Skip to main content
Top
Published in: Annals of Nuclear Medicine 4/2023

06-01-2023 | Diabetic Retinopathy | Original Article

18F-FP-CIT dopamine transporter PET findings in the striatum and retina of type 1 diabetic rats

Authors: Ping Chen, Jun Li, Zhan Li, Duxia Yu, Ning Ma, Zian Xia, Xianglei Meng, Xingdang Liu

Published in: Annals of Nuclear Medicine | Issue 4/2023

Login to get access

Abstract

Purpose

Noninvasive methods used in clinic to accurately detect DA neuron loss in diabetic brain injury and diabetic retinopathy have not been reported up to now. 18F-FP-CIT is a promising dopamine transporter (DAT) targeted probe. Our study first applies 18F-FP-CIT PET imaging to assess DA neuron loss in the striatum and retina of T1DM rat model.

Methods

T1DM rat model was induced by a single intraperitoneal injection of streptozotocin (STZ) (65 mg kg−1, ip). 18F-FP-CIT uptake in the striatum and retina was evaluated at 4 weeks, 8 weeks and 12 weeks after STZ injection. The mean standardized uptake value (SUVmean) and the maximum standardized uptake value (SUVmax) were analyzed. Western blot was performed to confirm the DAT protein levels in the striatum and retina.

Results

PET/CT results showed that the SUV of 18F-FP-CIT was significantly reduced in the diabetic striatum and retina compared with the normal one from 4-week to 12-week (p < 0.0001). Western blots showed that DAT was significantly lower in the diabetic striatum and retina compared to the normal one for all three time points (p < 0.05). The results from Western blots confirmed the findings in PET imaging studies.

