Skip to main content
Top
Published in: BMC Gastroenterology 1/2020

Open Access 01-12-2020 | Diarrhea | Research article

A retrospective study on the association of gastrointestinal symptoms in children with low lactase activity and low activity of other disaccharidases

Authors: Paul Wasuwanich, Hassan Choudry, Thammasin Ingviya, Ann O. Scheimann, Karla J. AuYeung, Christine Karwowski, Susan Billet, Buford L. Nichols, Wikrom Karnsakul

Published in: BMC Gastroenterology | Issue 1/2020

Login to get access

Abstract

Background

Disaccharides such as lactose and sucrose are sugars commonly found in human diet. They are broken down by mucosal disaccharidases in the duodenum. Previous small studies found no associations between gastrointestinal (GI) symptoms and combined low disaccharidase activity. We aim to explore the associations of low activity of disaccharidase and combinations of low activity of different disaccharidases with general GI symptom presentations in a large cohort of pediatric patients.

Methods

We examined a cohort (0–21 yrs.) who have undergone esophagogastroduodenoscopy and received disaccharidase activity assay from duodenal biopsy in the time period 2010 to 2012. Disaccharidase assays tested for activity of lactase, sucrase, maltase, and palatinase. GI symptoms were grouped into four categories, abdominal pain, diarrhea, weight loss, and gastroesophageal reflux.

Results

Of the 347 subjects, we found an association between low lactase activity and abdominal pain (OR = 1.78; 95% CI = 1.07–2.97; p < 0.05). Subjects with a lactase/sucrase ratio < 0.2 were found to be associated with abdominal pain (OR = 2.25; 95% CI = 1.25–4.04; p < 0.05), Subjects with low pandisaccharidase may be correlated with abdominal pain and have a unique frequency of GI symptoms due to low frequency of diarrhea and weight loss, but they were not statistically significant.

