novotna J, Novak P et al (2002) Activation of macrophages by gliadin fragments: isolation and characterization of active peptide. J Leukoc Biol 71:625–631PubMed Tuckova L, Novotna J, Novak P et al (2002) Activation of macrophages by gliadin fragments: isolation and characterization of active peptide. J Leukoc Biol 71:625–631PubMed
98.
go back to reference Alam C, Valkonen S, Palagani V, Jalava J, Eerola E, Hanninen A (2010) Inflammatory tendencies and overproduction of IL-17 in the colon of young NOD mice are counteracted with diet change. Diabetes 59:2237–2246PubMedCentralPubMedCrossRef Alam C, Valkonen S, Palagani V, Jalava J, Eerola E, Hanninen A (2010) Inflammatory tendencies and overproduction of IL-17 in the colon of young NOD mice are counteracted with diet change. Diabetes 59:2237–2246PubMedCentralPubMedCrossRef
99.
go back to reference Bernardo D, Garrote JA, Fernandez-Salazar L, Riestra S, Arranz E (2007) Is gliadin really safe for non-coeliac individuals? Production of interleukin 15 in biopsy culture from non-coeliac individuals challenged with gliadin peptides. Gut 56:889–890PubMedCentralPubMedCrossRef Bernardo D, Garrote JA, Fernandez-Salazar L, Riestra S, Arranz E (2007) Is gliadin really safe for non-coeliac individuals? Production of interleukin 15 in biopsy culture from non-coeliac individuals challenged with gliadin peptides. Gut 56:889–890PubMedCentralPubMedCrossRef
Metadata
Title
Dietary gluten and the development of type 1 diabetes
Authors
Julie C. Antvorskov
Knud Josefsen
Kåre Engkilde
David P. Funda
Karsten Buschard
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3265-1

Other articles of this Issue 9/2014

Diabetologia 9/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.