Conclusions

DA neuron loss in the striatum and retina of T1DM rat model can be non-invasively detected with PET imaging using 18F-FP-CIT targeting DAT. 18F-FP-CIT PET imaging may be a useful tool used in clinic for DR and diabetic brain injury diagnosis in future. The expression level of DAT in striatum and retina may act as a new biomarker for DR and diabetic brain injury diagnosis.
Literature
1.
go back to reference Tian T, Li Z, Lu H. Common pathophysiology affecting diabetic retinopathy and Parkinson’s disease. Med Hypotheses. 2015;85(4):397–8.PubMedCrossRef Tian T, Li Z, Lu H. Common pathophysiology affecting diabetic retinopathy and Parkinson’s disease. Med Hypotheses. 2015;85(4):397–8.PubMedCrossRef
2.
go back to reference Pérez-Taboada I, et al. Diabetes causes dysfunctional dopamine neurotransmission favoring nigrostriatal degeneration in mice. Mov Disord. 2020;35(9):1636–48.PubMedPubMedCentralCrossRef Pérez-Taboada I, et al. Diabetes causes dysfunctional dopamine neurotransmission favoring nigrostriatal degeneration in mice. Mov Disord. 2020;35(9):1636–48.PubMedPubMedCentralCrossRef
3.
go back to reference Kono T, Takada M. Dopamine depletion in nigrostriatal neurons in the genetically diabetic rat. Brain Res. 1994;634(1):155–8.PubMedCrossRef Kono T, Takada M. Dopamine depletion in nigrostriatal neurons in the genetically diabetic rat. Brain Res. 1994;634(1):155–8.PubMedCrossRef
4.
go back to reference Lahouaoui H, et al. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis. 2016;22:959–69.PubMedPubMedCentral Lahouaoui H, et al. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis. 2016;22:959–69.PubMedPubMedCentral
5.
go back to reference Moore-Dotson JM, et al. Early retinal neuronal dysfunction in diabetic mice: reduced light-evoked inhibition increases rod pathway signaling. Invest Ophthalmol Vis Sci. 2016;57(3):1418–30.PubMedPubMedCentralCrossRef Moore-Dotson JM, et al. Early retinal neuronal dysfunction in diabetic mice: reduced light-evoked inhibition increases rod pathway signaling. Invest Ophthalmol Vis Sci. 2016;57(3):1418–30.PubMedPubMedCentralCrossRef
6.
go back to reference Witkovsky P, et al. Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci. 2004;24(17):4242–9.PubMedPubMedCentralCrossRef Witkovsky P, et al. Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci. 2004;24(17):4242–9.PubMedPubMedCentralCrossRef
7.
go back to reference Qin X, et al. Association between diabetes medications and the risk of Parkinson’s disease: a systematic review and meta-analysis. Front Neurol. 2021;12:678649.PubMedPubMedCentralCrossRef Qin X, et al. Association between diabetes medications and the risk of Parkinson’s disease: a systematic review and meta-analysis. Front Neurol. 2021;12:678649.PubMedPubMedCentralCrossRef
9.
go back to reference Kim MK, et al. Dopamine deficiency mediates early rod-driven inner retinal dysfunction in diabetic mice. Invest Ophthalmol Vis Sci. 2018;59(1):572–81.PubMedPubMedCentralCrossRef Kim MK, et al. Dopamine deficiency mediates early rod-driven inner retinal dysfunction in diabetic mice. Invest Ophthalmol Vis Sci. 2018;59(1):572–81.PubMedPubMedCentralCrossRef
10.
go back to reference Uhl GR. Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion and parkinsonism. Mov Disord. 2003;18(Suppl 7):S71-80.PubMedCrossRef Uhl GR. Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion and parkinsonism. Mov Disord. 2003;18(Suppl 7):S71-80.PubMedCrossRef
11.
go back to reference Porter E, et al. Multimodal dopamine transporter (DAT) imaging and magnetic resonance imaging (MRI) to characterise early Parkinson’s disease. Parkinsonism Relat Disord. 2020;79:26–33.PubMedCrossRef Porter E, et al. Multimodal dopamine transporter (DAT) imaging and magnetic resonance imaging (MRI) to characterise early Parkinson’s disease. Parkinsonism Relat Disord. 2020;79:26–33.PubMedCrossRef
12.
go back to reference Cheng Z, Zhong YM, Yang XL. Expression of the dopamine transporter in rat and bullfrog retinas. NeuroReport. 2006;17(8):773–7.PubMedCrossRef Cheng Z, Zhong YM, Yang XL. Expression of the dopamine transporter in rat and bullfrog retinas. NeuroReport. 2006;17(8):773–7.PubMedCrossRef