Conclusions

Low activities of certain disaccharidase combinations may be associated with GI symptoms in subjects; a prospective study may be needed to investigate further.
Literature
1.
go back to reference Popkin BM, Nielsen SJ. The sweetening of the World’s diet. Obes Res. 2003;11(11):1325–32.CrossRef Popkin BM, Nielsen SJ. The sweetening of the World’s diet. Obes Res. 2003;11(11):1325–32.CrossRef
2.
go back to reference Ismail AI, Tanzer JM, Dingle JL. Current trends of sugar consumption in developing societies. Community Dent Oral Epidemiol. 1997 Dec 1;25(6):438–43.CrossRef Ismail AI, Tanzer JM, Dingle JL. Current trends of sugar consumption in developing societies. Community Dent Oral Epidemiol. 1997 Dec 1;25(6):438–43.CrossRef
3.
go back to reference Kit BK, Fakhouri TH, Park S, Nielsen SJ, Ogden CL. Trends in sugar-sweetened beverage consumption among youth and adults in the United States: 1999–2010. Am J Clin Nutr. 2013;98(1):180–8.CrossRef Kit BK, Fakhouri TH, Park S, Nielsen SJ, Ogden CL. Trends in sugar-sweetened beverage consumption among youth and adults in the United States: 1999–2010. Am J Clin Nutr. 2013;98(1):180–8.CrossRef
4.
go back to reference Popkin BM, Hawkes C. Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 2016;4(2):174–86. Popkin BM, Hawkes C. Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 2016;4(2):174–86.
5.
go back to reference Hackenmueller SA, Grenache DG. Reference intervals for intestinal Disaccharidase activities determined from a non-reference population. J Appl Lab Med An AACC Publ. 2016;1(2):172–80.CrossRef Hackenmueller SA, Grenache DG. Reference intervals for intestinal Disaccharidase activities determined from a non-reference population. J Appl Lab Med An AACC Publ. 2016;1(2):172–80.CrossRef
6.
go back to reference Cogoli A, Semenza G. A probable oxocarbonium ion in the reaction mechanism of small intestinal sucrase and isomaltase. J Biol Chem. 1975;250(19):7802–9.PubMed Cogoli A, Semenza G. A probable oxocarbonium ion in the reaction mechanism of small intestinal sucrase and isomaltase. J Biol Chem. 1975;250(19):7802–9.PubMed
7.
go back to reference Cogoli A, Eberle A, Sigrist H, Joss C, Robinson E, Mosimann H, et al. Subunits of the small-intestinal sucrase-isomaltase complex and separation of its enzymatically active isomaltase moiety. Eur J Biochem. 1973;33(1):40–8.CrossRef Cogoli A, Eberle A, Sigrist H, Joss C, Robinson E, Mosimann H, et al. Subunits of the small-intestinal sucrase-isomaltase complex and separation of its enzymatically active isomaltase moiety. Eur J Biochem. 1973;33(1):40–8.CrossRef
8.
go back to reference Storhaug CL, Fosse SK, Fadnes LT. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(10):738–46.CrossRef Storhaug CL, Fosse SK, Fadnes LT. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(10):738–46.CrossRef
9.
go back to reference Cramer DW, Xu H, Sahi T. Adult Hypolactasia, Milk consumption, and age-specific fertility. Am J Epidemiol. 1994;139(3):282–9.CrossRef Cramer DW, Xu H, Sahi T. Adult Hypolactasia, Milk consumption, and age-specific fertility. Am J Epidemiol. 1994;139(3):282–9.CrossRef
10.
go back to reference Nicklas TA, Qu H, Hughes SO, He M, Wagner SE, Foushee HR, et al. Self-perceived lactose intolerance results in lower intakes of calcium and dairy foods and is associated with hypertension and diabetes in adults. Am J Clin Nutr. 2011;94(1):191–8.CrossRef Nicklas TA, Qu H, Hughes SO, He M, Wagner SE, Foushee HR, et al. Self-perceived lactose intolerance results in lower intakes of calcium and dairy foods and is associated with hypertension and diabetes in adults. Am J Clin Nutr. 2011;94(1):191–8.CrossRef
11.
go back to reference Barr SI. Perceived lactose intolerance in adult Canadians: a national survey. Appl Physiol Nutr Metab. 2013;38(8):830–5.CrossRef Barr SI. Perceived lactose intolerance in adult Canadians: a national survey. Appl Physiol Nutr Metab. 2013;38(8):830–5.CrossRef
12.
go back to reference Heyman MB. Committee on nutrition. Lactose intolerance in infants, children, and adolescents. Pediatrics. 2006;118(3):1279–86.CrossRef Heyman MB. Committee on nutrition. Lactose intolerance in infants, children, and adolescents. Pediatrics. 2006;118(3):1279–86.CrossRef
13.
go back to reference Daileda T, Baek P, Sutter ME, Thakkar K. Disaccharidase activity in children undergoing esophagogastroduodenoscopy: a systematic review. World J Gastrointest Pharmacol Ther. 2016;7(2):283.CrossRef Daileda T, Baek P, Sutter ME, Thakkar K. Disaccharidase activity in children undergoing esophagogastroduodenoscopy: a systematic review. World J Gastrointest Pharmacol Ther. 2016;7(2):283.CrossRef
14.
go back to reference Nichols BL, Adams B, Roach CM, Ma C-X, Baker SS. Frequency of Sucrase deficiency in mucosal biopsies. J Pediatr Gastroenterol Nutr. 2012;55:S28–30.CrossRef Nichols BL, Adams B, Roach CM, Ma C-X, Baker SS. Frequency of Sucrase deficiency in mucosal biopsies. J Pediatr Gastroenterol Nutr. 2012;55:S28–30.CrossRef
15.
go back to reference Gupta SK, Chong SK, Fitzgerald JF. Disaccharidase activities in children: normal values and comparison based on symptoms and histologic changes. J Pediatr Gastroenterol Nutr. 1999;28(3):246–51.CrossRef Gupta SK, Chong SK, Fitzgerald JF. Disaccharidase activities in children: normal values and comparison based on symptoms and histologic changes. J Pediatr Gastroenterol Nutr. 1999;28(3):246–51.CrossRef
16.
go back to reference Karnsakul W, Luginbuehl U, Hahn D, Sterchi E, Avery S, Sen P, et al. Disaccharidase activities in dyspeptic children: biochemical and molecular investigations of maltase-glucoamylase activity. J Pediatr Gastroenterol Nutr. 2002;35(4):551–6.CrossRef Karnsakul W, Luginbuehl U, Hahn D, Sterchi E, Avery S, Sen P, et al. Disaccharidase activities in dyspeptic children: biochemical and molecular investigations of maltase-glucoamylase activity. J Pediatr Gastroenterol Nutr. 2002;35(4):551–6.CrossRef
17.
go back to reference Chumpitazi BP, Robayo-Torres CC, Tsai CM, Opekun AR, Baker SS, Nichols BL, et al. Demographic and clinical correlates of mucosal Disaccharidase deficiencies in children with functional dyspepsia. J Pediatr Gastroenterol Nutr. 2018;66(Suppl 3):S52–5.CrossRef Chumpitazi BP, Robayo-Torres CC, Tsai CM, Opekun AR, Baker SS, Nichols BL, et al. Demographic and clinical correlates of mucosal Disaccharidase deficiencies in children with functional dyspepsia. J Pediatr Gastroenterol Nutr. 2018;66(Suppl 3):S52–5.CrossRef
18.
go back to reference Cohen SA, Oloyede H, Gold BD, Mohammed A, Elser HE. Clinical characteristics of Disaccharidase deficiencies among children undergoing upper endoscopy. J Pediatr Gastroenterol Nutr. 2018;66(Suppl 3):S56–60.CrossRef Cohen SA, Oloyede H, Gold BD, Mohammed A, Elser HE. Clinical characteristics of Disaccharidase deficiencies among children undergoing upper endoscopy. J Pediatr Gastroenterol Nutr. 2018;66(Suppl 3):S56–60.CrossRef
20.
go back to reference Maiuri L, Rossi M, Raia V, Paparo F, Coletta S, Mazzeo F, et al. Morphological method for the diagnosis of human adult type hypolactasia. Gut. 1994;35(8):1042–6.CrossRef Maiuri L, Rossi M, Raia V, Paparo F, Coletta S, Mazzeo F, et al. Morphological method for the diagnosis of human adult type hypolactasia. Gut. 1994;35(8):1042–6.CrossRef
21.
go back to reference Gremse DA, Greer AS, Vacik J, DiPalma JA. Abdominal pain associated with lactose ingestion in children with lactose intolerance. Clin Pediatr (Phila). 2003;42(4):341–5.CrossRef Gremse DA, Greer AS, Vacik J, DiPalma JA. Abdominal pain associated with lactose ingestion in children with lactose intolerance. Clin Pediatr (Phila). 2003;42(4):341–5.CrossRef
22.
go back to reference Hammer HF, Hammer J. Diarrhea caused by carbohydrate malabsorption. Gastroenterol Clin N Am. 2012;41(3):611–27.CrossRef Hammer HF, Hammer J. Diarrhea caused by carbohydrate malabsorption. Gastroenterol Clin N Am. 2012;41(3):611–27.CrossRef
23.
go back to reference Dahlqvist A, Auricchio S, Semenza G, Prader A. Human intestinal disaccharidases and hereditary disaccharide intolerance. The hydrolysis of sucrose, isomaltose, palatinose (isomaltulose), and a 1,6-alpha-oligosaccharide (isomalto-oligosaccharide) preparation. J Clin Invest. 1963;42(4):556–62.CrossRef Dahlqvist A, Auricchio S, Semenza G, Prader A. Human intestinal disaccharidases and hereditary disaccharide intolerance. The hydrolysis of sucrose, isomaltose, palatinose (isomaltulose), and a 1,6-alpha-oligosaccharide (isomalto-oligosaccharide) preparation. J Clin Invest. 1963;42(4):556–62.CrossRef
24.
go back to reference Dahlqvist A. Hydrolysis of Palatinose (Isomaltulose) by pig intestinal Glycosidases. Acta Chem Scand. 1961;15:808–16.CrossRef Dahlqvist A. Hydrolysis of Palatinose (Isomaltulose) by pig intestinal Glycosidases. Acta Chem Scand. 1961;15:808–16.CrossRef
25.
go back to reference Ringrose RE, Preiser H, Welsh JD. Sucrase-isomaltase (palatinase) deficiency diagnosed during adulthood. Dig Dis Sci. 1980;25(5):384–7.CrossRef Ringrose RE, Preiser H, Welsh JD. Sucrase-isomaltase (palatinase) deficiency diagnosed during adulthood. Dig Dis Sci. 1980;25(5):384–7.CrossRef
26.
go back to reference Owen DR, Owen DA. Celiac disease and other causes of duodenitis. In: Archives of Pathology and Laboratory Medicine: College of American Pathologists; 2018. p. 35–43. Owen DR, Owen DA. Celiac disease and other causes of duodenitis. In: Archives of Pathology and Laboratory Medicine: College of American Pathologists; 2018. p. 35–43.
27.
go back to reference Wiecek S, Wos H, Radziewicz-Winnicki I, Komraus M, Grzybowska-Chlebowczyk U. Disaccharidase activity in children with inflammatory bowel disease. Turkish J Gastroenterol. 2014;25(2):185–91.CrossRef Wiecek S, Wos H, Radziewicz-Winnicki I, Komraus M, Grzybowska-Chlebowczyk U. Disaccharidase activity in children with inflammatory bowel disease. Turkish J Gastroenterol. 2014;25(2):185–91.CrossRef
Metadata
Title
A retrospective study on the association of gastrointestinal symptoms in children with low lactase activity and low activity of other disaccharidases
Authors
Paul Wasuwanich
Hassan Choudry
Thammasin Ingviya
Ann O. Scheimann
Karla J. AuYeung
Christine Karwowski
Susan Billet
Buford L. Nichols
Wikrom Karnsakul
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2020
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-020-01443-4

Other articles of this Issue 1/2020

BMC Gastroenterology 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.