13.
go back to reference Dai H, et al. Is dopamine transporter-mediated dopaminergic signaling in the retina a noninvasive biomarker for attention-deficit/ hyperactivity disorder? A study in a novel dopamine transporter variant Val559 transgenic mouse model. J Neurodev Disord. 2017;9(1):38.PubMedPubMedCentralCrossRef Dai H, et al. Is dopamine transporter-mediated dopaminergic signaling in the retina a noninvasive biomarker for attention-deficit/ hyperactivity disorder? A study in a novel dopamine transporter variant Val559 transgenic mouse model. J Neurodev Disord. 2017;9(1):38.PubMedPubMedCentralCrossRef
14.
go back to reference Fazio P, et al. Nigrostriatal dopamine transporter availability in early Parkinson’s disease. Mov Disord. 2018;33(4):592–9.PubMedCrossRef Fazio P, et al. Nigrostriatal dopamine transporter availability in early Parkinson’s disease. Mov Disord. 2018;33(4):592–9.PubMedCrossRef
15.
go back to reference Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using (18)F-FP-CIT PET/CT in patients with parkinsonism. Am J Nucl Med Mol Imaging. 2018;8(6):360–72.PubMedPubMedCentral Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using (18)F-FP-CIT PET/CT in patients with parkinsonism. Am J Nucl Med Mol Imaging. 2018;8(6):360–72.PubMedPubMedCentral
16.
go back to reference Lee I, et al. Head-to-head comparison of (18) F-FP-CIT and (123) I-FP-CIT for dopamine transporter imaging in patients with Parkinson’s disease: a preliminary study. Synapse. 2018;72(7):e22032.PubMedCrossRef Lee I, et al. Head-to-head comparison of (18) F-FP-CIT and (123) I-FP-CIT for dopamine transporter imaging in patients with Parkinson’s disease: a preliminary study. Synapse. 2018;72(7):e22032.PubMedCrossRef
17.
18.
go back to reference Prasad SN, Muralidhara. Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: attenuation of behavioral impairments and biochemical perturbations. J Neurosci Res. 2014;92(9):1205–16.PubMedCrossRef Prasad SN, Muralidhara. Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: attenuation of behavioral impairments and biochemical perturbations. J Neurosci Res. 2014;92(9):1205–16.PubMedCrossRef
19.
go back to reference Shen Y, et al. Hyperglycemia induces osteoclastogenesis and bone destruction through the activation of Ca(2+)/Calmodulin-dependent protein kinase II. Calcif Tissue Int. 2019;104(4):390–401.PubMedCrossRef Shen Y, et al. Hyperglycemia induces osteoclastogenesis and bone destruction through the activation of Ca(2+)/Calmodulin-dependent protein kinase II. Calcif Tissue Int. 2019;104(4):390–401.PubMedCrossRef
20.
go back to reference Zheng Y, et al. Altered platelet calsequestrin abundance, Na+/Ca2+ exchange and Ca2+ signaling responses with the progression of diabetes mellitus. Thromb Res. 2014;134(3):674–81.PubMedCrossRef Zheng Y, et al. Altered platelet calsequestrin abundance, Na+/Ca2+ exchange and Ca2+ signaling responses with the progression of diabetes mellitus. Thromb Res. 2014;134(3):674–81.PubMedCrossRef
21.
go back to reference Lee SJ, et al. One-step high-radiochemical-yield synthesis of [18F]FP-CIT using a protic solvent system. Nucl Med Biol. 2007;34(4):345–51.PubMedCrossRef Lee SJ, et al. One-step high-radiochemical-yield synthesis of [18F]FP-CIT using a protic solvent system. Nucl Med Biol. 2007;34(4):345–51.PubMedCrossRef
22.
go back to reference Rubins DJ, et al. Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. Neuroimage. 2003;20(4):2100–18.PubMedCrossRef Rubins DJ, et al. Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. Neuroimage. 2003;20(4):2100–18.PubMedCrossRef
23.
go back to reference Sun Y, et al. Study of vesicular monoamine transporter 2 in myopic retina using [(18)F]FP-(+)-DTBZ. Mol Imaging Biol. 2018;20(5):771–9.PubMedCrossRef Sun Y, et al. Study of vesicular monoamine transporter 2 in myopic retina using [(18)F]FP-(+)-DTBZ. Mol Imaging Biol. 2018;20(5):771–9.PubMedCrossRef
24.
go back to reference Park BN, et al. Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson’s disease: small animal positron emission tomography study with F-18 FP-CIT. Eur Radiol. 2015;25(5):1487–96.PubMedCrossRef Park BN, et al. Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson’s disease: small animal positron emission tomography study with F-18 FP-CIT. Eur Radiol. 2015;25(5):1487–96.PubMedCrossRef
25.
go back to reference Han S, et al. Subregional pattern of striatal dopamine transporter loss on 18F FP-CIT positron emission tomography in patients with pure akinesia with gait freezing. JAMA Neurol. 2016;73(12):1477–84.PubMedCrossRef Han S, et al. Subregional pattern of striatal dopamine transporter loss on 18F FP-CIT positron emission tomography in patients with pure akinesia with gait freezing. JAMA Neurol. 2016;73(12):1477–84.PubMedCrossRef
26.
27.
go back to reference Nishimura C, Kuriyama K. Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes. J Neurochem. 1985;45(2):448–55.PubMedCrossRef Nishimura C, Kuriyama K. Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes. J Neurochem. 1985;45(2):448–55.PubMedCrossRef
28.
go back to reference Deeds MC, et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim. 2011;45(3):131–40.PubMedPubMedCentralCrossRef Deeds MC, et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim. 2011;45(3):131–40.PubMedPubMedCentralCrossRef
29.
go back to reference Zhou Y, et al. Visualization of translocator protein (18 kDa) (TSPO) in the retina of diabetic retinopathy rats using fluorine-18-DPA-714. Ann Nucl Med. 2020;34(9):675–81.PubMedCrossRef Zhou Y, et al. Visualization of translocator protein (18 kDa) (TSPO) in the retina of diabetic retinopathy rats using fluorine-18-DPA-714. Ann Nucl Med. 2020;34(9):675–81.PubMedCrossRef
30.
go back to reference Li J, et al. PET imaging of vesicular monoamine transporter 2 in early diabetic retinopathy using [(18)F]FP-(+)-DTBZ. Mol Imaging Biol. 2020;22(5):1161–9.PubMedCrossRef Li J, et al. PET imaging of vesicular monoamine transporter 2 in early diabetic retinopathy using [(18)F]FP-(+)-DTBZ. Mol Imaging Biol. 2020;22(5):1161–9.PubMedCrossRef
31.
go back to reference Sihver W, et al. Evaluation of novel tropane analogues in comparison with the binding characteristics of [18F]FP-CIT and [131I]beta-CIT. Nucl Med Biol. 2007;34(2):211–9.PubMedCrossRef Sihver W, et al. Evaluation of novel tropane analogues in comparison with the binding characteristics of [18F]FP-CIT and [131I]beta-CIT. Nucl Med Biol. 2007;34(2):211–9.PubMedCrossRef
32.
go back to reference Zhao J, et al. Study on retinal dopamine transporter in form deprivation myopia using the radiopharmaceutical tracer 99mTc-TRODAT-1. Nucl Med Commun. 2010;31(10):910–5.PubMedCrossRef Zhao J, et al. Study on retinal dopamine transporter in form deprivation myopia using the radiopharmaceutical tracer 99mTc-TRODAT-1. Nucl Med Commun. 2010;31(10):910–5.PubMedCrossRef
33.
go back to reference Jiang D, et al. Decreased striatal vesicular monoamine transporter 2 (VMAT2) expression in a type 1 diabetic rat model: a longitudinal study using micro-PET/CT. Nucl Med Biol. 2020;82–83:89–95.PubMedCrossRef Jiang D, et al. Decreased striatal vesicular monoamine transporter 2 (VMAT2) expression in a type 1 diabetic rat model: a longitudinal study using micro-PET/CT. Nucl Med Biol. 2020;82–83:89–95.PubMedCrossRef
34.
go back to reference Zhang Z, et al. Association between pathophysiological mechanisms of diabetic retinopathy and Parkinson’s disease. Cell Mol Neurobiol. 2022;42(3):665–75.PubMedCrossRef Zhang Z, et al. Association between pathophysiological mechanisms of diabetic retinopathy and Parkinson’s disease. Cell Mol Neurobiol. 2022;42(3):665–75.PubMedCrossRef
36.
go back to reference Sossi V, et al. Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 2007;62(5):468–74.PubMedCrossRef Sossi V, et al. Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 2007;62(5):468–74.PubMedCrossRef
37.
go back to reference Shin KH, et al. Effect of animal condition and fluvoxamine on the result of [(18)F]N-3-Fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) Nortropane ([(18)F]FP-CIT) PET study in mice. Nucl Med Mol Imaging. 2012;46(1):27–33.PubMedCrossRef Shin KH, et al. Effect of animal condition and fluvoxamine on the result of [(18)F]N-3-Fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) Nortropane ([(18)F]FP-CIT) PET study in mice. Nucl Med Mol Imaging. 2012;46(1):27–33.PubMedCrossRef
38.
go back to reference Lee CS, et al. Uneven age effects of [(18)F]FP-CIT binding in the striatum of Parkinson’s disease. Ann Nucl Med. 2014;28(9):874–9.PubMedCrossRef Lee CS, et al. Uneven age effects of [(18)F]FP-CIT binding in the striatum of Parkinson’s disease. Ann Nucl Med. 2014;28(9):874–9.PubMedCrossRef
40.
go back to reference Park E, et al. Increased brainstem serotonergic transporter availability in adult migraineurs: an [(18)F]FP-CIT PET imaging pilot study. Nucl Med Mol Imaging. 2016;50(1):70–5.PubMedCrossRef Park E, et al. Increased brainstem serotonergic transporter availability in adult migraineurs: an [(18)F]FP-CIT PET imaging pilot study. Nucl Med Mol Imaging. 2016;50(1):70–5.PubMedCrossRef
41.
go back to reference Huang CW, et al. Ophiocordyceps formosana improves hyperglycemia and depression-like behavior in an STZ-induced diabetic mouse model. BMC Complement Altern Med. 2016;16(1):310.PubMedPubMedCentralCrossRef Huang CW, et al. Ophiocordyceps formosana improves hyperglycemia and depression-like behavior in an STZ-induced diabetic mouse model. BMC Complement Altern Med. 2016;16(1):310.PubMedPubMedCentralCrossRef
42.
go back to reference El-Mansi AA, et al. Vitamin A and Daucus carota root extract mitigate STZ-induced diabetic retinal degeneration in Wistar albino rats by modulating neurotransmission and downregulation of apoptotic pathways. J Food Biochem. 2021;45(4):e13688.PubMedCrossRef El-Mansi AA, et al. Vitamin A and Daucus carota root extract mitigate STZ-induced diabetic retinal degeneration in Wistar albino rats by modulating neurotransmission and downregulation of apoptotic pathways. J Food Biochem. 2021;45(4):e13688.PubMedCrossRef
43.
go back to reference Kaymaz AA, et al. Comparison of the metabolic and antioxidant effects of diltiazem and vitamin E on streptozotocin-diabetic rats. J Vet Med A Physiol Pathol Clin Med. 2004;51(6):265–7.PubMedCrossRef Kaymaz AA, et al. Comparison of the metabolic and antioxidant effects of diltiazem and vitamin E on streptozotocin-diabetic rats. J Vet Med A Physiol Pathol Clin Med. 2004;51(6):265–7.PubMedCrossRef
44.
go back to reference Bond JS, Failla ML, Unger DF. Elevated manganese concentration and arginase activity in livers of streptozotocin-induced diabetic rats. J Biol Chem. 1983;258(13):8004–9.PubMedCrossRef Bond JS, Failla ML, Unger DF. Elevated manganese concentration and arginase activity in livers of streptozotocin-induced diabetic rats. J Biol Chem. 1983;258(13):8004–9.PubMedCrossRef
45.
go back to reference Kolb H. Mouse models of insulin dependent diabetes: low-dose streptozocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev. 1987;3(3):751–78.PubMedCrossRef Kolb H. Mouse models of insulin dependent diabetes: low-dose streptozocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev. 1987;3(3):751–78.PubMedCrossRef
46.
go back to reference Lin M, et al. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin. Diabetes. 2010;59(9):2247–52.PubMedPubMedCentralCrossRef Lin M, et al. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin. Diabetes. 2010;59(9):2247–52.PubMedPubMedCentralCrossRef
47.
go back to reference Strom JL, Egede LE. The impact of social support on outcomes in adult patients with type 2 diabetes: a systematic review. Curr Diab Rep. 2012;12(6):769–81.PubMedPubMedCentralCrossRef Strom JL, Egede LE. The impact of social support on outcomes in adult patients with type 2 diabetes: a systematic review. Curr Diab Rep. 2012;12(6):769–81.PubMedPubMedCentralCrossRef
Metadata
Title
18F-FP-CIT dopamine transporter PET findings in the striatum and retina of type 1 diabetic rats
Authors
Ping Chen
Jun Li
Zhan Li
Duxia Yu
Ning Ma
Zian Xia
Xianglei Meng
Xingdang Liu
Publication date
06-01-2023
Publisher
Springer Nature Singapore
Published in
Annals of Nuclear Medicine / Issue 4/2023
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01818-5

Other articles of this Issue 4/2023

Annals of Nuclear Medicine 4/2023 Go to the issue